Эффект вытеснения поля. Квантовая эффективность, %. Смотреть что такое "Эффект Мейснера" в других словарях

Нулевое сопротивление - не единственная особенность сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Эффект Мейснера заключается в «выталкивании» сверхпроводником магнитного поля из занимаемой им части пространства. Это вызвано существованием незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное приложенному внешнему магнитному полю и компенсирующее его.

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние, магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, т.к. внутри него намагниченность равна нулю.

Впервые эффект Мейснера объяснили братья Фриц и Хайнц Лондон. Они показали, что в сверхпроводнике магнитное поле проникает на фиксированную глубину от поверхности - лондоновскую глубину проникновения магнитного поля λ . Для металлов l~10 -2 мкм .

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода , а частичный - сверхпроводниками второго рода .

У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей. Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода.

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Т С теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.



Явление выталкивания магнитного поля можно наблюдать в эксперименте, который получил название «гроб Магомета». Если магнит положить на поверхность плоского сверхпроводника, то можно наблюдать левитацию – магнит будет висеть на некотором расстоянии от поверхности, не касаясь её. Даже в полях с индукцией порядка 0,001Тл заметно смещение магнита вверх на расстояние порядка сантиметра. Это объясняется тем, что магнитное поле выталкивается из сверхпроводника, поэтому магнит, приближающийся к сверхпроводнику, «увидит» магнит одинаковой полярности и точно такого же размера, - что и вызовет левитацию.

Название этого эксперимента - «гроб Магомета» - связано с тем, что по преданию, гроб с телом пророка Магомета висел в пространстве без всякой поддержки.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л.Д. Ландау и В.Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость на микроскопическом уровне получила объяснение в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Выталкивание магнитного поля из сверхпроводящей сферы при температуре ниже температуры перехода в сверхпроводящего состояния. Магнит левитуе над высокотемпературным сверхпроводником, охлажденным до T ~ 200 K с помощью жидкого азота – это явление быстрого затухания магнитного поля в сверхпроводнике.
Сверхпроводник является идеальным диамагнетиков. В магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, полностью компенсирует внешнее. Это явление, открытое в 1933 году немецкими физиками Вальтером Мейснером и Робертом Охзенфельдом получило название эффекта Мейснера.
Эффект Мейснера разрушается в сильных магнитных полях. В зависимости от типа сверхпроводника сверхпроводящее состояние при этом либо исчезает полностью (т. н. Сверхпроводники первого рода), или же сверхпроводник разбивается на нормальные и сверхпроводящие области (сверхпроводники второго рода).
Объяснение эффекта Мейснера были приведены в теории Лондоне (1935 год) – первой теории сверхпроводимости, которая была полностью феноменологической.
Эффектом Мейснера объясняется левитация сверхпроводника над сильным магнитом (или магнита над сверхпроводником.

И Р. Оксенфельдом .

Физическое объяснение

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля , что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик . Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Эффект Мейснера не может быть объяснён только бесконечной проводимостью. Впервые его природу объяснили братья Фриц и Хайнц Лондоны c помощью уравнения Лондонов . Они показали, что в сверхпроводнике поле проникает на фиксированную глубину от поверхности - лондоновскую глубину проникновения магнитного поля λ {\displaystyle \lambda } . Для металлов λ ∼ 10 − 2 {\displaystyle \lambda \sim 10^{-2}} мкм.

Сверхпроводники I и II рода

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный - сверхпроводниками второго рода. Однако стоит отметить, что в низких магнитных полях полным эффектом Мейснера обладают все типы сверхпроводников.

У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей вихрей Абрикосова . Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода, хотя движение вихрей под действием текущего тока создаёт эффективное сопротивление в виде диссипативных потерь на передвижение магнитного потока внутри сверхпроводника, чего избегают вводом в структуру сверхпроводника дефектов - центров пиннинга , за которые вихри «цепляются».

«Гроб Магомета»

«Гроб Магомета» - опыт, демонстрирующий эффект Мейснера в сверхпроводниках .

Происхождение названия

По преданию , гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот эксперимент называют «Гроб Магомета».

Постановка опыта

Сверхпроводимость существует только при низких температурах (в ВТСП -керамиках - при температурах ниже 150 ), поэтому предварительно вещество охлаждают, например, при помощи жидкого азота . Далее магнит кладут на поверхность плоского сверхпроводника. Даже в полях, магнитная индукция которых составляет 0,001 Тл , заметно смещение магнита вверх на расстояние порядка сантиметра. При увеличении поля вплоть до критического магнит поднимается всё выше.

Объяснение

Одним из свойств сверхпроводников является выталкивание магнитного поля из области сверхпроводящей фазы. Отталкиваясь от неподвижного сверхпроводника, магнит «всплывает» сам и продолжает «парить» до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «видит» магнит одинаковой полярности и точно такого же размера, - что и вызывает левитацию.

Примечания

Литература

  • де Жен П.-Ж. Сверхпроводимость металлов и сплавов. - М. : Мир , 1968. - 280 с.

В 1933 году немецкий физик Вальтер Фриц Мейснер совместно со своим коллегой Робертом Оксенфельдом открыл эффект, который впоследствии назвали его именем. Эффект Мейснера заключается в том, что при переходе в сверхпроводящее состояние, наблюдается полное вытеснение магнитного поля из объема проводника. Наглядно это можно наблюдать с помощью опыта, которому дали название “Гроб Магомета” (по легенде, гроб мусульманского пророка Магомета висел в воздухе без физической поддержки). В этой статье мы расскажем об Эффекте Мейснера и его будущему и настоящему практическому применению.

В 1911 году Хейке Камерлинг-Оннес сделал важное открытие – сверхпроводимость. Он доказал, что если охладить некоторые вещества до температуры 20 К, то они не оказывают сопротивление электрическому току. Низкая температура “успокаивает” случайные колебания атомов, и электричество не встречает сопротивление.

После этого открытия началась настоящая гонка по нахождению таких веществ, которые не будут оказывать сопротивление без охлаждения, например при обычной комнатной температуре. Такой сверхпроводник сможет передавать электричество на гигантские расстояния. Дело в том, что обычные линии электропередач теряют значительное количество электрического тока, как раз из-за сопротивления. Пока же физики ставят свои опыты с помощью охлаждения сверхпроводников. И одним из самых популярных опытов, является демонстрация Эффекта Мейснера. В сети можно встретить множество роликов, показывающих этот эффект. Мы выложили один, который лучше всего демонстрирует это.

Для демонстрации опыта левитации магнита над сверхпроводником нужно взять высокотемпературную сверхпроводящую керамику и магнит. Керамика охлаждается с помощью азота до уровня сверхпроводимости. К ней подключается ток и сверху кладется магнит. В полях 0,001 Тл магнит смещается вверх и левитирует над сверхпроводником.

Объясняется эффект тем, что при переходе вещества в сверхпроводимость, магнитное поле выталкивается из его объема.

Как можно применить эффект Мейснера на практике? Наверное, каждый читатель этого сайта видел множество фантастических фильмов, в которых автомобили парили над дорогой. Если удастся изобрести вещество, которое превратится в сверхпроводник при температуре, скажем не ниже +30, то это уже не окажется фантастикой.

А как же сверхскоростные поезда, которые тоже парят над железной дорогой. Да они существуют уже сейчас. Но в отличие от Эффекта Мейснера, там действуют другие законы физики: отталкивание однополюсных сторон магнитов. К сожалению, дороговизна магнитов не позволяет широко распространить эту технологию. С изобретение сверхпроводника, которого не нужно охлаждать, летающие машины станут реальностью.

Ну а пока Эффект Мейснера взяли на свое вооружение фокусники. Одно из таких представлений мы раскопали для вас в сети. Свои трюки показывает труппа “Эксос”. Никакой магии – только физика.

Физическое объяснение

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля , что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик . Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Эффект Мейсснера не может быть объяснён только бесконечной проводимостью. Впервые его природу объяснили братья Фриц и Хайнц Лондон c помощью уравнения Лондонов . Они показали, что в сверхпроводник поле проникает на фиксированную глубину от поверхности - лондоновскую глубину проникновения магнитного поля . Для металлов мкм.

Сверхпроводники I и II рода

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный - сверхпроводниками второго рода.

У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей. Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода.

«Гроб Магомета»

«Гроб Магомета» - опыт, демонстрирующий этот эффект в сверхпроводниках .

Происхождение названия


Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Мейснера" в других словарях:

    эффект Мейснера - Meisnerio reiškinys statusas T sritis fizika atitikmenys: angl. Meissner effect vok. Meißner Effekt, m; Meißner Ochsenfeld Effekt, m rus. эффект Мейснера, m pranc. effet Meissner, m … Fizikos terminų žodynas

    эффект Мейснера-Оксенфельда - Явление обращения в нуль магнитной индукции в глубине массивного сверхпроводника … Политехнический терминологический толковый словарь

    Вытеснение магнитного поля из металлического проводника при его переходе в сверхпроводящее состояние; открыт в 1933 немецкими физиками В. Мейснером (W. Meißner) и Р. Оксенфельдом (R. Ochsenfeld). * * * МЕЙСНЕРА ЭФФЕКТ МЕЙСНЕРА ЭФФЕКТ, вытеснение… … Энциклопедический словарь

    Схема Эффекта Мейснера. Показаны линии магнитного поля и их вытеснение из сверхпроводника, находящегося ниже своей критической температуры. Эффект Мейснера полное вытеснение магнитного поля из материала при переходе в сверхпроводящее состояние.… … Википедия

    Полное вытеснение магн. поля из металлич. проводника, когда последний становится сверхпроводящим (при понижении темп ры и напряжённости магн. поля ниже критич. значения Нк). М. э. впервые наблюдался нем. физиками В. Мейснером (W. Meissner) и Р.… … Физическая энциклопедия

    МЕЙСНЕРА ЭФФЕКТ, вытеснение магнитного поля из вещества при его переходе в сверхпроводящее состояние (смотри Сверхпроводимость). Открыт немецкими физиками В. Мейснером и Р. Оксенфельдом в 1933 … Современная энциклопедия

    Вытеснение магнитного поля из вещества при его переходе в сверхпроводящее состояние; открыт в 1933 немецкими физиками В. Мейснером и Р. Оксенфельдом … Большой Энциклопедический словарь

    Мейснера эффект - МЕЙСНЕРА ЭФФЕКТ, вытеснение магнитного поля из вещества при его переходе в сверхпроводящее состояние (смотри Сверхпроводимость). Открыт немецкими физиками В. Мейснером и Р. Оксенфельдом в 1933. … Иллюстрированный энциклопедический словарь

    Полное вытеснение магнитного поля из металлического проводника, когда последний становится сверхпроводящим (при напряжённости приложенного магнитного поля ниже критического значения Hk). М. э. впервые наблюдался в 1933 немецкими физиками… … Большая советская энциклопедия

Книги

  • Мои научные статьи. Книга 2. Метод матриц плотности в квантовых теориях сверхтекучести и сверхпровод , Бондарев Борис Владимирович. В этой книге собраны статьи, в которых методом матриц плотности были изложены новые квантовые теории сверхтекучести и сверхпроводимости. В первой статье развита теория сверхтекучести, в…