Строгие и нестрогие неравенства история появления знаков. Понятие неравенства, связанные определения. Двойные, тройные и т.п. неравенства

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Неравенство – обратная сторона равенства. Материал данной статьи дает определение неравенства и начальную информацию о нем в разрезе математики.

Понятие неравенства, как и понятие равенства, связывается с моментом сравнения двух объектов. В то время как равенство означает «одинаковы», то неравенство, напротив, свидетельствует о различиях объектов, которые сравниваются. К примеру, и - одинаковые объекты или равные. и - объекты, отличающиеся друг от друга или неравные.

Неравенство объектов определяется по смысловой нагрузке такими словами, как выше – ниже (неравенство по признаку высоты); толще – тоньше (неравенство по признаку толщины); длиннее – короче (неравенство по признаку длины) и так далее.

Возможно рассуждать как о равенстве-неравенстве объектов в целом, так и о сравнении их отдельных характеристик. Допустим, заданы два объекта: и . Без сомнений, эти объекты не являются одинаковыми, т.е. в целом они не равны: по признаку размера и цвета. Но, в то же время, мы можем утверждать, что равны их формы – оба объекта являются кругами.

В контексте математики смысловая нагрузка неравенства сохраняется. Однако, в этом случае речь идет о неравенстве математических объектов: чисел, значений выражений, значений величин (длина, площадь и т.д.), векторов, фигур и т.п.

Не равно, больше, меньше

В зависимости от целей поставленной задачи ценным можем являться уже просто факт выяснения неравенства объектов, но обычно вслед за установлением факта неравенства происходит выяснение того, какая все же величина больше, а какая – меньше.

Значение слов «больше» и «меньше» нам интуитивно знакомо с самого начала нашей жизни. Очевидным является навык определять превосходство объекта по размеру, количеству и т.д. Но в конечном счете любое сравнение приводит нас к сравнению чисел, которые определяют некоторые характеристики сравниваемых объектов. По сути, мы выясняем, какое число больше, а какое – меньше.

Простой пример:

Пример 1

Утром температура воздуха составила 10 градусов по Цельсию; в два часа дня этот показатель составил 15 градусов. На основе сравнения натуральных чисел мы можем утверждать, что значение температуры утром было меньше, чем ее значение в два часа дня (или в два часа дня температура увеличилась, стала больше, чем была температура утром).

Запись неравенств с помощью знаков

Существуют общепринятые обозначения для записи неравенств:

Определение 1

  • знак «не равно», представляющий собой перечеркнутый знак «равно»: ≠ . Этот знак располагается между неравными объектами. Например: 5 ≠ 10 пять не равно десяти;
  • знак «больше»: > и знак «меньше»: < . Первый записывается между большим и меньшим объектами; второй между меньшим и большим. Например, запись о сравнении отрезков вида | A B | > | C D | говорит о том, что отрезок A B больше отрезка С D ;
  • знак «больше или равно»: ≥ и знак «меньше или равно»: ≤ .

Подробнее их смысл разберем ниже. Дадим определение неравенств по виду их записи.

Определение 2

Неравенства алгебраические выражения, имеющие смысл и записанные при помощи знаков ≠ , > , < , ≤ , ≥ .

Строгие и нестрогие неравенства

Определение 3

Знаки строгих неравенств – это знаки «больше» и «меньше»: > и < Неравенства, составленные с их помощью – строгие неравенства.

Знаки нестрогих неравенств – это знаки «больше или равно» и «меньше или равно»: ≥ и ≤ . Неравенства, составленные с их помощью – нестрогие неравенства.

Как применяются строгие неравенства, мы разобрали выше. Зачем же используются нестрогие неравенства? В практике такими неравенствами возможно задавать случаи, описываемые словами «не больше» и «не меньше». Фраза «не больше» означает меньше или столько же – этому уровню сравнения соответствует знак «меньше или равно» ≤ . В свою очередь, «не меньше» значит – столько же или больше, а это знак «больше или равно» ≥ . Таким образом, нестрогие неравенства, в отличие от строгих, дают возможность равенства объектов.

Верные и неверные неравенства

Определение 4

Верное неравенство – то неравенство, которое соответствует указанному выше смыслу неравенства. В ином случае оно является неверным .

Приведем простые примеры для наглядности:

Пример 2

Неравенство 5 ≠ 5 является неверным, поскольку на самом деле числа 5 и 5 равны.

Или такое сравнение:

Пример 3

Допустим S – площадь некой фигуры, в этом случае S < - 4 является верным неравенством, поскольку площадь всегда выражена неотрицательным числом.

Аналогичными по смыслу термину «верное неравенство» являются фразы «справедливое неравенство», «имеет место неравенство» и т.д.

Свойства неравенств

Опишем свойства неравенств. Очевидный факт, что объект никак не может быть неравным самому себе, и это есть первое свойство неравенства. Второе свойство звучит так: если первый объект не равен второму, то и второй не равен первому.

Опишем свойства, соответствующие знакам «больше» или «меньше»:

Определение 5

  • антирефлективность . Это свойство можно выразить так: для любого объекта k неравенства k > k и k < k неверны;
  • антисимметричность . Данное свойство говорит о том, что, если первый объект больше или меньше второго, то второй объект, соответственно, меньше или больше первого. Запишем: если m > n , то n < m . Или: если m < n , то n > m ;
  • транзитивность . В буквенной записи указанное свойство будет выглядеть так: если задано, что a < b и b < с, то a < c . Наоборот: a > b и b > с, а значит a > c . Данное свойство интуитивно понятно и естественно: если первый объект больше второго, а второй – больше третьего, то становится ясно, что первый объект тем более больше третьего.

Знакам нестрогих неравенств также присущи некоторые свойства:

Определение 6

  • рефлексивность : a ≥ a и a ≤ a (сюда же включается случай, когда a = a);
  • антисимметричность : если a ≤ b , то b ≥ a . Если же a ≥ b , то b ≤ a ;
  • транзитивность : если a ≤ b и b ≤ c , то очевидно, что a ≤ c . И также: если а ≥ b , а b ≥ с, то а ≥ с.

Двойные, тройные и т.п. неравенства

Свойство транзитивности дает возможность записывать двойные, тройные и так далее неравенства, по сути являющиеся цепочками неравенств. К примеру: двойное неравенство – e > f > g или тройное неравенство k 1 ≤ k 2 ≤ k 3 ≤ k 4 .

Отметим, что удобным бывает записывать неравенство как цепочки, включающие в себя различные знаки: равно, не равно и знаки строгих и нестрогих неравенств. Например, x = 2 < y ≤ z < 15 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

«Числовые неравенства» - Если a>b и m<0, то amb, то а в степени n > b в степени n, где n - любое натуральное число. Знание свойств числовых неравенств будет полезно и для исследования функций. Если a>b и c>d, то a+c>b+d. Свойство 5. Свойство 1.

«Решение показательных неравенств» - Структура урока. Когда показательное неравенство не имеет решений? Альберт Эйнштейн. 1 Область определения функции. 3. Промежутки сравнения значений функции с единицей. Убывает на всей области определения, 8. При любых действительных значениях х и у; a>0, a?1; b>0, b?1. План лекции. Как решаются неравенства, сводящиеся к квадратным?

«Решение дробно-рациональных неравенств» - Решите неравенство. Знаменатель. Решение. Выколотые и невыколотые точки. Назовите числа. Числитель и знаменатель. Назовите выколотые и невыколотые точки. Точки. Найти «нули». Луч. Домножать на знаменатель, содержащий неизвестное. Решение дробно-рациональных неравенств. Определить знак. Решите. Выражение.

«Решение систем неравенств» - Закрепление. Записать неравенства, множеством решения которых служат промежутки. Решение систем неравенств. Повторение. Отрезки. Полуинтервалы. Чтобы решить систему линейных неравенств, достаточно решить каждое из входящих в неё неравенство и найти пересечение множеств их решений. Интервалы. Математический диктант.

«Показательные неравенства» - Что нужно учесть при решении показательных неравенств? Решение простейших показательных неравенств. Что нужно учесть при решении простейших показательных неравенств? Решение неравенства. Решение простейших показательных неравенств. Решите неравенство. Знак неравенства. Неравенство, содержащее неизвестную в показателе степени, называется показательным неравенством.

«Числовые неравенства и числовые промежутки» - Самостоятельная работа. Числовой луч. Неравенство. Проверка. Числовые промежутки. Понятие числового промежутка. Числовой отрезок. Множество действительных чисел. Полуинтервал. Изобразите промежутки на координатной прямой. Числовой промежуток. Открытый луч. Назовите промежутки. Множество всех чисел. Число.

Всего в теме 38 презентаций

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Такая подготовка работает для неравенств любого вида и проста до ужаса.) Нужно, всего лишь, правильно выполнять два (всего два!) элементарных действия. Эти действия знакомы всем. Но, что характерно, косяки в этих действиях - и есть основная ошибка в решении неравенств, да... Стало быть, надо повторить эти действия. Называются эти действия вот как:

Тождественные преобразования неравенств.

Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, в этом и есть основная проблема. Отличия проскакивают мимо головы и... приехали.) Поэтому я особо выделю эти отличия. Итак, первое тождественное преобразование неравенств:

1. К обеим частям неравенства можно прибавить (отнять) одно и то же число, или выражение. Любое. Знак неравенства от этого не изменится.

На практике это правило применяется как перенос членов из левой части неравенства в правую (и наоборот) со сменой знака. Со сменой знака члена, а не неравенства! Правило один в один совпадает с правилом для уравнений. А вот следующие тождественные преобразования в неравенствах существенно отличается от таковых в уравнениях. Поэтому я выделяю их красным цветом:

2. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное не изменится.

3. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства от этого изменится на противоположный.

Вы помните (надеюсь...), что уравнение можно умножать/делить на что попало. И на любое число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого ни жарко, ни холодно.) Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

Наглядный пример на долгую память. Напишем неравенство, не вызывающее сомнений:

5 > 2

Умножим обе части на +3, получим:

15 > 6

Возражения есть? Возражений нет.) А если умножим обе части исходного неравенства на -3, получим:

15 > -6

А это уже откровенная ложь.) Полное враньё! Обман народа! Но стоит изменить знак неравенства на противоположный, как всё становится на свои места:

15 < -6

Про враньё и обман - это я не просто так ругаюсь.) "Забыл сменить знак неравенства..." - это главная ошибка в решении неравенств. Это пустяковое и несложное правило стольких людей ушибло! Которые забыли...) Вот и ругаюсь. Может, запомнится...)

Особо внимательные заметят, что неравенство нельзя умножать на выражение с иксом. Респект внимательным!) А почему нельзя? Ответ простой. Мы же не знаем знак этого выражения с иксом. Оно может быть положительное, отрицательное... Стало быть, мы не знаем, какой знак неравенства ставить после умножения. Менять его, или нет? Неизвестно. Разумеется, это ограничение (запрет умножения/деления неравенства на выражение с иксом) можно обойти. Если очень надо будет. Но это тема для других уроков.

Вот и все тождественные преобразования неравенств. Ещё раз напомню, что они работают для любых неравенств. А теперь можно переходить к конкретным видам.

Линейные неравенства. Решение, примеры.

Линейными неравенствами называются неравенства, в которых икс находится в первой степени и нет деления на икс. Типа:

х+3 > 5х-5

Как решаются такие неравенства? Они решаются очень просто! А именно: с помощью сводим самое замороченное линейное неравенство прямо к ответу. Вот и всё решение. Главные моменты решения я буду выделять. Во избежание дурацких ошибок.)

Решаем это неравенство:

х+3 > 5х-5

Решаем точно так же, как и линейное уравнение. С единственным отличием:

Внимательно следим за знаком неравенства!

Первый шаг самый обычный. С иксами - влево, без иксов - вправо... Это первое тождественное преобразование, простое и безотказное.) Только знаки у переносимых членов не забываем менять.

Знак неравенства сохраняется:

х-5х > -5-3

Приводим подобные.

Знак неравенства сохраняется:

> -8

Осталось применить последнее тождественное преобразование: разделить обе части на -4.

Делим на отрицательное число.

Знак неравенства изменится на противоположный:

х < 2

Это ответ.

Так решаются все линейные неравенства.

Внимание! Точка 2 рисуется белой, т.е. незакрашенной. Пустой внутри. Это означает, что она в ответ не входит! Я её специально такой здоровой нарисовал. Такая точка (пустая, а не здоровая!)) в математике называется выколотой точкой.

Остальные числа на оси отмечать можно, но не нужно. Посторонние числа, не относящиеся к нашему неравенству, могут и запутать, да... Нужно только помнить, что увеличение чисел идёт по стрелке, т.е. числа 3, 4, 5, и т.д. находятся правее двойки, а числа 1, 0, -1 и т.д. - левее.

Неравенство х < 2 - строгое. Икс строго меньше двух. Если возникают сомнения, проверка простая. Подставляем сомнительное число в неравенство и размышляем: "Два меньше двух? Нет, конечно!" Именно так. Неравенство 2 < 2 неверное. Не годится двойка в ответ.

А единичка годится? Конечно. Меньше же... И ноль годится, и -17, и 0,34... Да все числа, которые меньше двух - годятся! И даже 1,9999.... Хоть чуть чуть, да меньше!

Вот и отметим все эти числа на числовой оси. Как? Тут бывают варианты. Вариант первый - штриховка. Наводим мышку на рисунок (или касаемся картинки на планшете) и видим, что заштрихована область всех иксов, подходящих под условие х < 2 . Вот и всё.

Второй вариант рассмотрим на втором примере:

х ≥ -0,5

Рисуем ось, отмечаем число -0,5. Вот так:

Заметили разницу?) Ну да, трудно не заметить... Эта точка - чёрная! Закрашенная. Это означает, что -0,5 входит в ответ. Здесь, кстати, проверка и смутить может кого-нибудь. Подставляем:

-0,5 ≥ -0,5

Как так? -0,5 никак не больше -0,5! А значок больше имеется...

Ничего страшного. В нестрогом неравенстве годится всё, что подходит под значок. И равно годится, и больше годится. Следовательно, -0,5 в ответ включается.

Итак, -0,5 мы отметили на оси, осталось ещё отметить все числа, которые больше -0,5. На этот раз я отмечаю область подходящих значений икса дужкой (от слова дуга ), а не штриховкой. Наводим курсор на рисунок и видим эту дужку.

Особой разницы между штриховкой и дужками нет. Делайте, как учитель сказал. Если учителя нет - рисуйте дужки. В более сложных заданиях штриховка менее наглядна. Запутаться можно.

Вот так рисуются линейные неравенства на оси. Переходим к следующей особенности неравенств.

Запись ответа для неравенств.

В уравнениях было хорошо.) Нашли икс, да и записали ответ, например: х=3. В неравенствах существуют две формы записи ответов. Одна - в виде окончательного неравенства. Хороша для простых случаев. Например:

х < 2.

Это полноценный ответ.

Иногда требуется записать то же самое, но в другой форме, через числовые промежутки. Тогда запись начинает выглядеть очень научно):

х ∈ (-∞; 2)

Под значком скрывается слово "принадлежит".

Читается запись так: икс принадлежит промежутку от минус бесконечности до двух не включая . Вполне логично. Икс может быть любым числом из всех возможных чисел от минус бесконечности до двух. Двойкой икс быть не может, о чём нам и говорит слово "не включая".

А где это в ответе видно, что "не включая" ? Этот факт отмечается в ответе круглой скобкой сразу после двойки. Если бы двойка включалась, скобка была бы квадратной. Вот такой: ]. В следующем примере такая скобка используется.

Запишем ответ: х ≥ -0,5 через промежутки:

х ∈ [-0,5; +∞)

Читается: икс принадлежит промежутку от минус 0,5, включая, до плюс бесконечности.

Бесконечность не может включаться никогда. Это не число, это символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой.

Такая форма записи удобна для сложных ответов, состоящих из нескольких промежутков. Но - именно для окончательных ответов. В промежуточных результатах, где предполагается дальнейшее решение, лучше использовать обычную форму, в виде простого неравенства. Мы с этим в соответствующих темах разберёмся.

Популярные задания с неравенствами.

Сами по себе линейные неравенства просты. Поэтому, частенько, задания усложняются. Так, чтобы подумать надо было. Это, если с непривычки, не очень приятно.) Но полезно. Покажу примеры таких заданий. Не для того, чтобы вы их выучили, это лишнее. А для того, чтобы не боялись при встрече с подобными примерами. Чуть подумать - и всё просто!)

1. Найдите любые два решения неравенства 3х - 3 < 0

Если не очень понятно, что делать, вспоминаем главное правило математики:

Не знаешь, что нужно - делай, что можно!)

х < 1

И что? Да ничего особенного. Что нас просят? Нас просят найти два конкретных числа, которые являются решением неравенства. Т.е. подходят под ответ. Два любых числа. Собственно, это и смущает.) Подходит парочка 0 и 0,5. Парочка -3 и -8. Да этих парочек бесконечное множество! Какой ответ правильный?!

Отвечаю: все! Любая парочка чисел, каждое из которых меньше единицы, будет правильным ответом. Пишите, какую хотите. Едем дальше.

2. Решить неравенство:

4х - 3 0

Задания в таком виде встречаются редко. Но, как вспомогательные неравенства, при нахождении ОДЗ, например, или при нахождении области определения функции, - встречаются сплошь и рядом. Такое линейное неравенство можно решать как обычное линейное уравнение. Только везде, кроме знака "=" (равно ) ставить знак "" (не равно ). Так к ответу и подойдёте, со знаком неравенства:

х 0,75

В более сложных примерах, лучше поступать по-другому. Сделать из неравенства равенство. Вот так:

4х - 3 = 0

Спокойно решить его, как учили, и получить ответ:

х = 0,75

Главное, в самом конце, при записи окончательного ответа, не забыть, что мы нашли икс, который даёт равенство. А нам нужно - неравенство. Стало быть, этот икс нам как раз и не нужен.) И надо записать его с правильным значком:

х 0,75

При таком подходе получается меньше ошибок. У тех, кто уравнения на автомате решает. А тем, кто уравнения не решает, неравенства, собственно, ни к чему...) Ещё пример популярного задания:

3. Найти наименьшее целое решение неравенства:

3(х - 1) < 5х + 9

Сначала просто решаем неравенство. Ракрываем скобки, переносим, приводим подобные... Получаем:

х > - 6

Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства...

Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие "наименьшее целое". Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)

Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > - 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5... Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!

Стало быть, правильный ответ: -5.

Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:

4. Решить неравенство:

7 < 3х+1 < 13

Во как! Такое выражение называется тройным неравенством. Строго говоря, это сокращённая запись системы неравенств. Но решать такие тройные неравенства всё равно приходится в некоторых заданиях... Оно решается безо всяких систем. По тем же тождественным преобразованиям.

Надо упростить, довести это неравенство до чистого икса. Но... Что куда переносить!? Вот тут самое время вспомнить, что перенос влево-вправо, это сокращённая форма первого тождественного преобразования.

А полная форма звучит вот как: К обеим частям уравнения (неравенства) можно прибавить/отнять любое число, или выражение.

Здесь три части. Вот и будем применять тождественные преобразования ко всем трём частям!

Итак, избавимся от единички в средней части неравенства. Отнимем от всей средней части единичку. Чтобы неравенство не изменилось, отнимем единичку и от оставшихся двух частей. Вот так:

7 -1< 3х+1-1< 13-1

6 < < 12

Уже лучше, правда?) Осталось разделить все три части на тройку:

2 < х < 4

Вот и всё. Это ответ. Икс может любым числом от двойки (не включая) до четвёрки (не включая). Этот ответ тоже записывается через промежутки, такие записи будут в квадратных неравенствах. Там они - самое обычное дело.

В конце урока повторю самое главное. Успех в решении линейных неравенств зависит от умения преобразовывать и упрощать линейные уравнения. Если при этом следить за знаком неравенства, проблем не будет. Чего я вам и желаю. Отсутствия проблем.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


Обратной стороной равенства выступает неравенство . В этой статье мы введем понятие неравенства, и дадим начальную информацию о них в контексте математики.

Сначала разберем, что такое неравенство, введем понятия не равно, больше, меньше. Дальше поговорим о записи неравенств с помощью знаков не равно, меньше, больше, меньше или равно, больше или равно. После этого затронем основные типы неравенств, дадим определения строгих и нестрогих, верных и неверных неравенств. Дальше мимоходом перечислим основные свойства неравенств. Наконец, остановимся на двойных, тройных и т.д. неравенствах, и разберем, какой смысл они несут в себе.

Навигация по странице.

Что такое неравенство?

Понятие неравенства , как и , связано со сравнением двух объектов. И если равенство характеризуется словом «одинаковые», то неравенство, напротив, говорит о различии сравниваемых объектов. Например, объекты и - одинаковые, про них можно сказать, что они равные. А вот два объекта и отличаются, то есть, они не равны или неравные .

Неравенство сравниваемых объектов познается вместе со смыслом таких слов, как выше, ниже (неравенство по высоте), толще, тоньше (неравенство по толщине), дальше, ближе (неравенство по удаленности от чего-либо), длиннее, короче (неравенство по длине), тяжелее, легче (неравенство по весу), ярче, тусклее (неравенство по яркости), теплее, холоднее и т.п.

Как мы уже отмечали при знакомстве с равенствами, можно говорить как о равенстве двух объектов в целом, так и о равенстве их некоторых характеристик. Это же относится и к неравенствам. В качестве примера приведем два объекта и . Очевидно, они не одинаковые, то есть, в целом они неравные. Они не равны по размеру, также они не равны по цвету, однако, можно говорить о равенстве их форм – они оба являются кругами.

В математике общий смысл неравенства сохраняется. Но в ее контексте речь идет о неравенстве математических объектов: чисел, значений выражений, значений каких-либо величин (длин, весов, площадей, температур и т.п.), фигур, векторов и т.п.

Не равно, больше, меньше

Иногда ценность представляет именно сам факт неравенства двух объектов. А когда сравниваются значения каких-либо величин, то, выяснив их неравенство, обычно идут дальше, и выясняют, какая величина больше , а какая – меньше .

Смысл слов «больше» и «меньше» мы познаем практически с первых дней нашей жизни. На интуитивном уровне мы воспринимаем понятие больше и меньше в плане размера, количества и т.п. А дальше постепенно начинаем осознавать, что при этом фактически речь идет о сравнении чисел , отвечающим количеству некоторых предметов или значениям некоторых величин. То есть, в этих случаях мы выясняем, какое из чисел больше, а какое – меньше.

Приведем пример. Рассмотрим два отрезка AB и CD , и сравним их длины . Очевидно, они не равны, также очевидно, что отрезок AB длиннее отрезка CD . Таким образом, согласно смыслу слова «длиннее», длина отрезка AB больше длины отрезка CD , и в то же время длина отрезка CD меньше длины отрезка AB .

Еще пример. С утра была зафиксирована температура воздуха 11 градусов Цельсия, а в обед – 24 градуса. Согласно , 11 меньше 24 , следовательно, значение температуры с утра было меньше, чем ее значение в обед (температура в обед стала больше, чем была температура с утра).

Запись неравенств с помощью знаков

На письме приняты несколько знаков для записи неравенств. Первый из них – знак не равно , он представляет собой перечеркнутый знак равно: ≠. Знак не равно ставится между неравными объектами. Например, запись |AB|≠|CD| обозначает, что длина отрезка AB не равна длине отрезка CD . Аналогично, 3≠5 – три не равно пяти.

Аналогично используются знак больше > и знак меньше ≤. Знак больше записывается между большим и меньшим объектами, а знак меньше – между меньшим и большим. Приведем примеры использования этих знаков. Запись 7>1 читается как семь больше одного, а записать, что площадь треугольника ABC меньше площади треугольника DEF с использованием знака ≤ можно как SABC≤SDEF .

Также широко в ходу знак больше или равно вида ≥, а также знак меньше или равно ≤. Подробнее об их смысле и назначении поговорим в следующем пункте.

Еще заметим, что алгебраические записи со знаками не равно, меньше, больше, меньше или равно, больше или равно, аналогичные рассмотренным выше, называют неравенствами. Более того, имеет место определение неравенств в смысле вида их записи:

Определение.

Неравенства – это имеющие смысл алгебраические выражения, составленные с использованием знаков ≠, <, >, ≤, ≥.

Строгие и нестрогие неравенства

Определение.

Знаки меньше называют знаками строгих неравенств , а записанные с их помощью неравенства – строгими неравенствами .

В свою очередь

Определение.

Знаки меньше или равно ≤ и больше или равно ≥ называют знаками нестрогих неравенств , а составленные с их использованием неравенства – нестрогими неравенствами .

Сфера применения строгих неравенств понятна из вышеприведенной информации. А для чего нужны нестрогие неравенства? На практике с их помощью удобно моделировать ситуации, которые можно описать фразами «не больше» и «не меньше». Фраза «не больше» по сути означает меньше или столько же, ей отвечает знак меньше или равно вида ≤. Аналогично, «не меньше» значит столько же или больше, ей соответствует знак больше или равно ≥.

Отсюда становится понятно, почему знаки < и > получили название знаков строгих неравенств, а ≤ и ≥ - нестрогих. Первые исключают возможность равенства объектов, а вторые – допускают ее.

В заключение этого пункта покажем пару примеров использования нестрогих неравенств. Например, с помощью знака больше или равно можно записать тот факт, что a является неотрицательным числом, как |a|≥0 . Еще пример: известно, что среднее геометрическое двух положительных чисел a и b меньше или равно их среднему арифметическому, то есть, .

Верные и неверные неравенства

Неравенства могут быть верными или неверными.

Определение.

Неравенство является верным , если оно соответствует введенному выше смыслу неравенства, в противном случае оно является неверным .

Приведем примеры верных и неверных неравенств. Например, 3≠3 – это неверное неравенство, так как числи 3 и 3 равные. Другой пример: пусть S – это площадь некоторой фигуры, тогда S<−7 – неверное неравенство, так как известно, что площадь фигуры по определению выражается неотрицательным числом. И еще пример неверного неравенства: |AB|>|AB| . А вот неравенства −3<12 , |AB|≤|AC|+|BC| и |−4|≥0 – верные. Первое из них отвечает , второе – выражает неравенство треугольника , а третье – согласуется с определением модуля числа.

Отметим, что наряду со словосочетанием «верное неравенство» используются такие словосочетания: «справедливое неравенство», «имеет место неравенство» и т.п., означающие одно и то же.

Свойства неравенств

Согласно тому, как мы ввели понятие неравенства, можно описать основные свойства неравенств . Понятно, что объект не может быть не равен самому себе. В этом состоит первое свойство неравенств. Второе свойство не менее очевидно: если первый объект не равен второму, то второй не равен первому.

Введенные на некотором множестве понятия «меньше» и «больше» задают на исходном множестве так называемые отношения «меньше» и «больше». Это же относится и к отношениям «меньше или равно» и «больше или равно». Они также обладают характерными свойствами.

Начнем со свойств отношений, которым соответствуют знаки < и >. Перечислим их, после чего дадим необходимые комментарии для пояснения:

  • антирефлексивность;
  • антисимметричность;
  • транзитивность.

Свойство антирефлексивности с помощью букв можно записать так: для любого объекта a неравенства a>a и ab , то ba . Наконец, свойство транзитивности состоит в том, что из ab и b>c следует, что a>c . Это свойство также воспринимается достаточно естественно: если первый объект меньше (больше) второго, а второй меньше (больше) третьего, то понятно, что первый объект подавно меньше (больше) третьего.

В свою очередь отношениям «меньше или равно» и «больше или равно» присущи следующие свойства:

  • рефлексивности: имеют место неравенства a≤a и a≥a (так как они включают в себя случай a=a );
  • антисимметричности: если a≤b , то b≥a , и если a≥b , то b≤a ;
  • транзитивности: из a≤b и b≤c следует, что a≤c , а из a≥b и b≥c следует, что a≥c .

Двойные, тройные неравенства и т.д.

Свойство транзитивности, которое мы затронули в предыдущем пункте, позволяет составлять так называемые двойные, тройные и т.д. неравенства, представляющие собой цепочки неравенств. Для примера приведем двойное неравенство a

Теперь разберем, как понимать такие записи. Их следует трактовать в согласии со смыслом содержащихся в них знаков. Например, двойное неравенство a

В заключение заметим, что иногда удобно использовать записи в виде цепочек, содержащих одновременно как знаки равно, не равно, так и знаки строгих и нестрогих неравенств. Например, x=2

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.