Уравнение прямой проходящей через 2 точки формула. Уравнение прямой проходящей через две точки. Уравнение прямой в отрезках

Уравнение сферы

M(x;y;z)-произвольная точка, принадлежащая сфере, след.

если т. М не лежит на сфере, то MCR, т.е. координаты точки М

не удовлетворяют уравнению. Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром C(x0;y0;z0;) имеет вид:

Основные геометрические формулы

Площадь сферы

Объем шара, ограниченного сферой

Площадь сегмента сферы

где H -- высота сегмента, а -- зенитный угол

Взаимное расположение сферы и плоскости

d - расстояние от центра сферы до плоскости, след. C(0;0;d), поэтому сфера имеет уравнение

плоскость совпадает с Оxy, и поэтому её уравнение имеет вид z=0

Если т. М (x; y; z) удовлетворяет обоим уравнениям, то она лежит и в плоскости и на сфере, т.е. является общей точкой плоскости и сферы.

След. возможны 3 решения системы:

1) d 0

уравнение имеет б.м. решений, пересечение сферы и плоскости - окружность C(0;0;0) и r^2=R^2 - d^2

  • 2) d=R, x^2 + y^2 =0, x=y=0 след. сфера пересекается плоскостью в точке О(0;0;0)
  • 3) d>R, d^2>R^2 R^2 - d^2

x^2 + y^2 >=0, x^2+y^2=R^2 - d^2 не имеет решений

Касательная плоскость к сфере

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Теорема:

Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Доказательство:

Предположим, что ОА не перпендикулярен плоскости, след. ОА-наклонная к плоскости, след. ОА > R , но т.А принадлежит сфере, то получаем противоречие, след. ОА перпендикулярен плоскости.

Теорема:

Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.

Доказательство:

Из условия теоремы следует, что данный радиус является перпендикуляром, проведённым из центра сферы к данной плоскости. Поэтому расстояние от центра сферы до плоскости равно радиусу сферы, и, следовательно, сфера и плоскость имеют только одну общую точку. Это означает, что данная плоскость является касательной к сфере.

Площадь сферы:

Для определения площади сферы воспользуемся понятием описанного многогранника. Многогранник называется описанным около сферы (шара) , если сфера касается всех его граней. При этом сфера называется вписанной в многогранник.

Пусть описанный около сферы многогранник имеет n-граней. Будем неограниченно увеличивать n таким образом, чтобы наибольший размер каждой грани стремился к нулю. За площадь сферы примем предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. Можно доказать, что этот предел существует, и получить формулу для вычисления площади сферы радиуса R: S=4ПR:2

Сфера - это одно из первых тел, обладающих высокой симметрией, свойства которого изучают в школьном курсе геометрии. В данной статье рассматривается формула сферы, ее отличие от шара, а также приводится расчет площади поверхности нашей планеты.

Сфера: понятие в геометрии

Чтобы лучше понять формулу поверхности, которая будет дана ниже, необходимо познакомиться с понятием сферы. В геометрии она представляет собой трехмерное тело, которое заключает в себе некоторый объем пространства. Математическое определение сферы следующее: это совокупность точек, которые лежат на определенном одинаковом расстоянии от одной фиксированной точки, называемой центром. Отмеченное расстояние - это радиус сферы, который обозначается r или R и измеряется в метрах (километрах, сантиметрах и других единицах длины).

На рисунке ниже приведена описанная фигура. Линии показывают контуры ее поверхности. Черная точка - центр сферы.

Получить эту фигуру можно, если взять окружность и начать ее вращать вокруг любой из осей, проходящей через диаметр.

Сфера и шар: в чем разница и в чем сходство?

Часто школьники путают эти две фигуры, которые внешне похожи друг на друга, но обладают совершенно разными физическими свойствами. Сфера и шар в первую очередь отличаются своей массой: сфера - это бесконечно тонкий слой, шар же - это объемное тело конечной плотности, которая одинакова во всех его точках, ограниченных сферической поверхностью. То есть шар обладает конечной массой и является вполне реальным объектом. Сфера - это фигура идеальная, не имеющая массы, которая в действительности не существует, но она является удачной идеализацией в геометрии при изучении ее свойств.

Примерами реальных объектов, форма которых практически соответствует сфере, являются новогодняя игрушка в виде шарика для украшения елки или мыльный пузырь.

Что касается сходства между рассматриваемыми фигурами, то можно назвать следующие их признаки:

  • обе они обладают одинаковой симметрией;
  • для обеих формула площади поверхности является одинаковой, более того, они обладают равной площадью поверхности, если их радиусы равны;
  • обе фигуры при равных радиусах занимают одинаковый объем в пространстве, только шар его заполняет полностью, а сфера лишь ограничивает своей поверхностью.

Сфера и шар равного радиуса приведены на рисунке ниже.

Заметим, что шар, так же как и сфера, является телом вращения, поэтому его можно получить, если вращать вокруг диаметра круг (не окружность!).

Элементы сферы

Так называются геометрические величины, знание которых позволяет описать либо всю фигуру, либо отдельные ее части. Основными ее элементами являются следующие:

  • Радиус r, который уже был упомянут ранее. Он является расстоянием от центра фигуры до сферической поверхности. По сути, это единственная величина, которая описывает все свойства сферы.
  • Диаметр d, или D. Это отрезок, концы которого лежат на сферической поверхности, а середина проходит через центральную точку фигуры. Диаметр сферы можно провести бесконечным числом способов, но все полученные отрезки будут иметь одинаковую длину, которая равна удвоенному радиусу, то есть D = 2*R.
  • Площадь поверхности S - двумерная характеристика, формула для которой будет приведена ниже.
  • Связанные со сферой трехмерные углы измеряются в стерадианах. Один стерадиан - это угол, вершина которого лежит в центре сферы, и который опирается на часть сферической поверхности, имеющей площадь R 2 .

Геометрические свойства сферы

Из приведенного описания этой фигуры можно самостоятельно догадаться об этих свойствах. Они следующие:

  • Любая прямая, которая пересекает сферу и проходит через ее центр, является осью симметрии фигуры. Поворот сферы вокруг этой оси на любой угол переводит ее в саму себя.
  • Плоскость, которая пересекает рассматриваемую фигуру через ее центр, делит сферу на две равные части, то есть является плоскостью отражения.

Площадь поверхности фигуры

Эта величина обозначается латинской буквой S. Формула вычисления площади сферы имеет следующий вид:

S = 4*pi*R 2 , где pi ≈ 3,1416.

Формула демонстрирует, что площадь S может быть вычислена при условии знания радиуса фигуры. Если же известен ее диаметр D, тогда формулу сферы можно записать так:

Иррациональное число pi, для которого приведены четыре знака после запятой, в ряде математических расчетов можно использовать с точностью до сотых, то есть 3,14.

Любопытно также рассмотреть вопрос, скольким стерадианам соответствует вся поверхность рассматриваемой фигуры. Исходя из определения этой величины, получаем:

Ω = S/R 2 = 4*pi*R 2 /R 2 = 4*pi стерадиан.

Для вычисления любого объемного угла следует в выражение выше подставить соответствующее значение площади S.

Поверхность планеты Земля

Формулу сферы можно применить для определения на которой мы живем. Перед тем как приступать к вычислениям, следует сделать пару оговорок:

  • Во-первых, Земля не обладает идеальной сферической поверхностью. Ее экваториальный и полярный радиусы равны 6378 км и 6357 км соответственно. Отличие между этими цифрами не превышает 0,3%, поэтому для расчета можно взять средний радиус 6371 км.
  • Во-вторых, рельеф является трехмерным, то есть на ней имеются впадины и горы. Эти характерные особенности планеты приводят к увеличению ее площади поверхности, тем не менее, в расчете их учитывать не будем, поскольку даже самая большая гора, Эверест, составляет 0,1% от земного радиуса (8,848/6371).

Используя формулу сферы, получаем:

S = 4*pi*R 2 = 4*3,1416*6371 2 ≈ 510,066 млн. км 2 .

Россия, по официальным данным, занимает площадь 17,125 млн км 2 , что составляет 3,36% от поверхности планеты. Если же учесть, что к суше относятся лишь 150,387 млн км 2 , тогда площадь нашей страны составит 11,4% от всей территории, не покрытой водой.

Пусть даны две точки М 1 (х 1 ,у 1) и М 2 (х 2 ,у 2) . Запишем уравнение прямой в виде (5), где k пока неизвестный коэффициент:

Так как точка М 2 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (5): . Выражая отсюда и подставив его в уравнение (5) получим искомое уравнение:

Если это уравнение можно переписать в виде, более удобном для запоминания:

(6)

Пример. Записать уравнение прямой, проходящей через точки М 1 (1,2) и М 2 (-2,3)

Решение . . Используя свойство пропорции, и выполнив необходимые преобразования, получим общее уравнение прямой:

Угол между двумя прямыми

Рассмотрим две прямые l 1 и l 2 :

l 1 : , , и

l 2 : , ,

φ- угол между ними (). Из рис.4 видно: .

Отсюда , или

С помощью формулы (7) можно определить один из углов между прямыми. Второй угол равен .

Пример . Две прямые заданы уравнениями у=2х+3 и у=-3х+2. найти угол между этими прямыми.

Решение . Из уравнений видно, что k 1 =2, а k 2 =-3. подставляя данные значения в формулу (7), находим

. Таким образом, угол между данными прямыми равен .

Условия параллельности и перпендикулярности двух прямых

Если прямые l 1 и l 2 параллельны, то φ=0 и tgφ=0 . из формулы (7) следует, что , откуда k 2 =k 1 . Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

Если прямые l 1 и l 2 перпендикулярны, то φ=π/2 , α 2 = π/2+ α 1 . . Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку.

Расстояние от точки до прямой

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k 1 = -3; k 2 = 2 tgj= ; j = p/4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k 1 = 3/5, k 2 = -5/3, k 1 k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.



Находим уравнение стороны АВ: ; 4x = 6y – 6;

2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k= . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.

Расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из точки на прямую.

Если прямая параллельна плоскости проекции (h | | П 1) , то для того чтобы определить расстояние от точкиА до прямой h необходимо опустить перпендикуляр из точки А на горизонталь h .

Рассмотрим более сложный пример, когда прямая занимает общее положение. Пусть необходимо определить расстояние от точки М до прямойа общего положения.

Задача на определение расстояния между параллельными прямыми решается аналогично предыдущей. На одной прямой берется точка, из нее опускается перпендикуляр на другую прямую. Длина перпендикуляра равна расстоянию между параллельными прямыми.

Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих декартовых координат. В общем случае Ах 2 + 2Вху +Су 2 + 2Дх + 2Еу +F = 0,



где А, В, С, Д, Е, F – действительные числа и по крайней мере одно из чисел А 2 +В 2 +С 2 ≠0.

Окружность

Центр окружности – это геометрическое место точек в плоскости равностоящих от точки плоскости С(а,b).

Окружность задается следующим уравнением:

Где х,у – координаты произвольной точки окружности, R - радиус окружности.

Признак уравнения окружности

1. Отсутствует слагаемое с х,у

2. Равны Коэффициенты при х 2 и у 2

Эллипс

Эллипсом называется геометрическое место точек в плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости называется фокусами (постоянная величина).

Каноническое уравнение эллипса:

Х и у принадлежат эллипсу.

а – большая полуось эллипса

b – малая полуось эллипса

У эллипса 2 оси симметрии ОХ и ОУ. Оси симметрии эллипса – его оси, точка их пересечения – центр эллипса. Та ось на которой расположены фокусы, называется фокальной осью . Точка пересечения эллипса с осями – вершина эллипса.

Коэффициент сжатия (растяжения): ε = с/а – эксцентриситет (характеризует форму эллипса), чем он меньше, тем меньше вытянут эллипс вдоль фокальной оси.

Если центры эллипса находятся не в центре С(α, β)

Гипербола

Гиперболой называется геометрическое место точек в плоскости, абсолютная величина разности расстояний, каждое из которых от двух данных точек этой плоскости, называемых фокусами есть величина постоянная, отличная от ноля.

Каноническое уравнение гиперболы

Гипербола имеет 2 оси симметрии:

а – действительная полуось симметрии

b – мнимая полуось симметрии

Ассимптоты гиперболы:

Парабола

Параболой называется геометрическое место точек в плоскости, равноудаленных от данной точки F, называемой фокусом и данной прямой, называемой директрисой.

Каноническое уравнение параболы:

У 2 =2рх, где р – расстояние от фокуса до директрисы (параметр параболы)

Если вершина параболы С (α, β), то уравнение параболы (у-β) 2 =2р(х-α)

Если фокальную ось принять за ось ординат, то уравнение параболы примет вид: х 2 =2qу

Пусть прямая проходит через точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Уравнение прямой, проходящей через точку М 1 , имеет вид у- у 1 = k (х - х 1), (10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку М 2 (х 2 у 2), то координаты этой точки должны удовлетворять уравнению (10.6): у 2 -у 1 = k (х 2 -х 1).

Отсюда находим Подставляя найденное значениеk в уравнение (10.6), получим уравнение прямой, проходящей через точки М 1 и М 2:

Предполагается, что в этом уравнении х 1 ≠ х 2 , у 1 ≠ у 2

Если х 1 = х 2 , то прямая, проходящая через точки М 1 (х 1 ,у I) и М 2 (х 2 ,у 2) параллельна оси ординат. Ее уравнение имеет вид х = х 1 .

Если у 2 = у I , то уравнение прямой может быть записано в виде у = у 1 , прямая М 1 М 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке М 1 (а;0), а ось Оу – в точке М 2 (0;b). Уравнение примет вид:
т.е.
. Это уравнение называетсяуравнением прямой в отрезках, т.к. числа а и b указывают, какие отрезки отсекает прямая на осях координат .

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку Мо (х О; у о) перпендикулярно данному ненулевому вектор n = (А; В).

Возьмем на прямой произвольную точку М(х; у) и рассмотрим вектор М 0 М (х - х 0 ; у - у о) (см. рис.1). Поскольку векторы n и М о М перпендикулярны, то их скалярное произведение равно нулю: то есть

А(х - хо) + В(у - уо) = 0. (10.8)

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору .

Вектор n= (А; В), перпендикулярный прямой, называется нормальным нормальным вектором этой прямой .

Уравнение (10.8) можно переписать в виде Ах + Ву + С =0 , (10.9)

где А и В координаты нормального вектора, С = -Ах о - Ву о - свободный член. Уравнение (10.9) есть общее уравнение прямой (см. рис.2).

Рис.1 Рис.2

Канонические уравнения прямой

,

Где
- координаты точки, через которую проходит прямая, а
- направляющий вектор.

Кривые второго порядка Окружность

Окружностью называется множество всех точек плоскости, равноотстоящих от данной точки, которая называется центром.

Каноническое уравнение круга радиуса R с центром в точке
:

В частности, если центр кола совпадает с началом координат, то уравнение будет иметь вид:

Эллипс

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точек и, которые называются фокусами, есть величина постоянная
, большая чем расстояние между фокусами
.

Каноническое уравнение эллипса, фокусы которого лежат на оси Ох, а начало координат посредине между фокусами имеет вид
где
a длина большой полуоси; b– длина малой полуоси (рис. 2).