Sb химия. Сурьма: история открытия элемента. Везде, кроме солнца

Самый мощный и большой приток Волги - Кама, которая занимает второе место, если взять реки европейской части нашей страны, по площади водосбора, составляющей 522 000 км 2 , и, само собой, по длине, равной аж 2030 км. Первое место, как и положено, за Волгой. Второй по величине приток Волги - Ока, начинается в центре Средне-Русской возвышенности, на высоте над уровнем моря 226 метров. В великую русскую реку впадает справа, прямо у города Горького. Кама начинается в границах Верхне-Камского плато.

Кама. Описание притока

Сначала мы рассмотрим крупные притоки Волги. Верхне-Камское плато представляет собой северную сторону Высокого Заволжья. Река сначала течет на север, потом под углом в 90 градусов сворачивает на восток и в предгорьях Урала снова меняет направление, очень резко повернув на юг. Получается, что в верхнем течении она образует как бы большую петлю. Учитывая, что общая длина превышает 2000 км, от истока до ее устьев всего 445 км. Это переформирование Камы стало возможным из-за ее оледенения. Она принадлежит к равнинным рекам, хотя ее уклон в два раза больше, чем у Волги. Кама маловодна в верховьях и только когда в нее впадает Вишера, отличающаяся высокой водностью, она становится по-настоящему полноводной. Она течет в глубокой долине с весьма солидными берегами от устья Вишеры до места, где в нее впадает следующий приток - Чусовая. Водный режим у Камы посложнее, чем у остальных рек Европейской России. Этот приток Волги подвержен влиянию горных притоков левого берега, которые очень водные и имеют иной режим. Особенно это заметно после того, как в нее впадает Вишера.

Чем питается Кама

Снеговые воды играют основную роль в питании Камы. Их доля в годовом стоке более 50%. Заметным также является грунтовое и дождевое питание. Главные черты водного режима почти полностью такие, как у Волги. Тем не менее, у Камы более неустойчивый летний низкий уровень воды, он часто прерывается паводками из-за дождей, иногда достигающими солидной силы. Уровень воды колеблется до 10-12 метров. Это происходим, например, у города Молотова. Река замерзает в середине ноября, вскрывается к апрелю, его второй половине. Кама сама принимает большое количество притоков, из которых самыми главнейшими и важнейшими являются Чусовая, Вишера, Вятка и белая.

Сурьма (лат. Stibium ), Sb , химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенка в природе известны два стабильных изотопа 121 Sb (57,25%) и 123 Sb (42,75%).

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н.э. для изготовления сосудов. В Древнем Египте уже в 19в до н.э. порошок сурьмяного блеска ( Sb 2 S 3 ) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stimi и stibi , отсюда латинский stibium .около 12-14 вв. н.э. появилось название antimonium . В 1789г А. Лувазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony , испанский и итальянский antimonio , немецкий antimon ). Русская “сурьма” произошла от турецкого surme ; им обозначался порошок свинцового блеска PbS , также служивший для чернения бровей (по другим данным, “сурьма» - от персидского сурме – металл).

Первая известная нам книга, в которой подробно описаны свойства сурьмы и её соединений, - “Триумфальная колесница антимония”, издана в 1604г. её автор вошел в историю химии под именем немецкого монаха-бенедиктинца Василия Валентина. Кто скрывается под этим псевдонимом, установить не удалось, но ещё в прошлом веке было доказано, что в списках монахов ордена бенедиктинцев брат Василий Валентин никогда не числился. Есть, правда, сведения, будто бы в XV веке в Эрфуртском монастыре жил монах по имени Василий, весьма сведущий в алхимии; кое-какие принадлежащие ему рукописи были найдены после его смерти в ящике вместе с порошком золота. Но отождествлять его с автором “Триумфальной колесницы антимония”, видимо, нельзя. Вероятнее всего, как показал критический анализ ряда книг Василия Валентина, они написаны разными лицами, причем не ранее второй половины XVI века.

Ещё средневековые металлурги и химики подметили, что сурьма куется хуже, чем “классические” металлы, и поэтому вместе с цинком, висмутом и мышьяком её выделили в особую группу - «полуметаллов”. Для этого имелись и другие “веские” основания: по алхимическим понятиям, каждый металл был связан с тем или иным небесным телом “Семь металлов создал свет по числу семи планет”- гласил один из важнейших постулатов алхимии. На каком-то этапе людям и впрямь были известны семь металлов и столько же небесных тел (Солнце, Луна и пять планет, не считая Земли). Не увидеть в этом глубочайшую философскую закономерность могли только полные профаны и невежды. Стройная алхимическая теория гласила, что золото представляло на небесах Солнце, серебро – это типичная Луна, медь, несомненно, связана родственными узами с Венерой, железо явно тяготеет к Марсу, ртуть соответственно Меркурию, олово олицетворяет Юпитер, а свинец – Сатурн. Для других элементов в рядах металлов не оставалось ни одной вакансии.

Если для цинка и висмута такая дискриминация, вызванная дефицитом небесных тел, была явно несправедливой, то сурьма с её своеобразными физическими и химическими свойствами и в самом деле не вправе была сетовать на то, что оказалась в разряде “полуметаллов”

Судите сами. По внешнему виду кристаллическая, или серая, сурьма (это её основная модификация) – типичный металл серо-белого цвета с легким синеватым оттенком, который тем сильнее, чем больше примесей (известны также три аморфные модификации: желтая, черная и так называемая взрывчатая). Но внешность, как известно, бывает обманчивой, и сурьма это подтверждает. В отличие от большинства металлов, она, во-первых, очень хрупка и легко истирается в порошок, а во-вторых, значительно хуже проводит электричество и тепло. Да и в химических реакциях сурьма проявляет такую двойствен-

ность, что не позволяет однозначно ответить на вопрос: металл она или не металл.

Словно в отместку металлам за то, что они неохотно принимают в свои ряды, расплавленная сурьма растворяет почти все металлы. Об этом знали ещё в старину, и не случайно во многих дошедших до нас алхимических книгах сурьму и её соединения изображали в виде волка с открытой пастью. В трактате немецкого алхимика Михаила Мейера “Бегущая Атланта”, изданном в 1618г, был помещен, например, такой рисунок: на переднем плане волк пожирает лежащего на земле царя, а на заднем плане тот царь, целый и невредимый, подходит к берегу озера, где стоит лодка, которая должна доставить его во дворец на противоположном берегу. Символически этот рисунок изображал способ очистки золота (царь) от примесей серебра и меди с помощью антимонита (волк) – природного сульфида сурьмы, а золото образовывало соединение с сурьмой, которое затем струёй воздуха – сурьма улетучивалась в виде трех окиси, и получалось чистое золото. Этот способ существовал до XVIII века.

Содержание сурьмы в земной коре 4*10 -5 весового %. Мировые запасы сурьмы, оцениваемые в 6 млн. т, сосредоточены главным образом в Китае (52% мировых запасов). Наиболее распространенный минерал – сурьмяный блеск, или стибин (антимонит) Sb 2 S 3 , свинцово-серого цвета с металлическим блеском, который кристаллизуется в ромбической системе с плотностью 4,52-4,62 г / см 3 и твердостью 2. В главной массе сурьмяный блеск образуется в гидротермальных месторождениях, где его скопления создают залежи сурьмяной руды в форме жил и пластообразных тел. В верхних частях рудных тел, близ поверхности земли, сурьмяный блеск подвергается окислению, образуя ряд минералов, а именно: сенармонтит и валентит Sb 2 O 3 ; сервантит Sb 2 O 4 ; стибиоканит Sb 2 O 4 H 2 O ; кермизит 3Sb 2 S 3 Sb 2 O . Помимо собственных сурьмяных руд имеются также руды, в которых сурьма находится в виде комплексных соединений с медью, свинцом

ртутью и цинком (блеклые руды).

Значительные месторождения сурьмяных минералов расположены в Китае, Чехии, Словакии, Боливии, Мексике, Японии, США, в ряде африканских стран. В дореволюционной России сурьму совсем не добывали, да и месторождения её были не известны (в начале XX века Россия ежегодно ввозила из-за границы почти по тысяче тонн сурьмы). Правда, ещё в 1914г, как писал в своих воспоминаниях видный советский геолог академик Д.И.Щербаков, признаки сурьмяных руд он обнаружил в Кадамджайском гребне (Киргизия). Но тогда было не до сурьмы. Геологические поиски, продолженные ученым спустя почти два десятилетка, увенчались успехом, и уже в 1934г из кадамджайских руд начали получать трехсернистую сурьму, а ещё через год на опытном заводе была выплавлена первая отечественная металлическая сурьма. Уже к 1936 году полностью отпала необходимость в покупке её за рубежом.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ

СВОЙСТВА.

Для сурьмы известна одна кристаллическая форма и несколько аморфных (так называемые желтая, черная и взрывчатая сурьма). При обычных условиях устойчива лишь кристаллическая сурьма; она серебристо-белого цвета с синеватым оттенком. Чистый металл при медленном охлаждение под слоем шлака образует на поверхности игольчатые кристаллы, напоминающую форму звезд. Структура кристаллов ромбоэдрическая, а=4,5064 А, а=57,1 0 .

Плотность кристаллической сурьмы 6,69 , жидкой 6,55 г / см 3 . Температура плавления 630,5 0 С, температура кипения 1635-1645 0 С, теплота плавления 9,5ккал / г-атом, теплота испарения 49,6ккал / г-атом. Удельная теплоемкость (кал / г град):0,04987(20 0); 0,0537(350 0); 0,0656(650-950 0). Тепло проводимость (кал / ем.сек.град):

0,045,(0 0); 0,038(200 0); 0,043(400 0); 0,062(650 0). Сурьма хрупка, легко истирается в порошок; вязкость (пуаз); 0,015(630,5 0); 0,082(1100 0). Твердость по Бринеллю для литой сурьмы 32,5-34кг / мм 2 , для сурьмы высокой чистоты (после зонной плавки) 26кг / мм 2 . Модуль упругости 7600кг / мм 2 , предел прочности 8,6кг / мм 2 , сжимаемости 2,43 10 -6 см 2 / кг.

Желтая сурьма получается при пропускании кислорода или воздуха в сжиженный при-90 0 сурьмянистый водород; уже при –50 0 она переходит в обыкновенную (кристаллическую) сурьму.

Черная сурьма образуется при быстром охлаждении паров сурьмы, примерно при 400 0 переходит в обыкновенную сурьму. Плотность черной сурьмы 5,3. Взрывчатая сурьма – серебристый блестящий металл с плотностью 5,64-5,97, образуется при электрическом получении сурьмы из соляно кислого раствора хлорнистой сурьмы (17-53% SbCl 2 в соляной кислоте d 1,12), при плотности тока в пределах от 0,043 до 0,2 а / дм 2 . Полученная при этом сурьма переходит в обыкновенную с взрывом, вызываемым трением, царапаньем или прикосновением нагретого металла; взрыв обусловлен экзотермическим процессом перехода одной формы в другую.

На воздухе при обычных условиях сурьма ( Sb ) не изменяется, нерастворима она ни в воде, ни в органических растворителях, но со многими металлами она легко даёт сплавы. В ряду напряжений сурьма располагается между водородом и медью. Водорода из кислот она, сурьма, не вытесняет и в разбавленных HCl и H 2 SO 4 не растворяется. Однако крепкая серная кислота при нагревании переводит сурьму в сульфаты Э 2 (SO 4) 3 . Крепкая азотная кислота окисляет сурьму до кислот H 3 ЭО 4 . Растворы щелочей сами по себе на сурьму не действуют, но в присутствии кислорода медленно её разрушают.

При нагревании на воздухе сурьма сгорает с образованием окислов, легко соединяется она также с га-

Sb- сурьма. Строение атома сурьмы:
В периодическое системе элементов Д. И. Менделеева сурьма находится в пятой группе, в главной подгруппе и в пятом периоде под №51. Ее строение атома ₊₅₁Sb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s²5p³. Свойства сурьмы схожи с атомами пятой группы главной подгруппы, но в связи с тем, что у сурьмы 5 энергетических уровней, радиус у сурьмы значительно больше чем у азота, фосфора и астата и электроны последнего уровня слабее притягиваются к ядру у ее атомов будут проявляться сильнее металлические и восстановительные свойства. Сурьма в виде простого вещества полуметалл - диалектрик, серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Сурьма, с одной стороны, в природных соединениях имеет свойства металла, с другой стороны она обладает свойствами металлоида, С такими металлами, как медь, мышьяк и палладий сурьма может давать интерметаллические соединения.
В России крупнейшее месторождение сурьмы находится в Якутии.
Основной способ получения сурьмы -это обжиг сульфидных руд с последующим восстановлением углем:
2Sb₂S₃
+ 9O₂= 2Sb₂O₃ + 6SO₂
2Sb₂O₃ + 3C = 3CO + 4Sb
Химические свойства сурьмы:
Внешний, электронный слой атома сурьмы состоит из пяти валентных электронов s²p³. Три из них (p-электроны) – неспаренные и два (s-электроны) – спаренные. Первые легче отрываются от атома и определяют характерную для сурьмы валентность 3⁺. При проявлении этой валентности пара неподеленных валентных электронов s² находится. как бы в запасе. Когда же этот запас расходуется, сурьма становится пятивалентной. Короче говоря, она проявляет те же валентности, что и ее аналог по группе – неметалл фосфор.
В соединениях сурьма может проявлять в степени окисления: +5;+3 -3 ;
На воздухе устойчива, при сильном нагревании загорается:
4Sb + 3O₂ + 650⁰= 2Sb₂O₃ Этому оксиду соответствует гидроксид Sb(OH)₃
Высший оксид сурьмы существует Sb₂O₅ и ему соответствует гидроксид H₃SbO₄
С азотом и водородом не взаимодействует.
Взаимодействует с кислотами:
Sb + H₂SO₄ = Sb₂(SO₄)₃ + SO₂ + H₂O
Азотная кислота при взаимодействии с сурьмой переводит ее в сурсьную кислоту:
Sb + 5HNO₃= H₃SbO₄ + 5NO₂ +H₂O
Легко взаимодействует с галогенами:
2Sb + 3I₂=2SbI₃
В зависимости от температуры с хлором может проявлять степень окисления +3,+5:
2Sb + 3CI₂+ 20⁰C= 2SbCI₃
2Sb + 5CI₂ + 80⁰C=2SbCI₅
Применение сурьмы: Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов.
Является компонентом свинцовых сплавов, увеличивающим их твёрдость и механическую прочность. Область применения включает: батареи,антифрикционные сплавы,типографские сплавы,стрелковое оружие и трассирующие пули,оболочки кабелей,спички,лекарства, противопротозойные средства,пайка - некоторые бессвинцовые припои содержат 5 % Sb,использование в линотипных печатных машинах. Вместе с оловом и медью сурьма образует металлический сплав - баббит, обладающий антифрикционными свойствами и использующийся в подшипниках скольжения. Также Sb добавляется к металлам, предназначенным для тонких отливок.

минерал Сурьма

Английское название: Antimony

Этот полуметалл является химическим элементом и находится в 15 группе пятого периода таблицы Менделеева. Узнать его можно по грубозернистому строению и серебристо-белому цвету.

Как и многие другие породы, сурьма имеет семь модификаций: четыре аллотропных и три аморфных. Первые образуются в результате воздействия разного давления. Аморфная же сурьма бывает черной, взрывчатой и желтой.

Свободное состояние данного полуметалла - это серебристо-белые кристаллы, которые обладают еще и металлическим блеском. Внешне данная порода очень похожа на металл, но более хрупкая, а показатели тепло- и электропроводимости у нее гораздо ниже. Одна из особенностей сурьмы - это расширение при застывании.

Когда и где нашли?

За 3000 лет до нашей эры сурьму активно использовали в странах Востока. Древние египтяне еще в IX веке до н.э. чернили брови специальным порошком сурмяного блеска. Работали с этиv полуметаллом и в Древней Греции.

Но только в начале XVII века алхимик Василий Валентин в Германии описал все свойства данной породы и способы того, как можно добыть ее.

В русском языке слово «сурьма» появилось благодаря туркам и крымским татарам, которые называли так порошок со свинцовым блеском. Но существует еще и версия о персидском происхождении слова: «сурме» в переводе означает «металл».

Больше всего залежей данного полуметалла есть в Китайской народной республике, России, Таджикистане. Находят сурьму и в Южноафриканской республике, Боливии, Алжире, Финляндии, Болгарии, Киргизии. Чаще ее можно обнаружить в осадочных сланцах, нежели в изверженных. В основном, речь идет о бокситах, фосфоритах и глинистых сланцах.

Тип месторождения сурьмы - это гидротермальные жилы, в которых есть руды кобальта и серебра, никеля. Этот полуметалл есть и в сульфидных рудах со сложным составом.

Где используют сурьму?

Используют данный материал чаще всего в полупроводниковой промышленности. Он необходим во время производства инфракрасных детекторов и диодов. Устройства с эффектом Холла не изготавливают без сурьмы.

Сурьма активно применяется в производстве стрелкового оружия и оболочки для кабелей, спичек и типографских сплавов, батарей, в линотипных печатных машинах. Еще она применяется при изготовлении лекарств.

Если соединить сурьму с медью и оловом, то получится сплав баббит, который широко применяется в производстве подшипников скольжения.

Хим . Иногда содержит Ag, Fe или As
Характер, выдел.
Сплошные зернистые выделения, реже натечные агрегаты (почковидные, гроздевидные), иногда лучистого строения; кристаллы редки.
Структ. и морф, крист. Триг. с. D 5 3d -R3m; a rh = 4,507 А; a= 57°06"; Z = 2; a h = 4,310; c h = 11,318 A; a h: c h = 1: 2,627; Z = 6. Структура типа мышьяка. Расстояния Sb-Sb 2,87 и 3,37А. Дитригон.-скаленоэдр. кл.; а : с = 1: 1,3236 Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические.

Физ. Сп. по (0001) совершенная, по (2021) иногда ясная, по (1120) и по (1012) несовершенная. Диамагнитна.

Микр. В полир, шл. в отраж. св. белая. Отраж. спос. (в %): для зеленых лучей 67,5, для оранжевых - 58, для красных - 55; по Фолинсби, измеренная с помощью фотоэлемента,- 74,6. Двуотражение слабое. Анизотропна.
Цвет оловянно-белый с желтой побежалостью. Блеск металлический. Прозрачность непрозрачна. Черта Твердость 3-3,5. Плотность 6,61-6,72 Излом неровный. Очень хрупка. Сингония Триг. Форма кристаллов. Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические. Спайность по (0001) совершенная, по (2021) иногда ясная, по (1120) и по (1012) несовершенная. Агрегаты Сплошные зернистые выделения, реже натечные агрегаты (почковидные, гроздевидные), иногда лучистого строения; кристаллы редки П. тр. на угле в восст. пл. легко плавится (плавк. 1), в окисл. пл, сгорает, давая белый налет и дым Sb2О3. В откр. тр. полностью улетучивается, образуя кристаллический возгон Sb2О3. На гипсовой пластинке со смесью KJ -+- S дает оранжево-красный налет SbJ3. Поведение в кислотах В конц. HNO3 окисляется в НSbО3, растворяется в царской водке; в НСl не растворима. В полир, шл. от HNO3 чернеет, иризирует, от паров НСl тускнеет, от KCN слабо буреет, от FeCl3 буреет и чернеет, от HgCl слабо буреет и иризирует. Реактивы для структурного травления: FeCl3 (20%-ный раствор) в течение нескольких секунд; K2S (конц. раствор); H2Sb2O7 (конц. раствор). Том 1, 85.

Свойства минерала

  • Удельный вес: 6,61 - 6,72 (вычисл. 6,73)
  • Форма выделения: Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические
  • Классы по систематике СССР: Оксиды
  • Химическая формула: Sb
  • Сингония: тригональная
  • Цвет: оловянно-белый с желтой побежалостью
  • Цвет черты: буровато-серая
  • Блеск: металлический
  • Прозрачность: непрозрачный
  • Излом: неровный
  • Твердость: 3 3,5
  • Хрупкость: Да
  • Дополнительно: на угле в восст. пл. легко плавится (плавк. 1), в окисл. пл, сгорает, давая белый налет и дым Sb 2 Оз. В откр. тр. полностью улетучивается, образуя кристаллический возгон Sb 2 О 3 . На гипсовой пластинке со смесью KJ -+- S дает оранжево-красный налет SbJ 3 .

    В конц. HNCb окисляется в НЭЬОз, растворяется в царской водке; в НС1 не растворима. В полир, шл. от HNO 3 чернеет, иризирует, от паров НС1 тускнеет, от KCN слабо буреет, от FeCl буреет и чернеет, от HgCl слабо буреет и иризирует. Реактивы для структурного травления: FeCl (20%-ный раствор) в течение нескольких секунд; K 2 S (конц. раствор); H 2 Sb 2 0 7 (конц. раствор).