Что называется бесконечной числовой последовательностью. Понятие числовой последовательности. Примеры последовательностей, сходящихся к конечному числу

Числовая последовательность.

Сначала задумаемся над самим словом: а что такое последовательность? Последовательность – это когда что-то расположено за чем-то. Например, последовательность действий, последовательность времён года. Или когда кто-то расположен за кем-то. Например, последовательность людей в очереди, последовательность слонов на тропе к водопою.

Немедленно проясним характерные признаки последовательности. Во-первых, члены последовательности располагаются строго в определённом порядке . Так, если двух человек в очереди поменять местами, то это уже будет другая последовательность. Во-вторых, каждому члену последовательности можно присвоить порядковый номер:

С числами всё аналогично. Пусть каждому натуральному значению по некоторому правилу поставлено в соответствие действительное число . Тогда говорят, что задана числовая последовательность .

Да, в математических задачах в отличие от жизненных ситуаций последовательность почти всегда содержит бесконечно много чисел.

При этом:

Называют первым членом последовательности;

вторым членом последовательности;

третьим членом последовательности;

энным или общим членом последовательности;

На практике последовательность обычно задаётся формулой общего члена , например:

– последовательность положительных чётных чисел:

Таким образом, запись однозначно определяет все члены последовательности – это и есть то правило (формула), по которому натуральным значениям в соответствие ставятся числа . Поэтому последовательность часто коротко обозначают общим членом, причём вместо «икс» могут использоваться другие латинские буквы, например:

Последовательность положительных нечётных чисел :

Ещё одна распространённая последовательность :

Как, наверное, многие подметили, переменная «эн» играет роль своеобразного счётчика.

На самом деле с числовыми последовательностями мы имели дело ещё в средних классах школы. Вспомним арифметическую прогрессию . Определение переписывать не буду, коснёмся самой сути на конкретном примере. Пусть – первый член, а – шаг арифметической прогрессии. Тогда:

– второй член данной прогрессии;

– третий член данной прогрессии;

– четвертый;

– пятый;

И, очевидно, энный член задаётся рекуррентной формулой

Примечание : в рекуррентной формуле каждый следующий член выражается через предыдущий член или даже через целое множество предыдущих членов.

Полученная формула малопригодна на практике – чтобы добраться, скажем, до , нужно перебрать все предыдущие члены. И в математике выведено более удобное выражение энного члена арифметической прогрессии: . В нашем случае:

Подставьте в формулу натуральные номера и проверьте правильность построенной выше числовой последовательности.

Аналогичные выкладки можно провести для геометрической прогрессии , энный член которой задаётся формулой , где – первый член , а – знаменатель прогрессии . В заданиях по матану первый член частенько равен единице.

Примеры:

прогрессия задаёт последовательность ;

прогрессия задаёт последовательность ;

прогрессия задаёт последовательность ;

прогрессия задаёт последовательность .

Надеюсь, все знают, что –1 в нечётной степени равно –1, а в чётной – единице.

Прогрессию называют бесконечно убывающей , если (последние два случая).

Давайте добавим в свой список двух новых друзей, один из которых только что постучался в матрицу монитора:

Последовательность на математическом жаргоне называют «мигалкой»:

Таким образом, члены последовательности могут повторяться . Так, в рассмотренном примере последовательность состоит из двух бесконечно чередующихся чисел.

А бывает ли так, что последовательность состоит из одинаковых чисел? Конечно. Например, задаёт бесконечное количество «троек». Для эстетов есть случай, когда в формуле всё же формально фигурирует «эн»:

Факториал :

Всего лишь свёрнутая запись произведения:

Отнюдь не графомания, пригодится для задач;-) Рекомендую осмыслить-запомнить и даже переписать в тетрадь. …Пришёл тут в голову один вопрос: а почему никто не создаёт такие полезные граффити? Едет себе человек в поезде, смотрит в окно и изучает факториалы. Панки отдыхают =)

Возможно, некоторым читателям всё-таки ещё не до конца понятно, как расписать члены последовательности, зная общий член. Тот редкий случай, когда контрольный выстрел возвращает к жизни:

Разберёмся с последовательностью .

Сначала подставим в энный член значение и внимательно проведём вычисления:

Потом подставим следующий номер :

Четвёрку:

Чего уж, теперь и отличную отметку не зазорно заработать:


Понятие предела последовательности.

Для лучшего осмысления нижеследующей информации желательно ПОНИМАТЬ, что такое предел функции . Конечно, в стандартном курсе математического анализа сначала рассматривают предел последовательности и только потом предел функции, но дело в том, что о самой сущности предела я уже подробно рассказывал. Более того, в теории числовая последовательность считается частным случаем функции, и людям, которые знакомы с пределом функции, будет заметно веселее.

Пригласим на танец незамысловатую подругу :

Что происходит, когда «эн» увеличивается до бесконечности? Очевидно, что члены последовательности будут бесконечно близко приближаться к нулю. Это и есть предел данной последовательности, который записывается следующим образом:

Если предел последовательности равен нулю, то её называют бесконечно малой .

В теории математического анализа даётся строгое определение предела последовательности через так называемую эпсилон-окрестность. Этому определению будет посвящёна следующая статья, а пока что разберём его смысл:

Изобразим на числовой прямой члены последовательности и симметричную относительно нуля (предела) -окрестность:

Теперь зажмите синюю окрестность рёбрами ладоней и начинайте её уменьшать, стягивая к пределу (красной точке). Число является пределом последовательности, если ДЛЯ ЛЮБОЙ заранее выбранной -окрестности (сколь угодно малой) внутри неё окажется бесконечно много членов последовательности, а ВНЕ неё – лишь конечное число членов (либо вообще ни одного). То есть эпсилон-окрестность может быть микроскопической, да и того меньше, но «бесконечный хвост» последовательности рано или поздно обязан полностью зайти в данную окрестность.

Есть даже такая задача – доказать предел последовательности, пользуясь определением .

Последовательность тоже бесконечно малА: с той разницей, что её члены не прыгают туда-сюда, а подбираются к пределу исключительно справа.

Естественно, предел может быть равен и любому другому конечному числу, элементарный пример:

Здесь дробь стремится к нулю, и соответственно, предел равен «двойке».

Если у последовательности существует конечный предел , то она называется сходящейся (в частности, бесконечно малой при ). В противном случаерасходящейся , при этом возможны два варианта: либо предела вовсе не существует, либо он бесконечен. В последнем случае последовательность называют бесконечно большой . Пронесёмся галопом по примерам первого параграфа:

Последовательности являются бесконечно большими , поскольку их члены уверенным ходом продвигаются к «плюс бесконечности»:

Арифметическая прогрессия с первым членом и шагом тоже бесконечно великА:

К слову, расходится и любая арифметическая прогрессия, за исключением случая с нулевым шагом – когда к конкретному числу бесконечно добавляется . Предел такой последовательности существует и совпадает с первым членом.

У последовательностей схожая судьба:

Любая бесконечно убывающая геометрическая прогрессия, как ясно уже из названия, бесконечно малА :

Если знаменатель геометрической прогрессии , то последовательность бесконечно великА:

Если же , например, , то предела вообще не существует, так как члены без устали прыгают то к «плюс бесконечности», то к «минус бесконечности». А здравый смысл и теоремы матана подсказывают, что если что-то куда-то и стремится, то это заветное место единственно.

После небольшого разоблачения становится понятно, что в безудержных метаниях виновата «мигалка», которая, кстати, расходится и сама по себе.

Действительно, для последовательности легко подобрать -окрестность, которая, скажем, зажимает только число –1. В результате бесконечное количество членов последовательности («плюс единиц») останутся вне данной окрестности. Но по определению, «бесконечный хвост» последовательности с определённого момента (натурального номера) должен полностью заходить в ЛЮБУЮ -окрестность своего предела. Вывод: предела не существует.

Факториал является бесконечно большой последовательностью:

Причём, растёт он как на дрожжах, так, представляет собой число, у которого более 100 цифр (разрядов)! Почему именно 70? На нём просит пощады мой инженерный микрокалькулятор.

С контрольным выстрелом всё чуть сложнее, и мы как раз подошли к практической части лекции, в которой разберём боевые примеры:


Как найти предел последовательности.

А вот сейчас необходимо уметь решать пределы функций, как минимум, на уровне двух базовых уроков: Пределы. Примеры решений и Замечательные пределы . Потому что многие методы решения будут похожи. Но, прежде всего, проанализируем принципиальные отличия предела последовательности от предела функции:

В пределе последовательности «динамическая» переменная «эн» может стремиться только к «плюс бесконечности» – в сторону увеличения натуральных номеров .

В пределе функции «икс» может быть направлен куда угодно – к «плюс/минус бесконечности» либо к произвольному действительному числу.

Последовательность дискретна (прерывна), то есть состоит из отдельных изолированных членов. Раз, два, три, четыре, пять, вышел зайчик погулять. Для аргумента же функции характерна непрерывность, то есть «икс» плавно, без приключений стремится к тому или иному значению. И, соответственно, значения функции будут так же непрерывно приближаться к своему пределу.

По причине дискретности в пределах последовательностей встречаются свои фирменные вещи, такие как факториалы, «мигалки», прогрессии и т.п. И сейчас я постараюсь разобрать пределы, которые свойственны именно для последовательностей.

Начнём с прогрессий:

Пример 1

Решение : нечто похожее на бесконечно убывающую геометрическую прогрессию, но она ли это? Для ясности распишем несколько первых членов:

Так как , то речь идёт о сумме членов бесконечно убывающей геометрической прогрессии, которая рассчитывается по формуле .

Оформляем решение:

Используем формулу суммы бесконечно убывающей геометрической прогрессии: . В данном случае: – первый член, – знаменатель прогрессии.

Главное, совладать с четырёхэтажностью дроби :

Есть.

Пример 2

Написать первые четыре члена последовательности и найти её предел

Это пример для самостоятельного решения. Для устранения неопределённости в числителе потребуется применить формулу суммы первых членов арифметической прогрессии:

, где – первый, а – энный член прогрессии.

Поскольку в пределах последовательностей «эн» всегда стремится к «плюс бесконечности», то неудивительно, что неопределённость – одна из самых популярных.
И многие примеры решаются точно так же, как пределы функций
!

Как вычислить эти пределы? Смотрите Примеры №№1-3 урока Пределы. Примеры решений .

А может быть что-нибудь посложнее наподобие ? Ознакомьтесь с Примером №3 статьи Методы решения пределов .

С формальной точки зрения разница будет лишь в одной букве – там «икс», а здесь «эн».

Приём тот же – числитель и знаменатель надо разделить на «эн» в старшей степени.

Также в пределах последовательностей достаточно распространена неопределённость . Как решать пределы вроде можно узнать из Примеров №11-13 той же статьи.

Чтобы разобраться с пределом , обратитесь к Примеру №7 урока Замечательные пределы (второй замечательный предел справедлив и для дискретного случая). Решение снова будет как под копирку с различием в единственной букве.

Следующие четыре примера (№№3-6) тоже «двулики», но на практике почему-то больше характерны для пределов последовательностей, чем для пределов функций:

Пример 3

Найти предел последовательности

Решение : сначала полное решение, потом пошаговые комментарии:

(1) В числителе дважды используем формулу .

(2) Приводим подобные слагаемые в числителе.

(3) Для устранения неопределённости делим числитель и знаменатель на («эн» в старшей степени).

Как видите, ничего сложного.

Пример 4

Найти предел последовательности

Это пример для самостоятельного решения, формулы сокращенного умножения в помощь.

В пределах с показательными последовательностями применяется похожий метод деления числителя и знаменателя:

Пример 5

Найти предел последовательности

Решение оформим по той же схеме:

(1) Используя свойства степеней , вынесем из показателей всё лишнее, оставив там только «эн».

(2) Смотрим, какие показательные последовательности есть в пределе: и выбираем последовательность с наибольшим основанием: . В целях устранения неопределённости делим числитель и знаменатель на .

(3) В числителе и знаменателе проводим почленное деление. Поскольку является бесконечно убывающей геометрической прогрессией , то она стремится к нулю. И тем более к нулю стремится константа, делённая на растущую прогрессию: . Делаем соответствующие пометки и записываем ответ.

Пример 6

Найти предел последовательности

Это пример для самостоятельного решения.

Как-то незаслуженно остался в забвении стильный почерк, присущий только пределу последовательности. Пора исправить ситуацию:

Пример 7

Найти предел последовательности

Решение : чтобы избавиться от «вечного соперника» нужно расписать факториалы в виде произведений. Но прежде, чем приступить к математическому граффити, рассмотрим конкретный пример, например: .

Последним множителем в произведении идёт шестёрка. Что нужно сделать, чтобы получить предыдущий множитель? Вычесть единицу: 6 – 1 = 5. Чтобы получить множитель, который располагается ещё дальше, нужно из пятёрки ещё раз вычесть единичку: 5 – 1 = 4. И так далее.

Не беспокойтесь, это не урок в первом классе коррекционной школы, на самом деле мы знакомимся с важным и универсальным алгоритмом под названием «как разложить любой факториал ». Давайте разделаемся с самым злостным флудером нашего чата:

Очевидно, что последним множителем в произведении будет .

Как получить предыдущий множитель? Вычесть единицу:

Как достать прадедушку? Ещё раз вычесть единицу: .

Ну и ещё на один шаг продвинемся вглубь:

Таким образом, наше чудовище распишется следующим образом:

С факториалами числителя всё проще, так, мелкие хулиганы.

Оформляем решение:

(1) Расписываем факториалы

(2) В числителе ДВА слагаемых. Выносим за скобки всё, что можно вынести, в данном случае это произведение . Квадратные скобки, как я где-то пару раз говорил, отличаются от круглых скобок только своей квадратностью.

(3) Сокращаем числитель и знаменатель на …. …хммм, флуда тут и впрямь много.

(4) Упрощаем числитель

(5) Сокращаем числитель и знаменатель на . Тут в известной степени повезло. В общем случае вверху и внизу получаются заурядные многочлены, после чего приходится выполнять стандартное действие – делить числитель и знаменатель на «эн» в старшей степени.

Более подготовленные студенты, которые легко раскладывают факториалы в уме, могут решить пример значительно быстрее. На первом шаге делим почленно числитель на знаменатель и мысленно выполняем сокращения:

Но способ с разложением всё-таки более основателен и надёжен.

Пример 8

Найти предел последовательности

Как и в любом обществе, среди числовых последовательностей попадаются экстравагантные личности.

Теорема : произведение ограниченной последовательности на бесконечно малую последовательность – есть бесконечно малая последовательность.

Если вам не очень понятен термин «ограниченность», пожалуйста, изучите статью об элементарных функциях и графиках .

Аналогичная теорема справедлива, кстати, и для функций: произведение ограниченной функции на бесконечно малую функцию – есть бесконечно малая функция.

Пример 9

Найти предел последовательности

Решение : последовательность – ограничена: , а последовательность – бесконечно малА, значит, по соответствующей теореме:

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Понятие числовой последовательности.

Пусть каждому натуральному числу nсоответствует числоa n , тогда говорят, что задана функцияa n =f(n), которая называется числовой последовательностью. Обозначаетсяa n ,n=1,2,… или {a n }.

Числа a 1 ,a 2 ,… называются членами последовательности или ее элементами,a n – общим членом последовательности, n – номером членаa n .

По определению любая последовательность содержит бесконечное множество элементов.

Примеры числовых последовательностей.

Арифметическая прогрессия – числовая прогрессия вида:

то есть последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага или разности прогрессии):
.

Любой член прогрессии может быть вычислен по формуле общего члена:

Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии:

Сумма n первых членов арифметической прогрессии может быть выражена формулами:

Сумма n последовательных членов арифметической прогрессии начиная с члена k:

Пример суммы арифметической прогрессии является сумма ряда натуральных чисел до n включительно:

Геометрическая прогрессия - последовательность чисел
(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое числоq(знаменатель прогрессии), где
,
:

Любой член геометрической прогрессии может быть вычислен по формуле:

Если b 1 > 0 иq> 1, прогрессия является возрастающей последовательностью, если 0

Своё название прогрессия получила по своему характеристическому свойству:
то есть каждый член равен среднему геометрическому его соседей.

Произведение первых nчленов геометрической прогрессии можно рассчитать по формуле:

Произведение членов геометрической прогрессии начиная с k-ого члена, и заканчиваяn-ым членом, можно рассчитать по формуле:

Сумма nпервых членов геометрической прогрессии:

Если

, то при
, и

при
.

Предел последовательности.

Последовательность называется возрастающей, если каждый её член больше предыдущего. Последовательность называется убывающей, если каждый её член меньше предыдущего.

Последовательность x n называется ограниченной, если существуют такие числаmиM, такие, что для любого натуральногоnвыполняется условие
.

Может случится, что все члены последовательности {a n } при неограниченном росте числаnбудут приближаться к некоторому числуm.

Число aназывают пределом последовательностиX n если для всякого Ε>0 найдется (зависящее от Ε) числоn 0 =n o (Ε) такое, что для
выполняется неравенство
для всех (натуральных)n>n­ 0 .

В этом случае пишут
или

Сходимость последовательностей.

О последовательности, имеющей пределом конечное число говорят, что она сходится к a:

.

Если у последовательности нет конечного предела (исчислимого), она будет называться расходящейся.

Геометрический смысл.

Если
, то в произвольную Ε окрестность точкиaпопадут все члены данной последовательности, за исключением последнего числа. Геометрически ограниченность последовательности означает, что все ее значения лежат на некотором отрезке.

Теорема 1) О единственности предела:

Если последовательность сходится, то есть имеет предел, то этот предел единственный.

Теорема 2)

Если последовательность a n сходится кa:
, то любая её подпоследовательность
имеет тот же предел.

Теорема 3) Необходимое условие существование предела.

Если последовательность сходится, то есть имеет предел, то она ограничена.

Доказательство: подберем такое n>N, чтобы выполнялось:

Теорема 4) Достаточное условие существования предела.

Если последовательность монотонна и ограничена, то она имеет предел. .

Теорема 5)

Пусть
и пусть выполняется условиеx n ≤y n при любыхn, тогдаa

Теорема о трех последовательностях.

Если
и для последовательностейx n ,y n ,z n выполняется условиеx n ≤y n ≤z n , тогда для
следует
.

Свойства пределов .

Если {xn} и {yn} имеют пределы, то:

Предел отношения многочленов (дробей).

Пусть x n иy n многочлены отnстепениkиmсоответственно, то есть:

x n =P k (n)=a 0 n k +a 1 n k-1 +…+a k , y n =Q m (n)=b 0 n m +b 1 n m-1 +…+b m

Предел отношения многочленов равен пределу отношения их старших членов:

Если степень числителя равна степени знаменателя, то предел равен отношению коэффициентов при высших степенях.

Если степень числителя меньше степени знаменателя, предел равен нулю.

Если степень числителя больше степени знаменателя, предел стремится к бесконечности.

Математика — наука, строящая мир. Как учёный, так и простой человек — никто не сможет обойтись без неё. Сначала маленьких детей учат считать, потом складывать, вычитать, умножать и делить, к средней школе в ход вступают буквенные обозначения, а в старшей без них уже не обойтись.

Но сегодня речь пойдёт о том, на чём строится вся известная математика. О сообществе чисел под названием «пределы последовательностей».

Что такое последовательности и где их предел?

Значение слова «последовательность» трактовать нетрудно. Это такое построение вещей, где кто-то или что-то расположены в определённом порядке или очереди. Например, очередь за билетами в зоопарк — это последовательность. Причём она может быть только одна! Если, к примеру, посмотреть на очередь в магазин — это одна последовательность. А если один человек из этой очереди вдруг уйдёт, то это уже другая очередь, другой порядок.

Слово «предел» также легко трактуется — это конец чего-либо. Однако в математике пределы последовательностей — это такие значения на числовой прямой, к которым стремится последовательность чисел. Почему стремится, а не заканчивается? Всё просто, у числовой прямой нет конца, а большинство последовательностей, как лучи, имеют только начало и выглядят следующим образом:

х 1 , х 2 , х 3 , …х n …

Отсюда определение последовательности — функция натурального аргумента. Более простыми словами — это ряд членов некоторого множества.

Как строится числовая последовательность?

Простейший пример числовой последовательности может выглядеть так: 1, 2, 3, 4, …n…

В большинстве случаев для практических целей последовательности строятся из цифр, причём каждый следующий член ряда, обозначим его Х, имеет своё имя. Например:

х 1 — первый член последовательности;

х 2 — второй член последовательности;

х 3 — третий член;

х n — энный член.

В практических методах последовательность задаётся общей формулой, в которой есть некоторая переменная. Например:

Х n =3n, тогда сам ряд чисел будет выглядеть так:

Стоит не забывать, что при общей записи последовательностей можно использовать любые латинские буквы, а не только Х. Например: y, z, k и т. д.

Арифметическая прогрессия как часть последовательностей

Прежде чем искать пределы последовательностей, целесообразно поглубже окунуться в само понятие подобного числового ряда, с которым все сталкивались, будучи в средних классах. Арифметическая прогрессия — это ряд чисел, в котором разница между соседними членами постоянна.

Задача: «Пусть а 1 =15, а шаг прогрессии числового ряда d=4. Постройте первые 4 члена этого ряда»

Решение: а 1 = 15 (по условию) — первый член прогрессии (числового ряда).

а 2 = 15+4=19 — второй член прогрессии.

а 3 =19+4=23 — третий член.

а 4 =23+4=27 — четвёртый член.

Однако подобным методом трудно добраться до крупных значений, например до а 125. . Специально для таких случаев была выведена удобная для практики формула: а n =a 1 +d(n-1). В данном случае а 125 =15+4(125-1)=511.

Виды последовательностей

Большинство последовательностей бесконечны, это стоит запомнить на всю жизнь. Существует два интересных вида числового ряда. Первый задаётся формулой а n =(-1) n . Математики часто называют эту последовательностей мигалкой. Почему? Проверим её числовой ряд.

1, 1, -1 , 1, -1, 1 и т. д. На подобном примере становится ясно, что числа в последовательностях могут легко повторяться.

Факториальная последовательность. Легко догадаться — в формуле, задающей последовательность, присутствует факториал. Например: а n = (n+1)!

Тогда последовательность будет выглядеть следующим образом:

а 2 = 1х2х3 = 6;

а 3 = 1х2х3х4 =24 и т. д.

Последовательность, заданная арифметической прогрессией, называется бесконечно убывающей, если для всех её членов соблюдается неравенство -1

а 3 = - 1/8 и т. д.

Существует даже последовательность, состоящая из одного и того же числа. Так, а n =6 состоит из бесконечного множества шестёрок.

Определение предела последовательности

Пределы последовательностей давно существуют в математике. Конечно, они заслужили свое собственное грамотное оформление. Итак, время узнать определение пределов последовательностей. Для начала рассмотрим подробно предел для линейной функции:

  1. Все пределы обозначаются сокращённо lim.
  2. Запись предела состоит из сокращения lim, какой-либо переменной, стремящейся к определённому числу, нулю или бесконечности, а также из самой функции.

Легко понять, что определение предела последовательности может быть сформулировано следующим образом: это некоторое число, к которому бесконечно приближаются все члены последовательности. Простой пример: а x = 4x+1. Тогда сама последовательность будет выглядеть следующим образом.

5, 9, 13, 17, 21…x …

Таким образом, данная последовательность будет бесконечно увеличиваться, а, значит, её предел равен бесконечности при x→∞, и записывать это следует так:

Если же взять похожую последовательность, но х будет стремиться к 1, то получим:

А ряд чисел будет таким: 1.4, 1.8, 4.6, 4.944 и т. д. Каждый раз нужно подставлять число всё больше приближеннее к единице (0.1, 0.2, 0.9, 0.986). Из этого ряда видно, что предел функции — это пять.

Из этой части стоит запомнить, что такое предел числовой последовательности, определение и метод решения простых заданий.

Общее обозначение предела последовательностей

Разобрав предел числовой последовательности, определение его и примеры, можно приступить к более сложной теме. Абсолютно все пределы последовательностей можно сформулировать одной формулой, которую обычно разбирают в первом семестре.

Итак, что же обозначает этот набор букв, модулей и знаков неравенств?

∀ — квантор всеобщности, заменяющий фразы «для всех», «для всего» и т. п.

∃ — квантор существования, в данном случае обозначает, что существует некоторое значение N, принадлежащее множеству натуральных чисел.

Длинная вертикальная палочка, следующая за N, значит, что данное множество N «такое, что». На практике она может означать «такая, что», «такие, что» и т. п.

Для закрепления материала прочитайте формулу вслух.

Неопределённость и определённость предела

Метод нахождения предела последовательностей, который рассматривался выше, пусть и прост в применении, но не так рационален на практике. Попробуйте найти предел для вот такой функции:

Если подставлять различные значения «икс» (с каждым разом увеличивающиеся: 10, 100, 1000 и т. д.), то в числителе получим ∞, но в знаменателе тоже ∞. Получается довольно странная дробь:

Но так ли это на самом деле? Вычислить предел числовой последовательности в данном случае кажется достаточно легко. Можно было бы оставить всё, как есть, ведь ответ готов, и получен он на разумных условиях, однако есть ещё один способ специально для таких случаев.

Для начала найдём старшую степень в числителе дроби — это 1, т. к. х можно представить как х 1 .

Теперь найдём старшую степень в знаменателе. Тоже 1.

Разделим и числитель, и знаменатель на переменную в высшей степени. В данном случае дробь делим на х 1 .

Далее найдём, к какому значению стремится каждое слагаемое, содержащее переменную. В данном случае рассматриваются дроби. При х→∞ значение каждой из дробей стремится к нулю. При оформлении работы в писменном виде стоит сделать такие сноски:

Получается следующее выражение:

Конечно же, дроби, содержащие х, не стали нулями! Но их значение настолько мало, что вполне разрешено не учитывать его при расчётах. На самом же деле х никогда не будет равен 0 в данном случае, ведь на ноль делить нельзя.

Что такое окрестность?

Предположим, в распоряжении профессора сложная последовательность, заданная, очевидно, не менее сложной формулой. Профессор нашёл ответ, но подходит ли он? Ведь все люди ошибаются.

Огюст Коши в своё время придумал отличный способ для доказательства пределов последовательностей. Его способ назвали оперированием окрестностями.

Предположим, что существует некоторая точка а, её окрестность в обе стороны на числовой прямой равна ε («эпсилон»). Поскольку последняя переменная — расстояние, то её значение всегда положительно.

Теперь зададим некоторую последовательность х n и положим, что десятый член последовательности (x 10) входит в окрестность а. Как записать этот факт на математическом языке?

Допустим, х 10 находится правее от точки а, тогда расстояние х 10 -а<ε, однако, если расположить «икс десятое» левее точки а, то расстояние получится отрицательным, а это невозможно, значит, следует занести левую часть неравенства под модуль. Получится |х 10 -а|<ε.

Теперь пора разъяснить на практике ту формулу, о которой говорилось выше. Некоторое число а справедливо называть конечной точкой последовательности, если для любого её предела выполняется неравенство ε>0, причём вся окрестность имеет свой натуральный номер N, такой, что всё члены последовательности с более значительными номерами окажутся внутри последовательности |x n - a|< ε.

С такими знаниями легко осуществить решение пределов последовательности, доказать или опровергнуть готовый ответ.

Теоремы

Теоремы о пределах последовательностей — важная составляющая теории, без которой невозможна практика. Есть всего лишь четыре главных теоремы, запомнив которые, можно в разы облегчить ход решения или доказательства:

  1. Единственность предела последовательности. Предел у любой последовательности может быть только один или не быть вовсе. Тот же пример с очередью, у которой может быть только один конец.
  2. Если ряд чисел имеет предел, то последовательность этих чисел ограничена.
  3. Предел суммы (разности, произведения) последовательностей равен сумме (разности, произведению) их пределов.
  4. Предел частного от деления двух последовательностей равен частному пределов тогда и только тогда, когда знаменатель не обращается в ноль.

Доказательство последовательностей

Иногда требуется решить обратную задачу, доказать заданный предел числовой последовательности. Рассмотрим на примере.

Доказать, что предел последовательности, заданной формулой, равен нолю.

По рассмотренному выше правилу, для любой последовательности должно выполняться неравенство |x n - a|<ε. Подставим заданное значение и точку отсчёта. Получим:

Выразим n через «эпсилон», чтобы показать существование некоего номера и доказать наличие предела последовательности.

На этом этапе важно напомнить, что «эпсилон» и «эн» - числа положительные и не равны нулю. Теперь можно продолжать дальнейшие преобразования, используя знания о неравенствах, полученные в средней школе.

Откуда получается, что n > -3 + 1/ε. Поскольку стоит помнить, что речь идёт о натуральных числах, то результат можно округлить, занеся его в квадратные скобки. Таким образом, было доказано, что для любого значения окрестности «эпсилон» точки а=0 нашлось значение такое, что выполняется начальное неравенство. Отсюда можно смело утверждать, что число а есть предел заданной последовательности. Что и требовалось доказать.

Вот таким удобным методом можно доказать предел числовой последовательности, какой бы сложной она на первый взгляд ни была. Главное — не впадать в панику при виде задания.

А может, его нет?

Существование предела последовательности необязательно на практике. Легко можно встретить такие ряды чисел, которые действительно не имеют конца. К примеру, та же «мигалка» x n = (-1) n . очевидно, что последовательность, состоящая всего лишь из двух цифр, циклически повторяющихся, не может иметь предела.

Та же история повторяется с последовательностями, состоящими из одного числа, дробными, имеющими в ходе вычислений неопределённость любого порядка (0/0, ∞/∞, ∞/0 и т. д.). Однако следует помнить, что неверное вычисление тоже имеет место быть. Иногда предел последоватей найти поможет перепроверка собственного решения.

Монотонная последовательность

Выше рассматривались несколько примеров последовательностей, методы их решения, а теперь попробуем взять более определённый случай и назовём его «монотонной последовательностью».

Определение: любую последовательность справедливо называть монотонно возрастающей, если для нее выполняется строгое неравенство x n < x n +1. Также любую последовательность справедливо называть монотонной убывающей, если для неё выполняется неравенство x n > x n +1.

Наряду с этими двумя условиями существуют также подобные нестрогие неравенства. Соответственно, x n ≤ x n +1 (неубывающая последовательность) и x n ≥ x n +1 (невозрастающая последовательность).

Но легче понимать подобное на примерах.

Последовательность, заданная формулой х n = 2+n, образует следующий ряд чисел: 4, 5, 6 и т. д. Это монотонно возрастающая последовательность.

А если взять x n =1/n, то получим ряд: 1/3, ¼, 1/5 и т. д. Это монотонно убывающая последовательность.

Предел сходящейся и ограниченной последовательности

Ограниченная последовательность — последовательность, имеющая предел. Сходящаяся последовательность — ряд чисел, имеющий бесконечно малый предел.

Таким образом, предел ограниченной последовательности — это любое действительное или комплексное число. Помните, что предел может быть только один.

Предел сходящейся последовательности — это величина бесконечно малая (действительная или комплексная). Если начертить диаграмму последовательности, то в определённой точке она будет как бы сходиться, стремиться обратиться в определённую величину. Отсюда и название — сходящаяся последовательность.

Предел монотонной последовательности

Предел у такой последовательности может быть, а может и не быть. Сначала полезно понять, когда он есть, отсюда можно оттолкнуться при доказательстве отсутствия предела.

Среди монотонных последовательностей выделяют сходящуюся и расходящуюся. Сходящаяся — это такая последовательность, которая образована множеством х и имеет в данном множестве действительный или комплексный предел. Расходящаяся — последовательность, не имеющая предела в своём множестве (ни действительного, ни комплексного).

Причём последовательность сходится, если при геометрическом изображении её верхний и нижний пределы сходятся.

Предел сходящейся последовательности во многих случаях может быть равен нулю, так как любая бесконечно малая последовательность имеет известный предел (ноль).

Какую сходящуюся последовательность ни возьми, они все ограничены, однако далеко не все ограниченные последовательности сходятся.

Сумма, разность, произведение двух сходящихся последовательностей - также сходящаяся последовательность. Однако частное может быть также сходящейся, если оно определено!

Различные действия с пределами

Пределы последовательностей — это такая же существенная (в большинстве случаев) величина, как и цифры и числа: 1, 2, 15, 24, 362 и т. д. Получается, что с пределами можно проводить некоторые операции.

Во-первых, как и цифры и числа, пределы любых последовательностей можно складывать и вычитать. Исходя из третьей теоремы о пределах последовательностей, справедливо следующее равенство: предел суммы последовательностей равен сумме их пределов.

Во-вторых, исходя из четвёртой теоремы о пределах последовательностей, справедливо следующее равенство: предел произведения n-ого количества последовательностей равен произведению их пределов. То же справедливо и для деления: предел частного двух последовательностей равен частному их пределов, при условии что предел не равен нулю. Ведь если предел последовательностей будет равен нулю, то получится деление на ноль, что невозможно.

Свойства величин последовательностей

Казалось бы, предел числовой последовательности уже разобран довольно подробно, однако не раз упоминаются такие фразы, как «бесконечно маленькие» и «бесконечно большие» числа. Очевидно, если есть последовательность 1/х, где x→∞, то такая дробь бесконечно малая, а если та же последовательность, но предел стремится к нулю (х→0), то дробь становится бесконечно большой величиной. А у таких величин есть свои особенности. Свойства предела последовательности, имеющей какие угодно малые или большие величины, состоят в следующем:

  1. Сумма любого количества сколько угодно малых величин будет также малой величиной.
  2. Сумма любого количества больших величин будет бесконечно большой величиной.
  3. Произведение сколь угодно малых величин бесконечно мало.
  4. Произведение сколько угодно больших чисел — величина бесконечно большая.
  5. Если исходная последовательность стремится к бесконечно большому числу, то величина, ей обратная, будет бесконечно малой и стремиться к нулю.

На самом деле вычислить предел последовательности - не такая сложная задача, если знать простой алгоритм. Но пределы последовательностей — тема, требующая максимума внимания и усидчивости. Конечно, достаточно просто уловить суть решения подобных выражений. Начиная с малого, со временем можно достигнуть больших вершин.

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

заданная формулой

является ограниченной последовательностью , поскольку для всех n = 1, 2, 3, … выполнено неравенство

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов