Сходство различие реакций полимеризации и поликонденсации. Разница между полимеризацией и поликонденсацией. Применение. Биологическое действие, опасность

При реакции полимеризации на выходе получают только полимеры. В ходе поликонденсации продуктом реакций становится полимеры и низкомолекулярные вещества.

Определение

В процессе полимеризации последовательно соединяются как одинаковые, так и различные молекулы мономеров, выстраивая одну сложную молекулу полимера (высокомолекулярного вещества) без выделения и образования побочных продуктов – низкомолекулярных соединений. Поэтому на выходе получают полимер с точно таким же элементарным составом, что и мономер.

В процессе поликонденсации молекулы одного либо нескольких мономеров, соединяясь между собой, образуют макромолекулу полимера и побочно выделяют тот или иной низкомолекулярный продукт (воду, спирт, хлороводород или аммиак). Поликонденсация лежит в основе биосинтеза целлюлозы, нуклеиновых кислот и, конечно, белков.

Сравнение

Эти два процесса схожи тем, что в его начале в реакцию вступает исходный мономер. А дальше при полимеризации в реакционной системе на всех стадиях текущего процесса присутствуют увеличивающиеся активные цепи, исходный мономер и закончившие рост макромолекулы. А в процессе поликонденсации мономер, как правило, исчерпывается на начальных стадиях происходящей реакции, и в дальнейшем в системе остаются лишь полимеры (олигомеры), взаимодействующие один с другим.

Для полимеризации и поликонденсации одинаково важна реакционная способность нужных мономеров и, конечно, их строение. В ходе полимеризации реакции, возникающие между увеличивающимися молекулами, как правило заканчиваются обрывом цепей.

А при поликонденсации реакции, протекающие между увеличивающимися молекулами, – это основные реакции роста полимерных цепей. Длинные цепи формируются за счет взаимодействия олигомеров. Полимеризация протекает по трем стадиям: инициированию, росту цепи и обрыву цепи. При этом центрами роста полимерной цепи являются катионы, свободные радикалы или анионы. Функциональность (количество реакционных центров в молекуле) влияет на образование трехмерных, разветвленных или линейных макромолекул.

Выводы сайт

  1. Для поликонденсации характерно выделением побочных продуктов – низкомолекулярных веществ, таких как вода или спирт.
  2. При полимеризации продуктами реакции становятся только полимеры.
  3. Биосинтез целлюлозы, белков и нуклеиновых кислот возможен благодаря реакции поликонденсации.

Процессы полимеризации и поликонденсации имеют важное значение в промышленности органического синтеза. При их проведении получают высокомолекулярные вещества ─ полимеры ─ которые впоследствии используются для получения пластмасс, химических волокон, синтетических каучуков, лакокрасочной продукции, различных клеев и других синтетических материалов.

Полимеризацией называется реакция получения макромолекул, протекающая за счет разрыва кратных связей мономера, без выделения побочных продуктов.

nCH 2 = CH 2 → (──CH 2 ─CH 2 ──) n + Q

этилен полиэтилен

Исходными веществами для реакций полимеризации являются ненасыщенные соединения, имеющие двойные или тройные связи (этилен, ацетилен, стирол, винилхлорид, бутадиен и их производные) а также вещества, имеющие подвижные атомы, которые легко замешаются атомами других веществ. Возможность получения полимера обусловливается разрывом двойной связи, в результате чего молекула мономера реагирует с другими молекулами.

Процесс полимеризации проводят с использованием инициаторов или катализаторов. В присутствии инициаторов процесс протекает по радикальному механизму (через образование свободных радикалов), при использовании катализаторов ─ по ионному механизму (через образование ионов).

Поликонденсацией называется процесс образования полимеров, при котором взаимодействие молекул мономеров сопровождается выделением побочных низкомолекулярных соединений (воды, спирта, хлористого водорода). Например, лавсан получают при поликонденсации терефталевой кислоты и этиленгликоля:

nHOOC-C 6 H 4 -COOH + n HO-CH 2 -CH 2 -OH → (─OC-C 6 H 4 -CO-O-CH 2 -CH 2 -O─) n + 2n H 2 O + Q

Исходными веществами для реакций поликонденсации являются вещества, содержащие реакционноспособные (функциональные) группы (гидроксильные, карбоксильные аминогруппы и др.). Эти реакции, как правило, проводятся в присутствии инициаторов или катализаторов.

По химической сущности процессы полимеризации и поликонденсации отличаются друг от друга, однако условия их проведения одинаковы. Существуют три основных способа проведения процессов полимеризации (поликонденсации): блочный, эмульсионный и в растворе.

Блочная полимеризация перетекает в массе чистого мономера. Для проведения процесса требуются сравнительно невысокие температуры (от 200 до 370 0 С). С целью зарождения цепи процесс, как правило, проводят в присутствии инициатора.

Эмульсионной полимеризацией получают поливинилхлорид (латексная полимеризация), полиэтилен

низкого давления (суспензионная полимеризация), полистирол (латексный и суспензионный) и др. Реакторы-полимеризаторы для промышленного проведения латексной и суспензионной полимеризации чаще применяются емкостного типа, но могут быть и колонного типа.


Недостатки эмульсионной полимеризации ─ загрязнение полимера эмульгаторами, которые ухудшают свойства получаемого продукта.

Полимеризация в растворе проводится в среде растворителя, растворяющего мономер и полимер или только мономер. В первом случае продукт полимеризации представляет собой раствор полимера в виде лака, поэтому этот способ часто используют в лакокрасочной промышленности. Если полимер не растворяется, то по мере образования он вБлочный способ полимеризации используется в тех случаях, когда нужно получить полимер, не загрязненный примесями. В частности, таким способом получают полистирол, полиэтилен высокого давления, поликапролактам и др. Для осуществления блочной полимеризации при использовании непрерывных процессов применяют реакторы колонного типа и змеевиковые с обеспечением позонного температурного режима.

Эмульсионная полимеризация осуществляется в водной среде или в среде углеводородного растворителя, не способного растворять полимеризуемый мономер. Жидкий мономер распределяется в воде в виде мельчайших капелек, образуя эмульсию. Чтобы капельки мономера не сливались одна с другой, в воду добавляют различные эмульгаторы и эмульсию энергично перемешивают. В качестве эмульгаторов используют различные мыла, желатины, высшие спирты. Добавляемый эмульгатор обеспечивает лучшее диспергирование мономера, что обусловливает высокую скорость процесса. Кроме этого, эмульгатор снижает поверхностное натяжение на границе мономер─вода. Эмульсииыделяется из раствора в твердом виде (получается суспензия). Осадок полимера отделяют от растворителя фильтрацией, промывкой и сушкой.

При полимеризации в растворах получают более однородные полимеры (по сравнению с другими способами), но с меньшим молекулярным весом, так как цепи под действием молекул растворителя быстро обрываются.

Общая характеристика пожарной опасности процессов полимеризации и поликонденсации:

1. Пожарная опасность процессов полимеризации и поликонденсации связана, прежде всего, с тем, что в качестве мономеров используются легковоспламеняющиеся и горючие жидкости (стирол, хлоропрен, изопрен, изопентан), горючие газы (этилен, пропилен), в том числе и сжиженные (бутадиен, хлористый винил), горючие твердые вещества (капролактам, фенол, диметилтерефталат) и др.

Инициаторами процессов полимеризации являются органические перекиси и гидроперекиси (перекись бензоила, перекись водорода, гидроперекись изопропилбензола, персульфаты). В качестве катализаторов используют металлоорганические соединения (три- и диэтилалюминийхлорид, триизобутилалюминий) ─ вещества, обладающие большой химической активностью, самовоспламеняющиеся на воздухе, при контакте с водой и веществами, содержащими группу ОН. Катализаторами бывают и щелочные металлы (Nа, Li), самовоспламеняющиеся при контакте с водой.

Для нагрева в некоторых случаях используют органические теплоносители.

2. Процессы полимеризации очень чувствительны к повышенным температурам. Повышение температурного режима в результате увеличения скорости химической реакции полимеризации приводит к росту давления и авариям. Следовательно, при работе реакторов необходимо поддержание постоянного температурного режима.

3. При проведении процессов полимеризации и поликонденсации технологические коммуникации могут засоряться полимерными отложениями, что зачастую приводит к значительному повышению давления в полимеризаторе.

Коммуникации, продолжительное время соприкасающиеся с мономером, а также поверхность предохранительных клапанов и вентилей ручного стравливания с целью защиты от отложений полимеров необходимо смазывать ингибитором процесса полимеризации.

4. Повышенное давление в реакторах может наблюдаться при нарушении нормального отвода побочного продукта, образующегося в процессе поликонденсации.

5. При полимеризации в присутствии металлоорганических катализаторов нарушение температурного режима и давления может наблюдаться в случае попадания в реактор влаги или кислорода. Поэтому исходные вещества и азот предварительно осушаются. Кроме того, осуществляют контроль за содержанием свободного кислорода в сырье и азоте, которое не должно превышать норму, установленную технологическим регламентом.

6. Внутренняя поверхность реакторов и соединенных с ними трубопроводов может подвергаться химической коррозии.

7. Использование мешалок связано с возможность выхода горючих веществ наружу через неплотности. Поэтому возникает необходимость обеспечения надежной герметичности мест выхода из аппаратов валов мешалок и устройства местных отсосов.

8. В периоды вывода установок из эксплуатации возможно самовозгорание отложений термополимеров.

9. Применяемые в процессах полимеризации углеводородные растворители и многие мономеры являются хорошими диэлектриками, при движении которых образуется статическое электричество. Это вызывает необходимость тщательного заземления аппаратов и трубопроводов.

10. Источники зажигания могут возникнуть при неисправности и несоответствии электроприводов к мешалкам, а также электроподогревателей реакционной среды.

Существуют различные варианты формирования цепи макро­мо­лекул из низ­комолекулярных реагентов. Число таких вариантовмож­но определить, пользу­ясь принципами комбинаторики. Так, к молекуле мономера можно присоединить еще одну молеку­лу мономера,затем к образовавшемуся димеру вновь присоединить одну молекулу мономера и т. д. Такой вариант составления макромолекулы измономеров показан на рис. 3 ломаной линией 1. Возможны и другие вари­анты получения макромолекулы, на­пример, образовавшиеся димеры и другиеn-меры могут взаимодей­ствовать друг с другом и с мономе­ром (линии 3 и 4). Предельно­му случаю этого пути процесса соответствует линия 2, отвечающая такой ситуации, при которой димеры взаимодействуют с димерами, тетрамеры с тетрамерами, получивши­еся далее октамеры взаимо­действуют с октамерами и т. д.,т. е. при каждом взаимодействии происходит удвоение длины молекулы реак­ционноспособногоn-мера (дублика­ция). Из множества вариантов образования макромолекулы из мономеров мож­но выделить две i основ­ные разновидности: полимеризацию и поликонденсацию.

Полимеризацией называется процесс образования макромолекул путем последовательного присоединения молекул мономера к реакционным реагентов системы. Общую схему полимеризации можнозаписать в виде:

[–M–] n + M[–M–] n+1

Этой схеме отвечает ломаная линия 1 на рис. 3. Можно ска­зать, что цепь макромолекулы при полимеризации образуется позвенно, пос­тепенно, как бы наращиванием, поэтому реакцию обра­зования макромолекул при полимеризации называютреакцией роста.

Рис. 3 а) Зависимость степени полимеризация или поликонденсации от числа единичных последовательных реакций образования макромолекулы наначальной стадии процесса; б) Зависимость степени полимеризацияилиполиконденсации отчисла последователь­ных реакций стадии образованнамакромолекулы: 1 – полимеризация; 2 –поликонденсация удвоением(дубликацией);3 –другие случаи поликонденсации;4 – поликонденсация, близкая к полимеризации.

Поликонденсацией называется процесс образования макромолекул путем взаимодействия друг с другом реакционных центроввсех реагентов системы. Схему поликонденсационной сборки макромолекул можно записать ввиде:

[–M–]n 1 + [–M–]n 2
[–M–]n 1 +n 2

Эта схема учитывает также и начало процесса с участием мономеров:

М + М
М 2 М 2 + М
М 3

Однако, как будет показано ниже, при получении высокомоле­ку­лярных продуктов поликонденсацией основную долю взаимодействий составляют реакции олигомеров (n> 1) между собой. Поликонденсации отвечают ломаные кривые 2, 3, 4 на рис. 3. Мож­но сказать, что цепь макромолекулы в этом случае собирается блоками. Для та­кого процесса не подходит термин «рост»; для него можно предложитьтермин «сборка» цепей. Приведенные выше оп­ределения достаточно общи, они могут быть отнесены ко всем про­­цессам синтеза полиме­ров. При этом не требуется введения каких - либо дополнительных терминов (по­липрисоединение, миграционная полимеризация ит. д.). Данные определения процессов синтеза полимеров не связаны с химиче­ским строением мономеров и реакционных центров, так каксин­­тез полимеров (поликонденсацией или полимеризацией) можноосуществить различ­ными химическими путями. Кроме того, в определениях ничего не сказано о выделении низкомолекулярных побочныхпродуктов, поскольку как полимеризация, так и поликон­денсациямогут протекать с выделением и без выделения низко­молекулярного продукта.

При образовании высокомолекулярных соединений (n–вели­ко)ломаные линии на рис. 3а переходят в плавные и процессы образования макромолекул методами полимеризации и поликон­денсацииизображаются иначе (рис. 3б). Это следует учитывать при построениисхем стадийности процессов синтеза полимеров (рис. 1). Так, дляполимеризации, не осложненной побочными процессами линия АВ будет прямой, а для поликонденсации - кривой, аналогичной кривой 2 на рис. 3а. Кроме различий, проявляю­щихся при образовании единичной мак­ромолекулы, процессы полимеризации и поликонденсации раз­ли­чаются и по характеру изменений, происходящих во всей реак­ци­онной системе. Изменения в реакционной системе в ходе процесса синтеза полимера (особенно наран­них стадиях) удобно изобразить тройной диаграммой (треуго­ль­ником Гиббса, рис. 4). Эти диаграммы широко используются при физико-химическом анализе состояния тройных систем (плавкости, растворимости).

Такие диаграммы состава тройной системы (системы из трехком­понентов) можно применять к закрытым системам, т. е. систе­мам спостоянным числом частиц. Их можно также применить и к взаимнопревращающимся химическим системам, в которых со­блюдается материальный баланс между реагентами. В процессе синтеза полимеров участвует реакци­онные центры мономераМ и концевые реакци­онные цен­тры олиго­меров и n-меров К (рис. 4). При их взаимодействии образуется полимер­ная межзвенная связь Р . Каждая точка внутри тре­угольника обо­значает состав системы в опре­деленный момент времени; соединив этиточки, можно получить кривую, характеризующую изменение соотношения между компонентами системы (М, К, Р ) в ходе про­цесса синтеза полимеров. На рис. 4 представлены такие зависимости дляразличных процессов синтеза полимеров.

Прямая NL характеризует процесс образования полимера (уве­личение количества образовавшихся связей Р ) за счет уменьшениясодержания мономера в системе при постоянном содержании кон­цевых групп(т. е. при постоянном содержании растущих полимерныхцепей). Следовательно, прямые, параллельные основанию тре­уголь­ника МР , соответствуют процессу полимеризации. Сама линия МР от­вечает предельному случаю полимеризации – полимеризации с участием очень малого числа концевых групп, например рост од­ной макромолекулы в системе. Путь N " QL отражает процесс поликонденсации, причем на диа­грамме ясно видны две его стадии: образованиедимеров из мономеров (прямая N " Q ) и увеличение числа связей за счет уменьше­ния количества концевых групп олигомеров (отрезок QL ). Этот путь отвечает идеализированному процессу. В реальныхслучаях поликонденсации мономер не исчерпывается полностью после об­разования димеров, поэтомуточка Q в реальных процессах пере­мещается в точку Q " и, следовательно, реальный процесс поликонденсации описываетсяNQ"L.


Рис. 4 а) Тройная диаграмма, изображающая протекание процессов синтеза полимеров:MQP поликонденсация; МР– полимеризация (идеальные процессы); МQ"L – поликонденсация; NL полимеризация (реальные процес­сы).; б) Тройная диаграмма, изображающая последовательное протека­ние процессовполимеризации и поликонденсации в системе: МА– об­разова­ниереакционных центров; АВ–полимеризация; ВС–поликонденсация,

Тройные диаграммы более сложных процессов приведены нарис. 4б. Из рисунка видно, что в начале процесса (отрезокМА) образуются низкомолекулярные продукты с концевыми группами (этосоответствует, например, инициированию полимеризации). Далеепро­текает полимеризация мономера с участием этих концевых центров(отрезок АВ) и наконец процесс заканчивается поликонденсацией(отрезкиВС иСР).

Таким образом, можно сформулировать основные особенностипроцессов полимеризации и поликонденсации (таблица 1). Следует обратить особое внимание на характер участия моле­кул мономера вобразовании макромолекул полимера. Молекулы мономера участвуютв реакциях образования макромолекул в обо­их процессах, но имеются существенные различия в их протекании, обусловлен­ные особенностями последних. При полимеризации мономер является основнымре­агентом процесса на всем его протяжении; при этом молекулы мономера реагируют с концом растущей цепи в строгой последователь­ности–одна за одной. По сравнению с этими реакциями вероят­ность образования макромолекулы за счет взаимодействия олиго­меров иn-меров считается близкой к нулю.

При поликонденсации молекулы мономера участвуют в реак­циях составления цепи макромолекулы с той же вероятностью, что и моле­кулы других реагентов (олигомеров, n-меров). Поэтомуприполиконденсации после присоединения молекулы мономера, напри­мер, к тримеру могут последовать реакции взаимодействия обра­зовавшегосятетрамера сn 1 ,n 2 ,n 3 -мерами, итолькопослеэтого может вновь произойти взаимодействие образовавшегося олигомера с мономером.При поликонденсации мономер исчезает из реакционной систе­мы практи­чески на ранних стадиях (настадиях образования олигомеров), и по­этому основными реагентами в этих процессах (особенно на глубоких стадиях) становятся реакционноспособные олигомеры, взаимодей­с­твующие за счет концевых реакционных центров.

Таблица 1

Основные особенности простейших процессов полимеризации и поликонденсации

Особенность процесса

Полимеризация

Полико нденсация

Характер образования цепи макромолекулы

Зависимость степени полиме­ри­зации (поликонденсации) от чис­ла реакций, составля­ющих стадию образования макромолекулы

Число реакционноспособных макромолекул в ходе процесса

Концевые реакционные цент­ры на стадии образования макромолекулы

Исчезновение молекул моно­мера

Строение концевых реакцион­ных центров реакционноспо­собных макромолекул

Наличие катализатора, ини­циа­тора

Позвенный

Арифметическая прогрес­сия

Постоянно

Регенерируются

В конце процесса

Отличается от строения функцио­нальных групп мономера

Обязательно

Поблочный

Геометрическая прогрес­сия

Уменьшается

На более ранних стадиях процесса

Аналогично строению реакционных центров мо­номера

Не обязательно

Не следует забывать, что приведенные в таблице 1 и отмечен­ные нарис.3 особенности процессов поликонденсации и полиме­ри­зации относятся к простейшим (не осложненным процес­сам). Присинтезе полимеров в реальных условиях могут наблю­даться отклоненияот этихидеализированныхсхем. Так,кривая4 рис. 3б соответствует процессу поликонденсации, очень похоже­му на полимеризацию. Возможно протекание и таких сложных процессов, при которых олигомеры образуются путем полимериза­ции, а далее они взаимодействуют между собой по поликонденса­ционному механизму (рис.4б). Примером такого процесса яв­ляется получение поли--капроамида, когда сам лактам полимеризуется по схеме:

а образующиеся концевые NH 2 - и СООН– группы подвергаются поликонденсации:

Выше отмечались особенности лишь стадии образования мак­ро­мо­лекулы при различных процессах синтеза полимеров. Однако этиособенности накладывают отпечаток и на некоторые другие стадии.В таблице 2 перечислены реакции, составляющие различные стадиипроцессов синтеза полимеров.

Таблица 2

Основные реакции процессов синтеза полимеров

Стадия процесса

Поликонденсация

Полимеризация

Создание реакционных центров

Образование макромоле­кулы

Прекращение образова­ния макромолекулы

Реакции предварительного синтеза функциональных групп мономера

Реакции образования реак­ционных центров олигомеров

Реакции составления (сборки) макромолекулы

Реакции дезактивации реак­ционных центров олигомеров Процессы прекращения обра­зования макромолекул

Реакции инициирования

Реакции зарождения активных центров

Реакции роста макромолекулы

Реакции обрыва

Реакции диспропорционирования

Реакции передачи кинетической цепи

Более глубоко стадии процессов поликонденсации рассматриваются в лекционном курсе. Далее будут рассмотрены вопросы реакционной спо­собности и синтеза мономеров для поликонденсации.

Полимеры – это высокомолекулярные соединения (вмс). Мономеры – это низкомолекулярные вещества, из которых получают полимеры. Степенью полимеризации (поликонденсации) называют среднее число структурных звеньев в молекуле полимера.

Полимеризация – реакция соединения молекул мономера т, не сопровождающаяся выделением побочных продуктов. Поэтому элементарный состав мономеров и получаемого полимера одинаков. Полимеризация может осуществляться путем раскрытия двойных и тройных связей ненасыщенных соединений, а также за счет размыкания различных гетероциклов. В зависимости от характера активных центров, инициирующих цепной процесс различают радикальную и ионную полимеризацию. Процесс идет по цепному механизму.

nCH2=CH2→(-СН-СН-)n, где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Классификация полимеров :

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

    Органические – это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер – белок, нуклеиновые кислоты и так далее.

    Элементорганические – такие, в состав которых входит какой-то посторонний неорганический и не биогенный элемент. Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: органическое стекло, стеклополимеры, композиционные материалы.

    Неорганические – в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

    Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.

    Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный каучук, резина.

    Синтетические – это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, ацетатное волокно и прочее.

Поликонденсация – реакция образования высокомолекулярных соединений, протекающая по механизму замещения и сопровождающаяся обычно, выделением низкомолекулярных продуктов, вследствие чего элементарный состав полимера отличается от элементарного состава исходных продуктов.

В реакцию поликонденсации могут вступать мономерсодержащие двух или более функциональные группы. При взаимодействии этих групп происходит разложение молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул.

Поликонденсация - ступенчатая реакция, рост цепи происходит в результате взаимодействия молекул мономера друг с другом, а также промежуточными продуктами: олигомерными или полимерными молекулами или при взаимодействии олигомерных и полимерных молекул между собой. В результате образуются соединения с функциональностью исходного вещества.

Поликонденсация - это процесс образования , протекающий по механизму замещения и обычно сопровождающийся выделением низкомолекулярных побочных продуктов. Поэтому элементный состав полимера отличается от элементного состава исходных веществ.

Поликонденсация является важнейшим методом синтеза полимеров, широко используемым в технологии пластических масс.

Общие закономерности реакции поликонденсации равновесная и неравновесная

В реакцию поликонденсации могут вступать исходные соединения (), содержащие две или более функциональные группы. При взаимодействии этих групп происходит отщепление молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул. Типичным примером такой реакции может служить поликонденсация , в результате которой образуются полиамиды :

Поликонденсация представляет собой ступенчатый процесс.
Рост цепи происходит в результате взаимодействия мономера друг с другом, а также с промежуточными продуктами: олигомерными или полимерными молекулами - или при взаимодействии олигомерных или полимерных молекул между собой. В поликонденсационной системе мономеры расходуются довольно быстро после начала реакции, однако увеличение полимера происходит в течение всего процесса. Этим поликонденсация резко отличается от цепной полимеризации. На рис. 1 дана качественная картина возрастания молекулярной массы и изменения молекулярно-массового распределения (ММР) в процессе поликонденсации.

Среднечисловая и среднемассовая масса возрастают с увеличением степени завершенности реакции р в соответствии с уравнениями:

Где m - молекулярная масса элементарного звена полимера, р -изменяется.

Поэтому для получения высокомолекулярных полимеров методами поликонденсации необходимо проводить реакцию до высоких значений степени завершенности (р ->1 ) .

Коэффициент полидисперсности определяется соотношением среднемассовой и среднечисловой молекулярных масс и в случае наиболее вероятного ММР равен:

При степени завершенности реакции поликонденсации, равной 1, коэффициент полидисперсности:

Реакция, в которой участвуют однородные молекулы называется гомополиконденсацией . Однако в большинстве случаев поликонденсация протекает с участием разнородных молекул:Такие реакции называют реакциями гетерополиконденсации . Различают равновесную и неравновесную поликонденсацию. Для равновесной поликонденсации константа равновесия Кр≤1000 , для неравновесной поликонденсации константы равновесия Кр>1000 .

Примером равновесной поликонденсации является образование полиэфиров или полиамидов при нагревании дикарбоновых кислот с гликолями или диаминами. Примером неравновесной поликонденсации может служить реакция образования полиамидов или полиэфиров при поликонденсации хлорангидридов дикарбоновых кислот с диаминами или бисфенолами.

В зависимости от функциональности исходных мономеров, т. е. от числа реакционноспособных групп в молекуле, а также от их природы, при поликонденсации образуются различные продукты.

При поликонденсации бифункциональных соединений образуются линейные полимеры. В общем виде реакция может быть описана уравнением:

Если одно или оба исходных соединения являются три- или более функциональными, то в результате реакции образуются полимеры разветвленного и сетчатого (трехмерного) строения:

Важным фактором, определяющим , образующегося при поликонденсации двух разнородных , является соотношение функциональных групп. Например, если в реакции участвуют (n+1) моль одного мономера и n молей другого, реакция поликонденсации может быть изображена следующей схемой:

Если число одного мономера превышает число молей другого или наоборот, то избыток одного из мономеров приводит к снижению молекулярной массы полимера. Степень полимеризации Р образующегося полимера определяется этим избытком и может быть рассчитана по уравнению Р = 100q , где q - избыток одного из мономеров, % (мол.).

Эта зависимость молекулярной массы от избытка мономеров носит название правила неэквивалентности функциональных групп.

Монофункциональные соединения не образуют полимеров, но применяя их, можно регулировать молекулярную массу полимеров, получаемых поликонденсацией. Присутствие монофункциональных соединений является чрезвычайно важным фактором, определяющим молекулярную массу образующегося полимера. В этом случае также действует правило неэквивалентности функциональных групп.

Монофункциональное соединение, вступая в реакцию с одной из функциональных групп, участвующих в поликонденсации, блокирует эту группу и ограничивает рост полимерной цепи. Реакция поликонденсации превращается по исчерпании всех функциональных групп, способных взаимодействовать с монофункциональным соединением. При этом функциональные группы другого типа остаются в системе в избытке, эквивалентном количеству введенного монофункционального соединения, как это видно из уравнения:

Степень полимеризации образующегося полимера определяется количеством взятого в реакцию монофункционального соединения и может быть рассчитана по приведенному выше уравнению.

Необходимым условием, обеспечивающим достижение высокой молекулярной массы полимера в реакциях равновесной поликонденсации , является полное удаление низкомолекулярного побочного продукта. В этих случаях молекулярная масса полимера определяется равновесием между образующимися связями макромолекулы полимера, выделяющимся при поликонденсации низкомолекулярным продуктом и свободными функциональными группами мономера (или сомономеров). Поэтому смещение равновесия путем удаления низкомолекулярного продукта способствует получению полимера с большей молекулярной массой, как это видно из уравнения:

Значительное влияние на и молекулярную массу образующегося полимера оказывают условия проведения реакции, а также присутствие катализаторов.

В отсутствие кислотных катализаторов при синтезе сложных полиэфиров реакцией двухосновных карбоновых кислот с диолами одна из молекул кислоты действует как катализатор и скорость процесса описывается уравнением v=k[A] 2 [B] , где [А] - концентрация двухосновной кислоты; [В] - концентрация диола; k - константа скорости реакции.

При эквимольных количествах исходных реагентов, т. е. при [А] = [В] , скорость полиэтерификации равна:

v = k[А] 3 = k [ВР] 3

Из дифференциального уравнения скорости:

интегрированием получаем:

где [А] 0 - начальная концентрация двухосновной кислоты; р -степень завершенности; τ - время реакции; С - константа.

1/(1-р)2 от τ . С повышением температуры увеличивается молекулярная масса-полимера за счет роста константы скорости реакции в соответствии с уравнением:где С - константа.

Однако значительное повышение температуры приводит к нежелательным побочным процессам - разрушению функциональных групп, деструкции и структурированию полимера. При добавлении в систему низкомолекулярных кислот в качестве катализаторов скорость поликонденсации описывается уравнением

v = k [А][В]

и при [А] = [В]

v=k[A] 2 = k[B] 2

Дифференциальное уравнение скорости расходования полимеров:

После интегрирования дает:

Откуда следует линейная зависимость 1/1-р от τ . Для таких процессов поликонденсации, протекающих как реакции второго порядка, средняя степень полимеризации пропорциональна начальной концентрации исходных веществ и времени реакции:

В общем случае при поликонденсации среднечисловая степень полимеризации ¯Р определяется как отношение числа исходных молекул [А] 0 к числу непрореагировавших молекул [А] τ :

[А] τ =[А] 0 (1-р)

где (1- р) -доля непрореагировавших молекул, т. е.:

Таким образом, если р = 0,9 , то среднечисловая степень полимеризации:

Типичные поликонденсационные полимеры приведены в табл. 1.

Способы проведения поликонденсации

В настоящее время известны 4 основных способа проведения процессов поликонденсации:

  • в расплаве;
  • в растворе;
  • межфазная поликонденсация;
  • поликонденсация в твердой фазе.

Поликонденсация в расплаве является в настоящее время наиболее распространенным способом, широко используемым в промышленности для получения ряда полимеров (полиэфиров, полиамидов и др.). Этот способ применяется в тех случаях, когда исходные вещества и синтезируемый полимер устойчивы при температуре плавления и могут выдерживать длительное нагревание в расплавленном состоянии без разложения. Поэтому поликонденсация в расплаве используется для получения полимеров со сравнительно невысокой температурой плавления (до 300 °С). Достоинствами процесса поликонденсации в расплаве являются высокое качество полимера и отсутствие необходимости удалять из полимера растворитель и регенерировать его.

Технология процесса сравнительно проста. Исходные мономеры смешивают и нагревают в реакционном аппарате в течение нескольких часов при температуре выше температуры плавления синтезируемого полимера. Для уменьшения вероятности протекания побочных реакций, например, окисления, процесс проводят обычно в среде инертного газа (азота). Поликонденсацию заканчивают в вакууме для более полной отгонки низкомолекулярного продукта.

Реакцию в расплаве чаще всего используют для проведения равновесной поликонденсации. Иногда в расплаве можно осуществлять и неравновесные процессы. Однако неравновесные процессы сопровождаются значительным тепловыделением, происходящим за сравнительно короткое время, что объясняется довольно большими скоростями процесса и высокими концентрациями исходных веществ. Поэтому для снижения тепловыделения и облегчения управления процессом исходные мономеры вводят в реакционную систему не сразу, а постепенно.

Поликонденсация в растворе позволяет проводить реакцию при более низкой температуре, поэтому этот способ используют в тех случаях, когда исходные компоненты и полимер неустойчивы при температуре плавления.

Реакцию обычно проводят в растворителях, в которых растворимы и исходные вещества, и образующийся полимер. Можно применять растворитель, в котором хорошо растворяются лишь исходные вещества, а полимер плохо растворим или совсем нерастворим. Однако молекулярная масса получаемого при этом полимера, как правило, невысока.

Реакция в растворе при нагревании протекает с довольно высокой скоростью и может быть доведена до глубоких степеней превращения, так как в присутствии растворителя уменьшается вязкость системы, улучшается отвод выделяющегося тепла и обеспечиваются более мягкие условия протекания реакции.

Наиболее глубоко поликонденсация протекает в тех растворителях, в которых выделяющийся низкомолекулярный продукт плохо растворим и легко удаляется отгонкой, особенно если он образует азеотропную смесь.

Низкомолекулярный продукт может быть также удален из сферы реакции за счет образования химического соединения с растворителем или путем добавления веществ, связывающих низкомолекулярный продукт. Этот способ обычно используют при поликонденсации хлорангидридов дикарбоновых кислот с диаминами или двухатомными фенолами при синтезе полиамидов и полиэфиров. Выделяющийся хлористый водород связывают основаниями, например, третичными аминами.

Поликонденсация в растворе имеет некоторые технологические преимущества перед другими способами поликонденсации. Она проводится в более мягких температурных условиях, позволяет исключить местные перегревы за счет более интенсивного теплообмена, не требует применения вакуума и инертного газа, а следовательно, сложной аппаратуры. Однако синтез полимеров этим способом связан с необходимостью проведения таких операций, как приготовление растворов мономеров, регенерация растворителя, промывка полимера, его фильтрация, сушка и т. п.

Способ поликонденсации на поверхности раздела двух несмешивающихся жидких фаз называется межфазной поликонденсацией . В некоторых случаях этот способ применяется для промышленного получения полимеров, например, полиамидов и полиэфиров.

При проведении межфазной поликонденсации исходные мономеры растворяют раздельно в двух несмешивающихся жидкостях. Обычно одной из них является вода, другой - не смешивающийся с водой растворитель, инертный к мономерам.

При синтезе полиамидов и полиэфиров применяют водный раствор диамина или двухатомного фенола (к которому для связывания выделяющегося хлористого водорода добавляют щелочь) и раствор хлорангидрида дикарбоновой кислоты в углеводороде. На границе раздела водной и углеводородной фаз образуется полимер. Для ускорения процесса применяют перемешивание. Полученный полимер отфильтровывают, промывают и высушивают.

Межфазная поликонденсация имеет ряд достоинств, к числу которых можно отнести большие скорости процесса при низких температурах и атмосферном давлении, а также возможность получения высокоплавких полимеров. Однако применение этого способа ограничивается необходимостью использовать мономеры с высокой реакционной способностью и большие объемы растворов исходных реагентов, поскольку при межфазной поликонденсации применяются довольно разбавленные растворы.

Процессы поликонденсации, протекающие исключительно в твердой фазе , в промышленности не применяются. Обычно используются процессы, в которых первая стадия протекает в растворе или расплаве, а последняя стадия - в твердой фазе. Примером такого процесса является трехмерная поликонденсация, широко применяемая в настоящее время в промышленности для получения ряда полимеров (фенолоальдегидных,, и др.).

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.