В основе постоянной светимости звезд главной последовательности. Масса звезды. Процессы внутри светил



К главной последовательности относятся те звезды, которые находятся в основной фазе своей эволюции. Это, если сравнивать с человеком, период зрелости, период относительной устойчивости. Все звезды проходят эту фазу, одни быстрее (тяжелые звезды), другие - дольше (легкие звезды). В жизни каждой звезды этот период является самым продолжительным.

Е сли рассматривать диаграмму Герцшпрунга - Рессела, то звезды главной последовательности располагаются по диагонали из верхнего левого угла(высокие светимости) в нижний правый (низкие светимости). Положение звезд на диаграмме Герцшпрунга - Ресселла зависит от массы, химического состава звёзд и процессов выделения энергии в их недрах. Звёзды на Главной последовательносте имеют одинаковый источник энергии (термоядерные реакции горения водорода, так что их светимость и температура (а следовательно, положение на Главной последовательносте) определяются главным образом массой; самые массивные звёзды (М~50M Солнца) располагаются в верхней (левой) части Главной последовательности, а с продвижением вниз по Главной последовательносте массы звёзд убывают до М~0,08M Солнца.

Н а Главную последовательность звёзды попадают после стадии гравитационного сжатия, приводящего к появлению в недрах звезды термоядерного источника энергии. Начало стадии Главной последовательности определяется как момент, когда потери энергии химически однородной звезды на излучение полностью компенсируются выделением энергии в термоядерных реакциях. Звёзды в этот момент находятся на левой границе Главной последовательности, именуемой начальной Главной последовательностью или Главной последовательностью нулевого возраста. Окончание стадии Главной последовательности соответствует образованию у звезды однородного гелиевого ядра. Звезда уходит с Главной последовательности и становится гигантом. Разброс звёзд на наблюдаемой Главной последовательносте обусловлен, кроме эффектов эволюции, различиями в начальном химическом составе, вращением и возможной двойственностью звезды.

У звёзд с М<0,08M Солнца время гравитационного сжатия превышает время жизни Галактики, и поэтому они не достигли Главной последовательности и находятся несколько правее неё. У звёзд с массами 0,08M Солнца стадия термоядерного горения водорода столь продолжительна, что они за время жизни Галактики не успели покинуть Главной последовательности. У более массивных звёзд время жизни на Главной последовательносте ~90% всего времени их эволюции. Именно этим объясняется преимущественная концентрация звезд в области Главной последовательности.


А нализ Главной последовательности играет особенно важную роль при исследовании звёздных групп и скоплений, т. к. по мере увеличения их возраста точка, в которой Главная последовательность скопления начинает заметно отклоняться от начальной Главной последовательности, смещается в область меньших светимостсй и более поздних спектральных классов, и поэтому положение точки поворота Главной последовательности может служить индикатором возраста звездного скопления.

Наше Солнце имеет массу 1.99 × 10 27 тонн - в 330 тысяч раз тяжелее Земли. Но это далеко не предел. Самая тяжелая среди обнаруженных звезд, R136a1, весит как 256 Солнц. А , ближайшая к нам звезда, едва перевалила за десятую часть кряжести нашего светила. Масса звезды может быть удивительно разной - но есть ли ей границы? И почему она так важна астрономам?

Масса - одна из самых важных и необычных характеристик звезды. По ней астрономы могут точно сказать о возрасте звезды и дальнейшей ее судьбе. Более того, массивность определяет силу гравитационного сжатия светила - главного условия для того, чтобы ядро звезды «загорелось» в термоядерной реакции и начало . Поэтому масса является проходным критерием в категорию звезд. Слишком легкие объекты, вроде , не смогут толком светить - а слишком тяжелые переходят в категорию экстремальных объектов по типу .

И в то же время ученые едва могут вычислить массу звезды - единственным светилом, чья масса известна точно, является наше . Такую ясность помогла внести наша Земля. Зная массу планеты и скорость ее , можно вычислить и массу самой звезды на основании Третьего закона Кеплера, доработанного известным физиком Исааком Ньютоном. Иоганн Кеплер выявил связь между расстоянием от планеты до звезды и скоростью полного оборота планеты вокруг светила, а Ньютон дополнил его формулу массами звезды и планеты. Модифицированная версия Третьего закона Кеплера часто используется астрономами - причем не только для определения массы звезд, но и других космических объектов, составляющих вместе .

Про отдаленные светила пока приходится только догадываться. Самым совершенным (с точки зрения точности) является метод определения массы звездных систем. Его погрешность составляет «всего» 20–60%. Такая неточность критическая для астрономии - будь Солнце на 40% легче или тяжелее, жизнь на Земле не возникла бы.

В случае измерения массы одиночных звезд, возле которых нет видимых объектов, чью орбиту можно использовать для вычислений, астрономы идут на компромисс. Сегодня читается, что масса звезд одного одинакова. Также ученым помогает связь массы со светимостью или звезды, поскольку обе эти характеристики зависимы от силы ядерных реакций и размеров звезды - непосредственных индикаторов массы.

Значение массы звезды

Секрет массивности звезд кроется не в качестве, а в количестве. Наше Солнце, как и большинство звезд , на 98% состоит из двух самых легких элементов в природе - водорода и гелия. Но при этом в нем собрано 98% массы всей !

Как такие легкие вещества могут собраться вместе в громадные горящие шары? Для этого нужно свободное от крупных космических тел пространство, много материала и начальный толчок - чтобы первые килограммы гелия и водорода начали притягиваться друг к другу. В и молекулярных облаках, где рождаются звезды, водороду и гелию ничто не мешает скапливаться. Их собирается так много, что гравитация начинает насильно сталкивать ядра атомов водорода. Это начинает термоядерную реакцию, в ходе которой водород превращается в гелий.

Логично, что чем больше масса звезды, тем больше ее светимость. Ведь в массивной звезде водородного «топлива» для термоядерной реакции куда больше, а гравитационное сжатие, активирующее процесс - сильнее. Доказательством служит самая массивная звезда, R136a1, упомянутая в начале статьи - будучи больше по весу в 256 раз, она светит в 8,7 миллионов раз ярче нашей звезды!

Но у массивности есть и обратная сторона: из-за интенсивности процессов водород быстрее «сгорает» в термоядерных реакциях внутри . Поэтому массивные звезды живут совсем недолго в космических масштабах - несколько сотен, а то и десятков миллионов лет.

  • Интересный факт: когда масса звезды превышает массу Солнца в 30 раз, прожить она сможет не больше 3 миллионов лет - вне зависимости от того, насколько ее масса больше 30-кратной солнечной. Это связано с превышением предела излучения Эддингтона. Энергия запредельной звезды становится настолько мощной, что вырывает вещество светила потоками - и чем массивнее звезда, тем сильнее становится потеря массы.

Выше мы рассмотрели основные физические процессы, связанные с массой звезды. А теперь попробуем разобраться, какие звезды можно «сделать» с их помощью.

Ранние спектральные классы) в правый нижний угол (низкие светимости, поздние спектральные классы) диаграммы. Звёзды главной последовательности имеют одинаковый источник энергии («горение» водорода, в первую очередь, CNO-цикл), в связи с чем их светимость и температура (спектральный класс) определяются их массой :

L = M 3,9 ,

где светимость L и масса M измеряются в единицах солнечной светимости и массы, соответственно. Поэтому начало левой части главной последовательности представлено голубыми звёздами с массами ~50 солнечных , а конец правой - красными карликами с массами ~0,0767 солнечных.

Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90 % времени эволюции большинства звёзд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов , нейтронных звёзд или чёрных дыр .

Участок главной последовательности звёздных скоплений является индикатором их возраста: так как темпы эволюции звёзд пропорциональны их массе, то для скоплений существует «левая» точка обрыва главной последовательности в области высоких светимостей и ранних спектральных классов, зависящая от возраста скопления, поскольку звёзды с массой, превышающий некий предел, заданный возрастом скопления, ушли с главной последовательности (см. рис., чётко видна точка ухода с главной последовательности на ветвь красных гигантов). Время жизни звезды на главной последовательности \tau_{\rm MS} в зависимости от начальной массы звезды M по отношению к современной массе Солнца \begin{smallmatrix}M_{\bigodot}\end{smallmatrix} можно оценить по эмпирической формуле:

\begin{smallmatrix} \tau_{\rm MS}\ \approx \ 6\cdot\ 10^{9} \text{лет} \cdot \left[ \frac{M_{\bigodot}}{M} + \ 0.14 \right]^{4} \end{smallmatrix}

Напишите отзыв о статье "Главная последовательность"

Примечания

См. также

Литература

Отрывок, характеризующий Главная последовательность

«Однако, кажется, никто не заметил», думал про себя Ростов. И действительно, никто ничего не заметил, потому что каждому было знакомо то чувство, которое испытал в первый раз необстреленный юнкер.
– Вот вам реляция и будет, – сказал Жерков, – глядишь, и меня в подпоручики произведут.
– Доложите князу, что я мост зажигал, – сказал полковник торжественно и весело.
– А коли про потерю спросят?
– Пустячок! – пробасил полковник, – два гусара ранено, и один наповал, – сказал он с видимою радостью, не в силах удержаться от счастливой улыбки, звучно отрубая красивое слово наповал.

Преследуемая стотысячною французскою армией под начальством Бонапарта, встречаемая враждебно расположенными жителями, не доверяя более своим союзникам, испытывая недостаток продовольствия и принужденная действовать вне всех предвидимых условий войны, русская тридцатипятитысячная армия, под начальством Кутузова, поспешно отступала вниз по Дунаю, останавливаясь там, где она бывала настигнута неприятелем, и отбиваясь ариергардными делами, лишь насколько это было нужно для того, чтоб отступать, не теряя тяжестей. Были дела при Ламбахе, Амштетене и Мельке; но, несмотря на храбрость и стойкость, признаваемую самим неприятелем, с которою дрались русские, последствием этих дел было только еще быстрейшее отступление. Австрийские войска, избежавшие плена под Ульмом и присоединившиеся к Кутузову у Браунау, отделились теперь от русской армии, и Кутузов был предоставлен только своим слабым, истощенным силам. Защищать более Вену нельзя было и думать. Вместо наступательной, глубоко обдуманной, по законам новой науки – стратегии, войны, план которой был передан Кутузову в его бытность в Вене австрийским гофкригсратом, единственная, почти недостижимая цель, представлявшаяся теперь Кутузову, состояла в том, чтобы, не погубив армии подобно Маку под Ульмом, соединиться с войсками, шедшими из России.
28 го октября Кутузов с армией перешел на левый берег Дуная и в первый раз остановился, положив Дунай между собой и главными силами французов. 30 го он атаковал находившуюся на левом берегу Дуная дивизию Мортье и разбил ее. В этом деле в первый раз взяты трофеи: знамя, орудия и два неприятельские генерала. В первый раз после двухнедельного отступления русские войска остановились и после борьбы не только удержали поле сражения, но прогнали французов. Несмотря на то, что войска были раздеты, изнурены, на одну треть ослаблены отсталыми, ранеными, убитыми и больными; несмотря на то, что на той стороне Дуная были оставлены больные и раненые с письмом Кутузова, поручавшим их человеколюбию неприятеля; несмотря на то, что большие госпитали и дома в Кремсе, обращенные в лазареты, не могли уже вмещать в себе всех больных и раненых, – несмотря на всё это, остановка при Кремсе и победа над Мортье значительно подняли дух войска. Во всей армии и в главной квартире ходили самые радостные, хотя и несправедливые слухи о мнимом приближении колонн из России, о какой то победе, одержанной австрийцами, и об отступлении испуганного Бонапарта.
Князь Андрей находился во время сражения при убитом в этом деле австрийском генерале Шмите. Под ним была ранена лошадь, и сам он был слегка оцарапан в руку пулей. В знак особой милости главнокомандующего он был послан с известием об этой победе к австрийскому двору, находившемуся уже не в Вене, которой угрожали французские войска, а в Брюнне. В ночь сражения, взволнованный, но не усталый(несмотря на свое несильное на вид сложение, князь Андрей мог переносить физическую усталость гораздо лучше самых сильных людей), верхом приехав с донесением от Дохтурова в Кремс к Кутузову, князь Андрей был в ту же ночь отправлен курьером в Брюнн. Отправление курьером, кроме наград, означало важный шаг к повышению.

Звезды главной последовательности

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ, но также используется и СГС (к примеру, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием

астрономической единицы (а. е.) - среднее расстояние между Землёй и Солнцем (150 млн км).


Рис.1 – Диаграмма Герцшпрунга-Рассела

Виды звёзд

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее делœение звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.

В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму ʼʼАбсолютная звёздная величинаʼʼ - ʼʼспектральный классʼʼ различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название Диаграмма Герцшпрунга-Рассела ) оказалось ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Теперь, когда есть теория внутреннего строения звезд и теория их эволюции, стало возможным и объяснение существования классов звезд. Оказалось, что всё многообразие видов звёзд - это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.

В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идет буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идет класс светимости (номер области на диаграмме Герцшпрунга-Рассела), а затем идет дополнительная информация. К примеру, Солнце имеет класс G2V.

Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность - это то место диаграммы Герцшпрунга-Рассела, на котором звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакции. Время жизни на главной последовательности определяется массой и долей элементов тяжелœее гелия (металличностью).

Современная (гарвардская) спектральная классификация звёзд, разработана в Гарвардской обсерватории в 1890 - 1924 годах.

Основная (гарвардская) спектральная классификация звёзд
Класс Температура, K Истинный цвет Видимый цвет Основные признаки
O 30 000-60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000-30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500-10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000-7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000-6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500-5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000-3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Коричневые карлики

Коричневые карлики - это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в серединœе XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. При этом в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

Звезды главной последовательности - понятие и виды. Классификация и особенности категории "Звезды главной последовательности" 2017, 2018.

Звезды - это огромные шары, состоящие из светящейся плазмы. В пределах нашей галактики насчитывается огромное их количество. Звезды играли важную роль в развитии науки. Также они отмечались в мифах многих народов, служили в качестве инструментов навигации. Когда были изобретены телескопы, а также открыты законы движения небесных тел и гравитация, ученые поняли: все звезды похожи на Солнце.

Определение

К звездам главной последовательности относят все те, внутри которых водород превращается в гелий. Так как этот процесс свойственен большей части звезд, к этой категории относится большинство наблюдаемых человеком светил. К примеру, Солнце также относится к данной группе. Альфа Ориона, или, к примеру, спутник Сириуса не принадлежат к звездам главной последовательности.

Группы звезд

Впервые вопросом сопоставления звезд с их спектральными классами занялись ученые Э. Герцшпрунг и Г. Рассел. Они создали диаграмму, на которой отображался спектр и светимость звезд. Впоследствии данная диаграмма была названа в их честь. Большая часть светил, расположенных на ней, называется небесными телами главной последовательности. В эту категорию входят звезды, начиная от голубых сверхгигантов, и заканчивая белыми карликами. Светимость Солнца на данной диаграмме принимается за единицу. В последовательность входят звезды различной массы. Ученые выделили следующие категории светил:

  • Сверхгиганты - I класс светимости.
  • Гиганты - II класс.
  • Звезды главной последовательности - V класс.
  • Субкарлики - VI класс.
  • Белые карлики - VII класс.

Процессы внутри светил

С точки зрения структуры Солнце может быть разделено на четыре условные зоны, в пределах которых происходят различные физические процессы. Энергия излучения звезды, а также внутренняя тепловая возникают глубоко внутри светила, передаваясь на внешние слои. Строение звезд главной последовательности схоже со структурой светила Солнечной системы. Центральной частью любого светила, относящейся на диаграмме Герцшпрунга-Рассела к данной категории, является ядро. Там постоянно происходят ядерные реакции, в процессе которых гелий превращается в водород. Для того чтобы ядра водорода смогли столкнуться друг с другом, их энергия должна быть выше энергии отталкивания. Поэтому такие реакции протекают только при очень высоких температурах. Внутри Солнца температура достигает 15 миллионов градусов по Цельсию. По мере удаления от ядра звезды она снижается. На внешней границе ядра температура составляет уже половину от значения в центральной части. Также снижается и плотность плазмы.

Ядерные реакции

Но не только по внутреннему строению звезды главной последовательности похожи на Солнце. Светила данной категории отличаются также и тем, что ядерные реакции внутри них происходят путем трехступенчатого процесса. Иначе он называется протон-протонным циклом. На первой фазе два протона сталкиваются между собой. В результате этого столкновения появляются новые частицы: дейтерий, позитрон и нейтрино. Далее протон сталкивается с частицей нейтрино, и возникает ядро изотопа гелия-3, а также квант гамма-излучения. На третьей ступени процесса два ядра гелия-3 сливаются между собой, и происходит образование обычного водорода.

В процессе этих столкновений во время ядерных реакций постоянно производятся элементарные частицы нейтрино. Они преодолевают нижние слои светила, и летят в межпланетное пространство. Нейтрино также регистрируются и на земле. Количество, которое регистрируется учеными при помощи приборов, несоизмеримо меньше, чем их должно быть по предположению ученых. Эта проблема является одной из крупнейших загадок в физике Солнца.

Лучистая зона

Следующим слоем в строении Солнца и звезд главной последовательности является лучистая зона. Ее границы простираются от ядра и до тонкого слоя, находящегося на границе конвективной зоны - тахоклина. Свое название лучистая зона получила от способа, при помощи которого энергия переносится от ядра к внешним слоям звезды - излучения. Фотоны, которые постоянно производятся в ядре, двигаются в этой зоне, сталкиваясь с ядрами плазмы. Известно, что скорость этих частиц равна скорости света. Но несмотря на это, фотонам требуется порядка миллиона лет, чтобы достичь границы конвективной и лучистой зон. Такая задержка происходит из-за постоянного столкновения фотонов с ядрами плазмы и их переизлучения.

Тахоклин

Солнце и звезды главной последовательности также имеют тонкую зону, по-видимому, играющую важную роль в формировании магнитного поля светил. Она называется тахоклин. Ученые предполагают, что именно здесь происходят процессы магнитного динамо. Он заключается в том, что потоки плазмы вытягивают магнитные силовые линии и увеличивают общую напряженность поля. Также есть предположения, что в зоне тахоклина происходит резкая смена химического состава плазмы.

Конвективная зона

Эта область представляет собой самый внешний слой. Его нижняя граница располагается на глубине 200 тыс. км., а верхняя достигает поверхности светила. В начале конвективной зоны температура еще достаточно высока, она достигает порядка 2 млн градусов. Однако этот показатель уже недостаточен для того, чтобы происходил процесс ионизации атомов углерода, азота, кислорода. Эта зона получила свое название из-за способа, с помощью которого происходит постоянный перенос вещества из глубоких слоев во внешние - конвекции, или перемешивания.

В презентации о звездах главной последовательности можно указать тот факт, что Солнце является рядовой звездой в нашей галактике. Поэтому ряд вопросов - например, об источниках его энергии, строении, а также образовании спектра - является общим как для Солнца, так и для других звезд. Наше светило является уникальным в отношении своего расположения - это самая близкая к нашей планете звезда. Поэтому ее поверхность и подвергается детальному изучению.

Фотосфера

Видимая оболочка Солнца называется фотосферой. Именно она излучает практически всю энергию, которая приходит на Землю. Состоит фотосфера из гранул, представляющих собой продолговатые облака из горячего газа. Здесь можно также наблюдать и небольшие пятнышки, которые называются факелами. Их температура приблизительно на 200 о С выше, чем окружающая масса, поэтому они отличаются по яркости. Факелы могут существовать до нескольких недель. Эта устойчивость возникает вследствие того, что магнитное поле звезды не дает вертикальным потокам ионизированных газов отклоняться в горизонтальном направлении.

Пятна

Также на поверхности фотосферы иногда появляются темные области - зародыши пятен. Нередко пятна могут разрастаться до диаметра, который превышает диаметр Земли. как правило, появляются группами, затем разрастаются. Постепенно они дробятся на более мелкие участки, пока не исчезают вовсе. Пятна появляются по обе стороны солнечного экватора. Каждые 11 лет их количество, а также занимаемая пятнами площадь, достигают максимума. По наблюдаемому перемещению пятен Галилей смог обнаружить вращение Солнца. В дальнейшем это вращение было уточнено при помощи спектрального анализа.

До сих пор ученые ломают голову над тем, почему период увеличения солнечных пятен составляет именно 11 лет. Несмотря на пробелы в знаниях, информация о солнечных пятнах и периодичности других аспектов деятельности звезды дают ученым возможность делать важные прогнозы. С помощью изучения этих данных можно делать предсказания о наступлении магнитных бурь, нарушений в сфере радиосвязи.

Отличия от других категорий

Называется количество энергии, которое испускается светилом в одну единицу времени. Эта величина может быть вычислена по количеству энергии, которая достигает поверхности нашей планеты, при условии, если известно расстояние звезды до Земли. Светимость звезд главной последовательности больше, чем у холодных звезд с малой массой, и меньше горячих звезд, масса которых составляет от 60 до 100 солнечных.

Холодные звезды находятся в нижнем правом углу относительно большинства светил, а горячие - в левом верхнем углу. При этом у большинства звезд, в отличие от красных гигантов и белых карликов, масса зависит от показателя светимости. Большую часть своей жизни каждая звезда проводит именно на главной последовательности. Ученые считают, что более массивные звезды живут гораздо меньше, чем те, что обладают малой массой. На первый взгляд, должно быть наоборот, ведь у них больше водорода для горения, и они должны его расходовать дольше. Однако звезды, относящиеся к массивным, расходуют свое топливо гораздо быстрее.