Не могу дышать в воде. Может ли человек дышать жидкостью? Человек может дышать водой

Первый доктор, побывавший на околоземной орбите, советский летчик-космонавт Борис Егоров, как-то заявил: «На глубине свыше 500-700 метров у человека (по крайней мере, в теории) есть возможность стать Ихтиандром, не используя никакую технику! Он будет там плавать, подобно рыбе, и жить максимально долго. Нужно всего лишь...заполнить легкие водой. На глубине 500-700 метров легкие человека, судя по всему, будут усваивать кислород непосредственно из воды».

На первый взгляд эта мысль кажется невероятной. Разве не погибают каждый год тысячи людей, захлебнувшиеся морской водой? Способна ли вода стать заменой обычному кислороду? Перенесемся мысленно в лабораторию голландского физиолога Иоганнеса Килстра, где ученый проводит свои удивительные опыты. Вот один из них.

Ученый заливает водой небольшой прозрачный резервуар и добавляет туда немного соли. Далее он закупоривает емкость и через трубку накачивает в нее кислород под давлением. Сосуд взбалтывают и вскоре через промежуточную (шлюзовую) камеру впускают внутрь белую мышь. Подняться она не может - этому препятствует сетка на поверхности воды. Но... Проходит полчаса, час, два. Мышь, как это ни кажется странным, дышит - да, да, именно дышит водой! Но никакой паники у мыши не наблюдается. Легкие зверька действуют подобно рыбьим жабрам, получая кислород напрямую из воды. Само собой, ни о какой кессонной болезни и речи быть не может - азот в воду не добавляли. Схожие эксперименты делали и ученые в СССР, возглавляемые кандидатом медицинских наук Владленом Козаком.

Итак, первый шаг сделан. И вполне успешно. Однако ученые не торопятся объявить об этом. Вдруг способностью к дыханию жидкостью обладают только мелкие животные? Чтобы рассеять сомнения, метод проверяют на собаках. И что же? В первых же экспериментах собаки дышали солоноватым раствором, насыщенным кислородом, более получаса. Опыты показали, что не только собаки, но и кошки могут долго дышать жидкостью. Иногда они оставались под водой много часов подряд и затем спокойно возвращались к привычному способу дыхания.

А способен ли дышать водой человек? Ободренный успехом опытов на животных, Иоганес Килстра сделал попытку прояснить и этот вопрос. Первым испытуемым стал водолаз с 20-летним опытом Фрэнк Фалежчик. Когда ему залили одно легкое, он чувствовал себя так хорошо, что просил одновременно заполнить и другое. «Пока в этом нет необходимости»,- сказал ученый. Однако через некоторое время Килстра решился на такой эксперимент.

В лаборатории собрались двадцать докторов, чтобы засвидетельствовать удивительный опыт. Подопытным согласился быть все тот же Фрэнк Фалежчик. Ему сделали анестезию горла для подавления глотательного рефлекса и ввели в трахею (дыхательное горло) эластичную трубку. Через нее ученый начал постепенно вливать специальный раствор. Жидкость поступала в оба легких, и все напряженно наблюдали за Фалежчиком, который не обнаруживал никаких признаков паники. Более того, он показал знаками, что готов помогать экспериментаторам, и сам стал записывать свои ощущения. Человек дышал жидкостью не один час! Однако, потребовалось пара дней, чтобы окончательно откачать ее из легких. «Я не ощущал никакого дискомфорта, - сказал после опыта Фрэнк Фалежчик,- и не чувствовал тяжести в груди, как изначально предполагал». Размышляя над результатами этих интереснейших опытов, доктор Килстра высказал убеждение, что человек с залитыми водой легкими может совершенно безболезненно опуститься на полкилометра и через двадцать минут вернуться на поверхность.

Много лет назад Жак-Ив Кусто выдвинул любопытное предположение. «Придет время, - писал он, - и человечество выведет новую расу людей-«Гомо акватикус» («человек подводный»). Они заселят морское дно, построят там города и будут жить как на земле». Кто знает, может быть, пророчество отважного капитана, признанного старейшины подводных пловцов, когда-нибудь и сбудется?

Подпишитесь на нас

Фокусник-иллюзионист Гарри Гудини прославился своим умением задерживать дыхание на три минуты. Но сегодня опытные дайверы могут задерживать дыхание на десять, пятнадцать и даже двадцать минут. Как дайверы это делают, и как тренироваться, чтобы задержать дыхание на долгий срок?

Мой лучший результат по задержке дыхания в статичном положении вообще не впечатляет, я думаю, он около 5,5 минут. Марк Хели, серфер

Кажется, что такой результат просто нереальный, а Хели просто скромничает. Кто-то скажет, что задержать дыхание на такой срок просто невозможно, но это не так для людей, практикующих «статическое апноэ».

Это спортивная дисциплина, в которой дайвер задерживает дыхание и «зависает» под водой без движения настолько долго, насколько это возможно. Так вот, для таких дайверов пять с половиной минут — действительно небольшое достижение.

В 2001 году знаменитый фридайвер Мартин Степанек задержал дыхание на восемь минут шесть секунд. Его рекорд продержался три года, до июня 2004, когда фридайвер Том Сиетас повысил планку на 41 секунду с лучшим временем под водой 8:47.

Этот рекорд был побит восемь раз (пять из них самим Томом Сиетасом), но самое впечатляющее время на сегодня принадлежит французскому фридайверу Стефану Мифсуду. В 2009 году Мифсуд провел под водой 11 минут 35 секунд.

Что такое статическое апноэ

Статическое апноэ - это единственная дисциплина во фридайвинге, измеряемая по времени, но она является чистым проявлением этого вида спорта, его основой. Длительная задержка дыхания важна для всех остальных дисциплин фридайвинга, как в бассейне, так и в открытой воде.

Фридайвер, выступающий в дисциплине «Динамика в ластах» , на соревнованиях в Лондоне, 2009 год

У фридайверов есть разные дисциплины, такие как «динамика в ластах» или без, когда дайверу надо как можно дальше проплыть под водой, или «без ограничений» - самая сложная дисциплина, в которой дайвер погружается с помощью тележки так глубоко, как может, а потом с помощью шара всплывает обратно.

Но и та, и другая дисциплины основаны на апноэ - умении как можно дольше продержаться без воздуха.

Изменения в организме

Кислород, который вы вдыхаете, поступает в кровь и доставляется к разным тканям тела, где трансформируется в энергию. В конце этого процесса образуется CO2, который поступает обратно в легкие и выводится из организма с выдохом.

Когда вы задерживаете дыхание, кислород также превращается в CO2, но ему некуда выходить. Он циркулирует по вашим венам, окисляя кровь и подавая сигналы организму, что пора вдохнуть. Сначала это горящие легкие, а потом - сильные и болезненные спазмы диафрагмы.

Фридайверы тратят годы тренировок, чтобы прокачать задержку дыхания, и в процессе постепенно меняется их физиология. Кровь фридайверов окисляется медленнее, чем кровь обычных людей, которые всю жизнь вдыхают и выдыхают рефлекторно.

Активация симпатической нервной системы заставляет их периферические кровеносные сосуды сжиматься вскоре после того, как они перестали дышать. Кровь, богатая кислородом, сохраняется в теле и перенаправляется от конечностей к самым важным органам, в основном, к сердцу и мозгу.

Некоторые фридайверы также практикуют медитацию, чтобы успокоить сердце. Они замедляют естественные ритмы, и кислород медленнее превращается в углекислый газ.

Медитация оказывает успокаивающий эффект и на разум тоже, потому что основная сложность в задержке дыхания как раз заключается в сознании. Вы должны знать, что ваше тело может существовать на кислороде, который уже в нем есть и успешно игнорировать потребность организма вдохнуть.

На это требуются годы тренировок, но есть и другие, более быстрые способы для задержки дыхания.

«Щечная накачка» и гипервентиляция

Есть способ, который дайверы называют личным «хранилищем газа» или «щечной накачкой» . Его давным-давно придумали рыбаки-ныряльщики. Способ включает в себя наиболее глубокое дыхание, с использованием мышц рта и глотки для увеличения запасов воздуха.


Человек полностью наполняет легкие воздухом, после чего с помощью мышц глотки перекрывает доступ, чтобы воздух не выходил. После этого он набирает воздух в рот, и при закрытии рта с помощью мышц щек вталкивает дополнительный воздух в легкие. Повторив такое дыхание 50 раз, дайвер может увеличить запас легких литра на три.

В 2003 году провели исследование по измерению емкости легких у дайверов, и получили такие результаты: «щечная накачка» увеличивает объем легких с 9.28 литров до 11.02.

Емкость легких также может отличаться в зависимости от человека. Примерный объем легких женщины составляет четыре литра, мужчины - шесть, но может быть и больше. Например, известный фридайвер Герберт Нич имел объем легких 14 литров.

Есть ещё один способ - гипервентиляция легких , которую часто используют дайверы. Этот способ позволяет избавить организм от углекислого газа и наполнить тело кислородом. Самая экстремальная версия этой техники включает в себя дыхание только кислородом за 30 минут до погружения.

В воздухе содержится только 21% кислорода, так что, если дышать атмосферным воздухом перед погружением, кислорода в организме будет меньше, чем если вдыхать чистый кислород.

Именно эта техника позволила фокуснику Дэвиду Блэйну побить мировой рекорд по задержке дыхания в 2008 году, продержавшись без воздуха 17 минут и 4 секунды. С её же помощью Стиг Северинесен побил этот рекорд в 2012 году со временем 22 минуты.

В отличие от «статического апноэ», в котором не разрешается дышать чистым кислородом перед погружением, Книга рекордов Гиннеса не так сурова, поэтому рекорд в 22 минуты сейчас считается первым в мире.

Опасности апноэ

Но все эти техники и тренировки по-своему опасны. Длительная задержка дыхания и кислородное голодание организма может плохо сказаться на здоровье, а гипервентиляция может привести к потере сознания и другим рискам. Что касается метода щечной накачки, от этого может случиться разрыв легких.

И по этой причине фридайверы не проводят тренировки в одиночку, только под присмотром. Даже когда они находятся в неглубокой воде, поскольку нет различия, на какой глубине ты находишься, если потерял сознание.

Так что, если вы решили потренироваться задерживать дыхание, лучше не делайте этого в одиночестве, мало ли что может случиться.

Научные исследования не прекращаются ни на день, прогресс идёт, давая человечеству всё новые и новые открытия. Сотни учёных и их помощников трудятся на поприще изучения живых существ и синтеза необычных веществ. Целые отделы ставят эксперименты, проверяя различные теории, и порой открытия поражают воображение - ведь то, о чём можно было только мечтать, может стать реальностью. Они развивают идеи, и вопросы о заморозке человека в криокамере с последующей разморозкой через столетие либо о возможности дышать жидкостью для них не просто фантастический сюжет. Их кропотливый труд может претворить эти фантазии в жизнь.

Учёных давно волнует вопрос: может ли человек дышать жидкостью?

Нужно ли человеку жидкостное дыхание

Не жалеются ни силы, ни время, ни денежные средства на такие исследования. И один из таких вопросов, волнующих самые просвещённые умы на протяжении десятилетий, звучит следующим образом - а возможно ли для человека жидкостное дыхание? Смогут ли лёгкие усваивать кислород не , а из специальной жидкости? Для тех, кто усомнится в реальной необходимости такого типа дыхания, можем привести как минимум 3 перспективных направления, где оно послужит человеку добрую службу. Если, конечно же, это смогут реализовать.

  • Первое направление - это погружение на большие глубины. Как известно, при нырянии водолаз испытывает действие давления водной среды, которая в 800 раз плотнее воздуха. И оно возрастает на 1 атмосферу каждые 10 метров глубины. Такое резкое повышение давления чревато очень неприятным эффектом - газы, растворённые в крови, начинают закипать в виде пузырьков. Это явление называют «кессонной болезнью», ею часто страдают те, кто активно занимается . Также при глубоководных заплывах есть риск получить кислородное или азотное отравление, так как в таких условиях эти жизненно необходимые нам газы становятся очень токсичными. Для того чтобы хоть как-то бороться с этим, используют либо специальные смеси для дыхания, либо жёсткие скафандры, поддерживающие внутри себя давление в 1 атмосферу. Но если бы жидкостное дыхание было возможно - оно бы стало третьим, наиболее лёгким решением проблемы, ведь дыхательная жидкость не насыщает организм азотом и инертными газами, да и необходимость в долгой декомпрессии отпадает.
  • Второй путь применения - это медицина. Применения жидкостей для дыхания в ней могло бы спасать жизни недоношенных младенцев, ведь их бронхи недоразвиты и аппараты искусственной вентиляции лёгких могут легко их повредить. Как известно, в утробе матери лёгкие эмбриона заполнены жидкостью и к моменту рождения у него накапливается лёгочный сурфактант - смесь веществ, не дающая слипаться тканям при дыхании воздухом. Но при досрочном рождении дыхание требует у младенца слишком много сил и это может закончиться летальным исходом.

История имеет прецедент использования метода полной жидкостной вентиляции лёгких, и датируется он 1989 годом. Применил его Т. Шаффер, работавший педиатром в Темпльском университете (США), спасая недоношенных детей от смерти. Увы, попытка успехом не увенчалась, трое маленьких пациентов не выжили, но стоит упомянуть, что смерти были вызваны иными причинами, а не самим методом дыхания жидкостью.

С тех пор полностью вентилировать лёгкие человека не осмеливались, но в 90-х годах пациенты с тяжёлой формой воспалений были подвергнуты частичной жидкостной вентиляции. В этом случае лёгкие заполняются лишь частично. Увы, эффективность метода была спорной, так как обычная воздушная вентиляция работала не хуже.

  • Применение в космонавтике. При нынешнем уровне технологий, космонавт при полёте испытывает перегрузки, достигающие 10 g. После этого порога невозможно сохранить не то чтобы работоспособность, но и сознание. Да и нагрузка на организм идёт неравномерно, а по точкам опоры, которые при погружении в жидкость можно исключить - давление будет распространяться одинаково по всем точкам организма. Этот принцип положен в основу проектировки жёсткого скафандра Libelle, наполненного водой и позволяющего повысить предел до 15–20 g, да и то из-за ограничения плотности тканей человека. А если не только погрузить космонавта в жидкость, но и заполнить ею лёгкие, то для него будет возможно легко переносить экстремальные перегрузки далеко за отметкой в 20 g. Не бесконечные, разумеется, но порог будет очень высок, если будет соблюдено одно условие - жидкость в лёгких и вокруг тела должна быть равна по плотности воде.

Зарождение и развитие жидкостного дыхания

Самые первые эксперименты датируются 60-ми годами прошлого столетия. Первыми испытали зарождающуюся технологию жидкостного дыхания лабораторные мыши и крысы, вынужденные дышать не воздухом, а солёным раствором, который был под давлением в 160 атмосфер. И они дышали! Но была проблема, которая не дала им выжить в такой среде долго - жидкость не позволяла отводить углекислый газ.

Но на этом эксперименты не прекратились. Далее, начали проводить исследования органических веществ, чьи атомы водорода заменялись атомами фтора - так называемых перфторуглеводородов. Результаты были намного лучше, чем у древней и примитивной жидкости, ведь перфторуглеводород инертен, не усваивается организмом, прекрасно растворяет кислород и водород. Но до совершенства было далеко и исследования в этом направлении продолжились.

Сейчас самым лучшим достижением в этой сфере является перфлуброн (коммерческое название - «Ликвивент»). Свойства этой жидкости поразительны:

  1. Альвеолы раскрываются лучше при попадании в лёгкие этой жидкости и газообмен улучшается.
  2. Эта жидкость может нести в 2 раза больше кислорода по сравнению с воздухом.
  3. Низкая температура кипения позволяет удалять её из лёгких выпариванием.

Но наши лёгкие не предназначены для полностью жидкостного дыхания. Если заполнять их перфлуброном полностью - потребуется мембранный оксигенатор, нагревающий элемент и вентиляция воздухом. И не стоит забывать, что эта смесь в 2 раза гуще воды. Потому применяют смешанное вентилирование, при котором лёгкие заполняются жидкостью лишь на 40%.

Но почему мы не можем дышать жидкостью? Всё из-за углекислого газа, который очень плохо удаляется в жидкостной среде. Человек весом в 70 кг должен прогонять 5 л смеси через себя ежеминутно, и это при спокойном состоянии. Потому, хоть наши лёгкие технически способны извлекать кислород из жидкостей, они слишком слабы. Так что можно лишь надеяться на исследования будущего.

Вода как воздух

Для того чтобы наконец с гордостью объявить миру - «Теперь человек может дышать под водой!» - учёные порой разрабатывали поразительные устройства. Так, в 1976 году биохимики из Америки создали чудо-устройство, способное регенерировать кислород из воды и обеспечивать им ныряльщика. При достаточной ёмкости батарей ныряльщик мог находиться и дышать на глубине практически бесконечно.

А началось всё с того, что ученые начали исследования на основе того факта, что гемоглобин одинаково хорошо доставляет воздух как из жабр, так и из лёгких. Ими была использована собственная венозная кровь, смешанная с полиуретаном - её погружали в воду и эта жидкость поглощала кислород, который щедро растворён в воде. Далее, кровь была заменена спецматериалом и в итоге получился прибор, что действовал как обычные жабры любой рыбёшки. Судьба изобретения такова: его приобрела некая компания, потратив на это 1 миллион долларов, и с тех пор о приборе ничего не было слышно. И в продажу, разумеется, он не поступил.

Но не это является главной целью учёных. Их мечта не устройство для дыхания, они хотят научить самого человека дышать жидкостью. И попытки осуществить эту мечту не оставлены до сих пор. Так, один из НИИ России, например, провёл испытания по жидкостному дыханию на добровольце, имеющем врождённую патологию - отсутствие гортани. А это означало, что у него просто отсутствовала реакция организма на жидкость, при которой попадание малейшей капли воды на бронхи сопровождается сжатием глоточного кольца и удушьем. Так как этой мышцы у него просто не было, эксперимент прошёл удачно. Ему залили в лёгкие жидкость, которую он перемешивал на протяжении эксперимента при помощи движений живота, после чего её спокойно и безопасно откачали. Характерно, что солевой состав жидкости соответствовал солевому составу крови. Это можно считать успехом, и учёные утверждают, что вскоре найдут способ жидкостного дыхания, доступный людям без патологий.

Так миф или реальность?

Несмотря на упорство человека, страстно желающего покорить все возможные среды обитания, природа пока сама распоряжается, где кому жить. Увы, как бы много времени ни ушло на исследования, сколько миллионов бы ни потратили - но вряд ли человеку суждено дышать под водой так же хорошо, как и на суше. Люди и морские обитатели, конечно, имеют немало общего, но различий всё-таки намного больше. Человек-амфибия не вынес бы условий океана, а если бы сумел приспособиться - то дорога назад, на сушу, была бы для него закрыта. И как с аквалангами водолазы, так бы на пляж выходили бы в водных скафандрах люди-амфибии. И потому, чтобы не говорили энтузиасты, вердикт учёных пока твёрд и неутешителен - долгая жизнедеятельность человека под водой невозможна, идти против матери-природы в этом плане неразумно и все попытки жидкостного дыхания обречены на провал.

Но не стоит унывать. Хоть дно морское никогда не станет для нас родным домом, у нас есть все механизмы организма и технические возможности, для того чтобы бывать на нём частыми гостями. Так стоит ли об этом грустить? Ведь эти среды в определённой мере уже покорены человеком и теперь перед ним лежат бездны космического пространства.

И пока можно с уверенностью сказать, что глубины океана станут для нас прекрасным рабочим местом. Но упорство может привести к очень тонкой грани реального дыхания под водой, стоит лишь трудиться над решением этой задачи. А каков будет ответ на вопрос, менять ли наземную цивилизацию на подводную, зависит только лишь от самого человека.

Задержка дыхания в воде для человека не простой вопрос. Человеческие существа не могут дышать под водой как рыба, но могут на непродолжительное время задержать дыхание. Когда дети играют в бассейне, на озере или даже в ванне то в виде конкурса задерживают дыхание кто дольше всех не будет дышать под водой.

Задержка дыхания под водой это не просто детская игра. Экстремальные спортсмены, известные как фридайверы регулярно проводят соревнование целью установления новых рекордов. Эта практика известна как статическое апноэ. Апноэ — временное прекращение дыхания и фридайверы практикуют, чтобы увеличить количество времени которое могут оставаться под водой не вынырнув.

В настоящее время француз Стефан Мифсуд по статическому апноэ имеет рекорд по задержке дыхания 11 минут 35 секунд .

На самом деле были люди, которые задерживали дыхание еще дольше, чем 11 минут. В Книге рекордов Гиннеса есть специальная категория кто мог задерживать дыхание под водой. В отличие от фридайверов, кто практикует статическое апноэ, кто регистрирует рекорды книги Гиннеса, то они позволяют конкурсантам дышать чистым кислородом в течение 30 минут до своей попытки.

С предварительным дыханием чистым кислородом нынешний мировой Гиннеса рекорд по задержке дыхания под водой принадлежит Рикардо Баия из Бразилии на целых 20 минут 21 секунду!

Дыхание под водой

Большинство людей в добром здравии могут задерживать дыхание в течение приблизительно двух минут. Эксперты считают, что еще чуть-чуть практики может увеличить этот промежуток времени совсем немного. Однако они также предупреждают, что лишая свой организм кислорода можно поиметь много негативных последствий, поэтому не делайте привычку задерживать дыхание на очень долго! Когда человек задерживает дыхание, двуокись углерода (газ, который обычно выдыхается) накапливается внутри организма. В конце концов, этот газ должен быть освобожден и рефлекс вызывает дыхательные мышцы к спазмам. Эти спазмы обычно заставляют человека задыхаться буквально через пару минут. Если без тренировки еще дольше продержаться без воздуха может измениться без кислорода и он может погибнуть. Когда кандидаты на рекорд Гиннеса дышат чистым кислородом они делают это, чтобы заставить максимально удалить углекислый газ из своего тела. Дополнительный кислород помогает им дольше быть без этого физиологического процесса.

Находясь под водой организм проявляет естественную реакцию на задержку дыхания. Как дельфины и киты, наши тела инстинктивно экономят кислород, когда человек находится не на воздухе. Эта реакция называемые дайвинг-рефлекс - помогает сохранить кислород в организме и позволяет удержаться без этого физиологического процесса дольше.

Акваланг для физиологического процесса под водой

Дайверы, которые хотят провести большое количество времени под водой обычно используют акваланг. Акваланг первоначально был аббревиатурой от «автономный подводный дыхательный аппарат». Сегодня, акваланг используется как обычное слово для обозначения практики использования специального снаряжения для естественного процесса под водой без необходимости задержки дыхания во время погружения.

Первый акваланг был разработан во время Второй Мировой войны для американских боевых водолазов. Боевые пловцы используют устройства, называемые ребризеры, чтобы оставаться под водой в течение длительных периодов времени для подводных военных миссий. Сегодня, аквалангисты пользуются баллонами со сжатым воздухом, которые крепятся к спине. Аквалангисты получают воздух через мундштук соединенный с баллонами через регулятор. Необходимо некоторое время, чтобы приспособиться к дыханию под водой таким образом.

Вот почему люди, которые хотят стать аквалангистами должны иметь специальную подготовку, прежде чем будут сертифицированы для дайвинга.

Жизнь на нашей планете зародилась, по-видимому, в воде - в среде, где запасы кислорода весьма скудны. При атмосферном давлении содержание кислорода в воздухе на уровне моря составляет 200 миллилитров на литр, а в литре поверхностного слоя воды растворено меньше семи миллилитров кислорода.

Первые обитатели нашей планеты, приспособившись к водной среде, дышали жабрами, назначение которых — экстрагировать максимальное количество кислорода из воды.

В ходе эволюции животные освоили богатую кислородом атмосферу суши и начали дышать легкими. Функции дыхательных органов остались прежними.

Как в легких, так и в жабрах кислород через тонкие мембраны проникает из окружающей среды в кровеносные сосуды, а углекислый газ выбрасывается из крови в окружающую среду. Итак, и в жабрах и в легких протекают одни и те же процессы. Отсюда возникает вопрос: смогло бы животное с легкими дышать в водной среде, если бы в ней содержалось достаточное количество кислорода?

Ответ на этот вопрос заслуживает внимания по нескольким причинам. Во-первых, мы смогли бы узнать, почему дыхательные органы сухопутных животных так отличаются по строению от соответствующих органов водных животных.

Кроме того, ответ на этот вопрос имеет и чисто практический интерес. Если бы специально подготовленный человек смог дышать в водной среде, то это облегчило бы и освоение глубин океана и путешествия к далеким планетам. Все это и послужило основанием к постановке ряда экспериментов по изучению возможности дыхания сухопутных млекопитающих водой.

Проблемы при дыхании водой

Эксперименты проводились в лабораториях Нидерландов и США. Дыхание водой связано с двумя основными проблемами. Об одной уже говорилось: при обычном атмосферном давлении в воде растворено слишком мало кислорода.

Вторая проблема заключается в том, что вода и кровь — жидкости с очень различными физиологическими свойствами. При «вдохе» вода может повредить ткани легких и вызвать фатальные изменения объема и состава находящихся в организме жидкостей.

Предположим, мы приготовили специальный изотонический раствор, где состав солей такой же, как и в плазме крови. Под большим давлением раствор насыщают кислородом (его концентрация примерно такая же, как в воздухе). Сможет ли животное дышать таким раствором?

Первые подобные эксперименты были проведены в Лейденском университете. Через шлюз, подобный спасательному шлюпу подводной лодки, мышей вводили в камеру, заполненную специально подготовленным раствором, и который под давлением был введен кислород. Через прозрачные стенки камеры можно было наблюдать за поведением мышей.

В первые несколько мгновений животные пытались выбраться на поверхность, но им мешала проволочная сетка. После первых волнений мыши успокаивались и, казалось, не очень страдали в подобной ситуации. Они совершали медленные, ритмичные дыхательные движения, по-видимому, вдыхая и выдыхая жидкость. Некоторые из них прожили в таких условиях в течение многих часов.

Главная трудность дыхания водой

После ряда опытов стало ясно, что решающим фактором, определяющим продолжительность жизни мышей, является не недостаток кислорода (который мог быть введен в раствор в любом нужном количестве простым повышением его парциального давления), а трудность выделения из организма углекислого газа в необходимой степени.

Мышь, прожившая самое длительное время - 18 часов,- находилась в растворе, в который было добавлено небольшое количество органического буфера, трис(оксиметил)аминометана. Последний сводит к минимуму неблагоприятный эффект накопления углекислого газа в организме животных. Снижение температуры раствора до 20 С (примерно половина нормальной температуры тела мыши) также способствовало продлению жизни.

В данном случае это обусловливалось общим замедлением процессов обмена веществ.

Обычно в литре выдыхаемого животным воздуха содержится 50 миллилитров углекислого газа. При прочих равных условиях (температура, парциальное давление углекислого газа) в одном литре солевого раствора, идентичного по своему солевому составу крови, растворяется только 30 миллилитров этого газа.

Значит, чтобы выделить необходимое количество углекислого газа, животное должно вдыхать воды вдвое больше, чем воздуха. (А ведь для прокачивания жидкости через бронхиальные сосуды требуется в 36 раз больше энергии, так как вязкость воды в 36 раз превышает вязкость воздуха.)

Отсюда очевидно, что даже при отсутствии турбулентного движения жидкости в легких для дыхания водой необходимо в 60 раз больше энергии, чем для дыхания воздухом.

Поэтому нет ничего удивительного в том, что подопытные животные постепенно ослабевали, а потом - вследствие истощения и накопления в организме углекислого газа — дыхание прекращалось.

Результаты эксперимента

На основании проведенных опытов нельзя было судить о том, какое количество кислорода поступает в легкие, насколько насыщена им артериальная кровь и какова степень накопления в крови животных углекислого газа. Постепенно мы подошли к серии более совершенных экспериментов.

Они проводились на собаках в большой камере, снабженной дополнительным оборудованием. Камера наполнялась воздухом под давлением в 5 атмосфер. Здесь же находилась ванна с солевым раствором, насыщенным кислородом. В нее погружали подопытное животное. Перед экспериментом, чтобы снизить общую потребность организма в кислороде, собак анестезировали и охлаждали до 32°С.

Во время погружения собака совершала бурные дыхательные движения. Струйки воды, поднимающиеся с поверхности, ясно показывали, что она прокачивала раствор через легкие. По окончании эксперимента собаку вытаскивали из ванны, удаляли из легких воду и вновь наполняли их воздухом. Из шести животных, подвергшихся испытанию, одно выжило. Собака дышала в воде 24 минуты.

Результаты эксперимента можно сформулировать следующим образом: в определенных условиях животные, которые дышат воздухом, в течение ограниченного промежутка времени могут дышать водой. Главный недостаток водного дыхания - накопление углекислого газа в организме.

Во время опыта давление крови выжившей собаки было несколько меньше нормального, но оставалось постоянным; пульс и дыхание были медленными, но равномерными, артериальная кровь насыщена кислородом. Содержание углекислого газа в крови постепенно увеличивалось.

Это означало, что бурная дыхательная деятельность собаки была недостаточной для удаления необходимых количеств углекислого газа из организма.

Новая серия опытов дыхания водой

В Нью-Йоркском государственном университете я продолжил работу совместно с Германом Рааном, Эдвардом X. Ланфиром и Чарльзом В. Паганелли. В новой серии опытов были применены приборы, позволившие получить конкретные данные по газообмену, происходящему в легких собаки при дыхании жидкостью. Как и прежде, животные дышали солевым раствором, насыщенным кислородом под давлением в 5 атмосфер.

Газовый состав вдыхаемой и выдыхаемой жидкости определяли на входе и выходе раствора из легких собак. Насыщенная кислородом жидкость попадала в организм находящейся под наркозом собаки через резиновую трубку, вставленную в трахею. Поток регулировался клапанным насосом.

При каждом вдохе раствор под действием силы тяжести стекал в легкие, а при выдохе жидкость по такому же принципу поступала в специальный приемник. Количество кислорода, поглощенного в легких, и количество выделенного углекислого газа определяли как разность соответствующих величин в равных объемах вдыхаемой и выдыхаемой жидкости.

Животных не охлаждали. Оказалось, что в этих условиях собака экстрагирует примерно такое же количество кислорода из воды, как обычно из воздуха. Как и следовало ожидать, животные не выдыхали достаточного количества углекислого газа, поэтому содержание его в крови постепенно увеличивалось.

По окончании эксперимента, продолжительность которого доходила до сорока пяти минут, воду из легких собаки удаляли через специальное отверстие в трахее. Легкие продували несколькими порциями воздуха. Дополнительных процедур по «оживлению» не проводили. Шесть из шестнадцати собак перенесли эксперимент без видимых последствий.

Взаимодействие трех элементов

Дыхание и рыб и млекопитающих основано на сложном взаимодействии трех элементов:

1) потребности организма в газообмене,

2) физических свойств окружающей среды и

3) строения органов дыхания.

Чтобы подняться выше чисто интуитивной оценки значения строения органов в процессе приспособления, необходимо точно понимать все эти взаимодействия. Следует, очевидно, поставить такие вопросы. Как молекула кислорода попадает из окружающей среды в кровь? Каков ее точный путь? Ответить на эти вопросы куда более сложно, чем можно предположить.

При расширении грудной клетки в легкие животного попадает воздух (или вода). Что же происходит с жидкостью, попавшей в пограничные воздушные мешочки легких? Рассмотрим это явление на простом примере.

Если в частично заполненный водой шприц медленно вводить через иглу небольшое количество чернил, то они сначала образуют тоненькую струйку в центре сосуда. После прекращения «вдоха» чернила постепенно распространяются по всему объему воды.

Если же чернила вводить быстро, так, чтобы поток был турбулентным, смешивание произойдет, конечно, гораздо быстрее. На основании полученных данных, а также учитывая размер бронхиальных трубок, можно заключить, что вдыхаемый поток воздуха или воды входит в воздушные мешочки медленно, без турбулентности.

Следовательно, можно предположить, что при вдохе свежего воздуха (или воды) молекулы кислорода сначала сосредоточатся в центре воздушных мешочков (альвеол). Теперь им предстоит преодолеть посредством диффузии значительные расстояния, прежде чем они достигнут стенок, через которые попадут в кровь.

Эти расстояния во много раз больше толщины мембран, отделяющих в легких воздух от крови. Если вдыхаемой средой является воздух, это не имеет большого значения: кислород распределяется равномерно по всей альвеоле за миллионные доли секунды.

Скорость распространения газов в воде в 6 тысяч раз меньше, чем в воздухе. Поэтому при дыхании водой возникает разность парциальных давлений кислорода в центральной и периферийной областях. Вследствие малой скорости диффузии газов давление кислорода в центре альвеолы с каждым циклом дыхания становится выше,чем у стенок. Концентрация же углекислого газа, уходящего из крови, больше у стенок альвеолы, чем в центре.

Газообмен в легких

Такие теоретические предпосылки возникли на основании изучения газового состава выдыхаемой жидкости во время экспериментов на собаках. Воду, вытекающую из легких собаки, собирали в длинную трубку.

При этом оказалось, что в первой порции воды, поступившей, по-видимому, из центральной части альвеол, кислорода больше, чем в последней, поступившей от стенок. При дыхании собак в воздушной среде ощутимой разницы в составах первой и последней порций выдыхаемого воздуха не наблюдалось.

Интересно отметить, что газообмен, происходящий в легких собаки при дыхании водой, очень напоминает процесс, протекающий в простой капле воды, когда на ее поверхности осуществляется обмен: кислород - углекислый газ. На основании такой аналогии была построена математическая модель легких, а в качестве функциональной единицы выбрана сфера с диаметром примерно в один миллиметр.

Расчет показал, что легкие составляют около полумиллиона таких сферических газообменных ячеек, передача газа в которых осуществляется только при помощи диффузии. Вычисленное количество и размер этих ячеек близко совпадают с количеством и размером определенных структур легких, называемых «первичными дольками» (лобулями).

По-видимому, эти дольки и являются главными функциональными единицами легких. Аналогично — с привлечением анатомических данных — можно построить математическую модель жабр рыб, первичные газообменные единицы которых будут иметь соответственно другую форму.

Построение математических моделей позволило провести четкую грань между органами дыхания млекопитающих и рыб. Оказывается, главное заключается в геометрической структуре дыхательных ячеек. Это становится особенно очевидным при исследовании зависимости, связывающей потребность рыбы в газообмене, а свойства окружающей среды с формой органов дыхания рыб.

В уравнение, выражающее данную зависимость, входят такие величины, как доступность кислорода, то есть его концентрация, скорость диффузии и растворимость в окружающей животное среде.

Объем вдыхаемого воздуха или воды, число и размер газообменных ячеек, количество кислорода, поглощаемого ими, и, наконец, давление кислорода в артериальной крови. Предположим, что рыбы имеют в качестве органов дыхания не жабры, а легкие.

Подставив в уравнение реальные данные газообмена, протекающего при дыхании рыбы, мы обнаружим, что рыба с легкими не сможет жить в воде, так как расчет показывает полное отсутствие кислорода в артериальной крови вашей модели рыбы.

Значит, в предположении была ошибка, а именно: выбранная форма газообменной ячейки оказалась неверной. Рыбы живут в воде благодаря жабрам, состоящим из плоских, тонких, плотно упакованных пластинок. В такой структуре - в отличие от сферических ячеек легких - не возникает проблемы диффузии газов.

Животное с органами дыхания, подобными легким, может выжить в воде только в том случае, если потребность его организма в кислороде крайне мала. В качестве примера назовем голотурию (морской огурец).

Жабры дают рыбам возможность жить в воде, и эти же жабры не позволяют им существовать вне воды. На воздухе они разрушаются под действием силы тяжести. Поверхностное натяжение на границе воздух - вода вызывает слипание плотно упакованных жаберных пластинок.

Общая площадь жабр, доступная для газообмена, уменьшается настолько, что рыба не может дышать, несмотря на обилие кислорода в воздухе. Альвеолы легких предохраняются от разрушения, во-первых, грудной клеткой, во-вторых, выделяющимся в легких смачивающим агентом, который значительно уменьшает поверхностное натяжение.

Дыхание млекопитающих в воде

Изучение процессов дыхания млекопитающих в воде дало, таким образом, новые сведения об основных принципах дыхания вообще. С другой стороны, возникло реальное предположение, что человек сможет без вредных последствий ограниченное время дышать жидкостью. Это позволит водолазам спускаться на значительно большие глубины океана, чем сейчас.

Главная опасность глубоководного погружения связана с давлением воды на грудную клетку и легкие. В результате в легких повышается давление газов, и часть газов попадает в кровь, что приводит к серьезным последствиям. При высоких давлениях большинство газов токсично для организма.

Так, азот, попадающий в кровь водолаза, вызывает интоксикацию уже на глубине 30 метров и практически выводит его из строя на глубине 90 метров благодаря возникающему азотному наркозу. (Эта проблема может быть решена использованием редких газов, таких, как гелий, которые не токсичны даже при очень высоких концентрациях.)

Кроме того, если водолаз возвращается слишком быстро с глубины на поверхность, газы, растворенные в крови и тканях, выделяются в виде пузырьков, вызывая кессонную болезнь.

Этой опасности можно избежать, если водолаз будет дышать не воздухом, а жидкостью, обогащенной кислородом. Жидкость в легких выдержит значительные внешние давления, а объем ее при этом практически не изменится. В таких условиях водолаз, опускаясь на глубину в несколько сот метров, сможет быстро, без всяких последствий вернуться на поверхность.

В доказательство того, что кессонная болезнь не возникает при дыхании водой, в моей лаборатории были проведены следующие опыты. В экспериментах с мышью, которая дышала жидкостью, давление в 30 атмосфер в течение трех секунд доводили до одной атмосферы. Признаков заболевания не наблюдалось. Такая степень изменения давления эквивалентна эффекту подъема с глубины 910 метров со скоростью 1 100 километров в час.

Человек может дышать водой

Дыхание жидкостью может пригодиться человеку во время будущих путешествий в космос. При возвращении с далеких планет, например, с Юпитера, возникнет потребность в огромных ускорениях, позволяющих выйти из зоны притяжения планеты. Эти ускорения значительно больше того, что может вынести организм человека, особенно легко уязвимые легкие.

Но те же нагрузки станут вполне допустимыми, если легкие будут заполнены жидкостью, а тело космонавта погружено в жидкость с плотностью, равной плотности крови, подобно тому, как плод погружен в амниотическую жидкость материнской утробы.

Итальянские физиологи Рудольф Маргариа, Т. Гволтеротти и Д. Спинелли в 1958 году ставили такой опыт. Стальной цилиндр, в котором находились беременные крысы, бросали с разных высот на свинцовую опору. Целью эксперимента было проверить, выживет ли плод в условиях резкого торможения и толчка при приземлении. Скорость торможения вычисляли по глубине вдавливания цилиндра в свинцовую основу.

Сами животные в ходе опыта немедленно погибали. Вскрытия показывали значительное повреждение легких. Однако освобожденные хирургическим путем эмбрионы были живыми и развивались нормально. Плод, защищенный утробной жидкостью, способен перенести отрицательные ускорения до 10 тысяч g.

После экспериментов, показавших, что сухопутные животные могут дышать жидкостью, резонно предположить такую возможность и для человека. В настоящее время мы располагаем некоторыми прямыми доказательствами в пользу этого предположения. Так, например, нами используется сейчас новый метод лечения некоторых заболеваний легких.

Метод состоит в промывании одного легкого солевым раствором, удаляющим патологические выделения из альвеол и бронхов. Второе легкое дышит при этом газообразным кислородом.

Успешное осуществление этой операции вдохновило нас поставить эксперимент, на который добровольно вызвался мужественный водолаз — глубинник Фрэнсис Д. Фалейчик.

Под наркозом в его трахею был введен двойной катетер, каждая трубка которого доходила до легких. При нормальной температуре тела воздух в одном легком заменили 0,9-процентным раствором поваренной соли. «Дыхательный цикл» заключался в ведении солевого раствора в легкое и последующем удалении его.

Цикл был повторен семь раз, причем для каждого «вдоха» брали 500 миллилитров раствора. Фалейчик, находившийся в течение всей процедуры в полном сознании, рассказал, что он не заметил значительной разницы между легким, дышащим воздухом, и легким, дышащим водой. Он не испытывал также неприятных ощущений при входе и выходе потока жидкости из легкого.

Конечно, этот опыт еще очень далек от попытки осуществить процесс дыхания обоими легкими в воде, но он показал, что заполнение легких человека солевым раствором, если процедура выполнена правильно, не вызывает серьезных разрушений тканей и не производит неприятных ощущений.

Самая трудная проблема дыхания водой

Вероятно, самая трудная проблема, которую предстоит разрешить, связана с выделением из легких углекислого газа при дыхании водой. Как мы уже говорили, вязкость воды примерно в 36-40 раз больше вязкости воздуха. Это значит, что легкие будут прокачивать воду, по крайней мере, в сорок раз медленнее, чем воздух.

Другими словами, здоровый молодой водолаз, способный вдыхать 200 литров воздуха в минуту, сможет вдохнуть в минуту всего 5 литров воды. Вполне очевидно, что при таком дыхании углекислый газ не будет выделяться в достаточном количестве, даже если человек целиком погружен в воду.

Можно ли разрешить эту проблему использованием среды, в которой углекислый газ растворяется лучше, чем в воде? В некоторых сжиженных синтетических фтороуглеродах углекислого газа растворяется, например, в три раза больше, чем в воде, а кислорода - в тридцать раз. Леланд С. Кларк и Франк Голлан показали, что мышь может жить в содержащем кислород жидком фтористом углероде при атмосферном давлении.

Во фтористом углероде не только содержится больше кислорода, чем в воде, но в этой среде в четыре раза выше и скорость диффузии газа. Однако и здесь по-прежнему остается камнем преткновения малая пропускная способность жидкости через легкие: фтороуглероды обладают еще большей вязкостью, чем солевой раствор.

Перевод с английского Н. Познанской.