Прямоугольник все стороны. Что такое прямоугольник. Краткое изложение и основные формулы

Определение.

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника , а короткую - шириной прямоугольника .

Стороны прямоугольника одновременно является его высотами.


Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO = d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).


Стороны прямоугольника

Определение.

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

a = √d 2 - b 2

b = √d 2 - a 2

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

b = d cos β
2

Диагональ прямоугольника

Определение.

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

d = √a 2 + b 2

2. Формула диагонали прямоугольника через площадь и любую сторону:

4. Формула диагонали прямоугольника через радиус описанной окружности:

d = 2R

5. Формула диагонали прямоугольника через диаметр описанной окружности:

d = D о

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

d = √2S: sin β


Периметр прямоугольника

Определение.

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

P = 2a + 2b

P = 2(a + b )

2. Формула периметру прямоугольника через площадь и любую сторону:

P = 2S + 2a 2 = 2S + 2b 2
a b

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √d 2 - a 2 ) = 2(b + √d 2 - b 2 )

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R 2 - a 2 ) = 2(b + √4R 2 - b 2 )

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √D o 2 - a 2 ) = 2(b + √D o 2 - b 2 )


Площадь прямоугольника

Определение.

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

S = a · b

2. Формула площади прямоугольника через периметр и любую сторону:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a √4R 2 - a 2 = b √4R 2 - b 2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a √D o 2 - a 2 = b √D o 2 - b 2


Окружность описанная вокруг прямоугольника

Определение.

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

Прямоугольник - параллелограмм, у которого все углы прямые (равны 90 градусам). Площадь прямоугольника равна произведению его смежных сторон. Диагонали прямоугольника равны. Вторая формула нахождения площади прямоугольника исходит из формулы площади четырехугольника через диагонали.

Прямоугольник - это четырехугольник, у которого каждый угол является прямым.

Квадрат - это частный случай прямоугольника.

Прямоугольник имеет две пары равных сторон. Длина наиболее длинных пар сторон называется длиной прямоугольника , а длина наиболее коротких - шириной прямоугольника .

Свойства прямоугольника

1. Прямоугольник - это параллелограмм.

Свойство объясняется действием признака 3 параллелограмма (то есть \(\angle A = \angle C \) , \(\angle B = \angle D \) )

2. Противоположные стороны равны.

\(AB = CD,\enspace BC = AD \)

3. Противоположные стороны параллельны.

\(AB \parallel CD,\enspace BC \parallel AD \)

4. Прилегающие стороны перпендикулярны друг другу.

\(AB \perp BC,\enspace BC \perp CD,\enspace CD \perp AD,\enspace AD \perp AB \)

5. Диагонали прямоугольника равны.

\(AC = BD \)

Согласно свойству 1 прямоугольник является параллелограммом, а значит \(AB = CD \) .

Следовательно, \(\triangle ABD = \triangle DCA \) по двум катетам (\(AB = CD \) и \(AD \) - совместный).

Если обе фигуры - \(ABC \) и \(DCA \) тождественны, то и их гипотенузы \(BD \) и \(AC \) тоже тождественны.

Значит, \(AC = BD \) .

Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.

Докажем и это.

\(\Rightarrow AB = CD \) , \(AC = BD \) по условию. \(\Rightarrow \triangle ABD = \triangle DCA \) уже по трем сторонам.

Получается, что \(\angle A = \angle D \) (как углы параллелограмма). И \(\angle A = \angle C \) , \(\angle B = \angle D \) .

Выводим, что \(\angle A = \angle B = \angle C = \angle D \) . Все они по \(90^{\circ} \) . В сумме - \(360^{\circ} \) .

7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника.

\(\triangle ABC = \triangle ACD, \enspace \triangle ABD = \triangle BCD \)

8. Точка пересечения диагоналей делит их пополам.

\(AO = BO = CO = DO \)

9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности.

Прямоугольник – это в первую очередь геометрическая плоская фигура. Она состоит из четырех точек, которые соединены между собой двумя парами равных отрезков, перпендикулярно пересекающихся только в этих точках.

Прямоугольник определяют через параллелограмм. По-другому, прямоугольник – это параллелограмм, углы которого все прямые, то есть равные 90 градусам. В геометрии Евклида, если у геометрической фигуры 3 из 4 углов равны 90 градусам, то четвёртый угол автоматически равен 90 градусам и такую фигуру можно назвать прямоугольником. Из определения параллелограмма ясно, что прямоугольник – множество разновидностей этой фигуры на плоскости. Из этого следует, что свойства параллелограмма применимы и к прямоугольнику. Например: в прямоугольнике противолежащие стороны равные по своей длине. При построении диагонали в прямоугольнике она разобьет фигуру на два одинаковых треугольника. На этой и основана теорема Пифагора, в которой говорится о том, что квадрат гипотенузы в прямоугольном треугольнике равен сумме квадратов его катетов. Если все стороны правильного прямоугольника равны, то такой прямоугольник называют квадратом. Квадрат также определяется как ромб, у которого все его стороны равны между собой, а все углы прямые.


Площадь прямоугольника находится по формуле: S=a*b, где a – длина данного прямоугольника, b – ширина. Например: площадь прямоугольника со сторонами 4 и 6 см будет равна 4*6=24 сантиметра в квадрате.


Периметр пр ямоугольника рассчитывается по формуле: P= (a+b)*2, где a – длина прямоугольников, b – ширина данного прямоугольника . Например: периметр пр ямоугольника со сторонами 4 и 8 см равен 24 см. Диагонали вписанного в окружность прямоугольника совпадают с диаметром этой окружности. Точка пересечения этих диагоналей будет являться центром окружности.


При доказательствах на причастность геометрической фигуры к прямоугольнику фигуру проверяют на какое-либо из условий: 1 – квадрат диагонали фигуры равен сумме квадратов двух сторон с одной общей точкой; 2 – диагонали фигуры имеют равную длину; 3 – все углы равны 90 градусам. При соблюдении хотя бы одного условия можно назвать фигуру прямоугольником.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Прямоугольник — это четырехугольник, у которого каждый угол является прямым.

Доказательство

Свойство объясняется действием признака 3 параллелограмма (то есть \angle A = \angle C , \angle B = \angle D )

2. Противоположные стороны равны.

AB = CD,\enspace BC = AD

3. Противоположные стороны параллельны.

AB \parallel CD,\enspace BC \parallel AD

4. Прилегающие стороны перпендикулярны друг другу.

AB \perp BC,\enspace BC \perp CD,\enspace CD \perp AD,\enspace AD \perp AB

5. Диагонали прямоугольника равны.

AC = BD

Доказательство

Согласно свойству 1 прямоугольник является параллелограммом, а значит AB = CD .

Следовательно, \triangle ABD = \triangle DCA по двум катетам (AB = CD и AD — совместный).

Если обе фигуры — ABC и DCA тождественны, то и их гипотенузы BD и AC тоже тождественны.

Значит, AC = BD .

Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.

Докажем и это.

ABCD — параллелограмм \Rightarrow AB = CD , AC = BD по условию. \Rightarrow \triangle ABD = \triangle DCA уже по трем сторонам.

Получается, что \angle A = \angle D (как углы параллелограмма). И \angle A = \angle C , \angle B = \angle D .

Выводим, что \angle A = \angle B = \angle C = \angle D . Все они по 90^{\circ} . В сумме — 360^{\circ} .

Доказано!

6. Квадрат диагонали равен сумме квадратов двух прилежащих его сторон.

Это свойство справедливо в силу теоремы Пифагора.

AC^2=AD^2+CD^2

7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника.

\triangle ABC = \triangle ACD, \enspace \triangle ABD = \triangle BCD

8. Точка пересечения диагоналей делит их пополам.

AO = BO = CO = DO

9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности .

10. Сумма всех углов равна 360 градусов.

\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^{\circ}

11. Все углы прямоугольника прямые.

\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}

12. Диаметр описанной около прямоугольника окружности равен диагонали прямоугольника.

13. Вокруг прямоугольника всегда можно описать окружность.

Это свойство справедливо в силу того, что сумма противоположных углов прямоугольника равна 180^{\circ}

\angle ABC = \angle CDA = 180^{\circ},\enspace \angle BCD = \angle DAB = 180^{\circ}

14. Прямоугольник может содержать вписанную окружность и только одну, если он имеет одинаковые длины сторон (является квадратом).