Прямая y 2x 2. Уравнение касательной к графику функции. Уравнение касательной к графику функции

Среди огромного количества стереометрических задач в учебниках геометрии, в различных сборниках задач, пособиях по подготовке в ВУЗы крайне редко встречаются задачи на нахождение расстояния между скрещивающимися прямыми. Возможно, это обусловлено как узостью их практического применения (относительно школьной программы, в отличие от "выигрышных" задач на вычисление площадей и объемов), так и сложностью данной темы.

Практика проведения ЕГЭ показывает, что многие учащиеся вообще не приступают к выполнению заданий по геометрии, входящих в экзаменационную работу. Для обеспечения успешного выполнения геометрических заданий повышенного уровня сложности необходимо развивать гибкость мышления, способность анализировать предполагаемую конфигурацию и вычленять в ней части, рассмотрение которых позволяет найти путь решения задачи.

Школьный курс предполагает изучение четырех способов решения задач на нахождение расстояния между скрещивающимися прямыми. Выбор способа обусловлен, в первую очередь, особенностями конкретной задачи, предоставленными ею возможностями для выбора, и, во вторую очередь, способностями и особенностями "пространственного мышления" конкретного учащегося. Каждый из этих способов позволяет решить самую главную часть задачи - построение отрезка, перпендикулярного обеим скрещивающимся прямым (для вычислительной же части задач деление на способы не требуется).

Основные способы решения задач на нахождение расстояния между скрещивающимися прямыми

Нахождение длины общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.

Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

Нахождение расстояния от точки, являющейся проекцией одной из скрещивающихся прямых, на перпендикулярную ей плоскость (так называемый "экран") до проекции другой прямой на ту же самую плоскость.

Проведем демонстрацию всех четырех способов на следующей простейшей задаче : "В кубе с ребром а найти расстояние между любым ребром и диагональю не пересекающей его грани". Ответ: .

Рисунок 1

h скр перпендикулярна плоскости боковой грани, содержащей диагональ d и перпендикулярна ребру, следовательно, h скр и является расстоянием между ребром а и диагональю d .

Рисунок 2

Плоскость A параллельна ребру и проходит через данную диагональ, следовательно, данная h скр является не только расстоянием от ребра до плоскости A, но и расстоянием от ребра до данной диагонали.

Рисунок 3

Плоскости A и B параллельны и проходят через две данные скрещивающиеся прямые, следовательно, расстояние между этими плоскостями равно расстоянию между двумя скрещивающимися прямыми.

Рисунок 4

Плоскость A перпендикулярна ребру куба. При проекции на A диагонали d данная диагональ обращается в одну из сторон основания куба. Данная h скр является расстоянием между прямой, содержащей ребро, и проекцией диагонали на плоскость C, а значит и между прямой, содержащей ребро, и диагональю.

Остановимся подробнее на применении каждого способа для изучаемых в школе многогранников.

Применение первого способа достаточно ограничено: он хорошо применяется лишь в некоторых задачах, так как достаточно сложно определить и обосновать в простейших задачах точное, а в сложных - ориентировочное местоположение общего перпендикуляра двух скрещивающихся прямых. Кроме того, при нахождении длины этого перпендикуляра в сложных задачах можно столкнуться с непреодолимыми трудностями.

Задача 1. В прямоугольном параллелепипеде с размерами a, b, h найти расстояние между боковым ребром и не пересекающейся с ним диагональю основания.

Рисунок 5

Пусть AHBD. Так как А 1 А перпендикулярна плоскости АВСD , то А 1 А AH.

AH перпендикулярна обеим из двух скрещивающихся прямых, следовательно AH?- расстояние между прямыми А 1 А и BD. В прямоугольном треугольнике ABD, зная длины катетов AB и AD, находим высоту AH, используя формулы для вычисления площади прямоугольного треугольника. Ответ:

Задача 2. В правильной 4-угольной пирамиде с боковым ребром L и стороной основания a найти расстояние между апофемой и стороной основания, пересекающей боковую грань, содержащую эту апофему.

Рисунок 6

SHCD как апофема, ADCD, так как ABCD - квадрат. Следовательно, DH - расстояние между прямыми SH и AD. DH равно половине стороны CD. Ответ:

Применение этого способа также ограничено в связи с тем, что если можно быстро построить (или найти уже готовую) проходящую через одну из скрещивающихся прямых плоскость, параллельную другой прямой, то затем построение перпендикуляра из любой точки второй прямой к этой плоскости (внутри многогранника) вызывает трудности. Однако в несложных задачах, где построение (или отыскивание) указанного перпендикуляра трудностей не вызывает, данный способ является самым быстрым и легким, и поэтому доступен.

Задача 2. Решение уже указанной выше задачи данным способом особых трудностей не вызывает.

Рисунок 7

Плоскость EFM параллельна прямой AD, т. к AD || EF. Прямая MF лежит в этой плоскости, следовательно, расстояние между прямой AD и плоскостью EFM равно расстоянию между прямой AD и прямой MF. Проведем OHAD. OHEF, OHMO, следовательно, OH(EFM), следовательно, OH - расстояние между прямой AD и плоскостью EFM, а значит, и расстояние между прямой AD и прямой MF. Находим OH из треугольника AOD.

Задача 3. В прямоугольном параллелепипеде с размерами a,b и h найти расстояние между боковым ребром и не пересекающейся с ним диагональю параллелепипеда.

Рисунок 8

Прямая AA 1 параллельна плоскости BB 1 D 1 D, B 1 D принадлежит этой плоскости, следовательно расстояние от AA 1 до плоскости BB 1 D 1 D равно расстоянию между прямыми AA 1 и B 1 D. Проведем AHBD. Также, AH B 1 B, следовательно AH(BB 1 D 1 D), следовательно AHB 1 D, т. е. AH - искомое расстояние. Находим AH из прямоугольного треугольника ABD.

Ответ:

Задача 4. В правильной шестиугольной призме A:F 1 c высотой h и стороной основания a найти расстояние между прямыми:

Рисунок 9 Рисунок 10

а) AA 1 и ED 1 .

Рассмотрим плоскость E 1 EDD 1 . A 1 E 1 EE 1 , A 1 E 1 E 1 D 1 , следовательно

A 1 E 1 (E 1 EDD 1). Также A 1 E 1 AA 1 . Следовательно, A 1 E 1 является расстоянием от прямой AA 1 до плоскости E 1 EDD 1 . ED 1 (E 1 EDD 1)., следовательно AE 1 - расстояние от прямой AA 1 до прямой ED 1 . Находим A 1 E 1 из треугольника F 1 A 1 E 1 по теореме косинусов. Ответ:

б) AF и диагональю BE 1 .

Проведем из точки F прямую FH перпендикулярно BE. EE 1 FH, FHBE, следовательно FH(BEE 1 B 1), следовательно FH является расстоянием между прямой AF и (BEE 1 B 1), а значит и расстоянием между прямой AF и диагональю BE 1 . Ответ:

СПОСОБ III

Применение этого способа крайне ограничено, так как плоскость, параллельную одной из прямых (способ II) строить легче, чем две параллельные плоскости, однако способ III можно использовать в призмах, если скрещивающиеся прямые принадлежат параллельным граням, а также в тех случаях, когда в многограннике несложно построить параллельные сечения, содержащие заданные прямые.

Задача 4.

Рисунок 11

а) Плоскости BAA 1 B 1 и DEE 1 D 1 параллельны, так как AB || ED и AA 1 || EE 1 . ED 1 DEE 1 D 1 , AA 1 (BAA 1 B 1), следовательно, расстояние между прямыми AA 1 и ED 1 равно расстоянию между плоскостями BAA 1 B 1 и DEE 1 D 1 . A 1 E 1 AA 1 , A 1 E 1 A 1 B 1 , следовательно, A 1 E 1 BAA 1 B 1 . Аналогично доказываем, что A 1 E 1 (DEE 1 D 1). Т.о., A 1 E 1 является расстоянием между плоскостями BAA 1 B 1 и DEE 1 D 1 , а значит, и между прямыми AA 1 и ED 1 . Находим A 1 E 1 из треугольника A 1 F 1 E 1 , который является равнобедренным с углом A 1 F 1 E 1 , равным . Ответ:

Рисунок 12

б) Расстояние между AF и диагональю BE 1 находится аналогично.

Задача 5. В кубе с ребром а найти расстояние между двумя непересекающимися диагоналями двух смежных граней.

Данная задача рассматривается как классическая в некоторых пособиях, но, как правило, ее решение дается способом IV, однако является вполне доступной для решения с помощью способа III.

Рисунок 13

Некоторую трудность в данной задаче вызывает доказательство перпендикулярности диагонали A 1 C обеим параллельным плоскостям (AB 1 D 1 || BC 1 D). B 1 CBC 1 и BC 1 A 1 B 1 , следовательно, прямая BC 1 перпендикулярна плоскости A 1 B 1 C, и следовательно, BC 1 A 1 C. Также, A 1 CBD. Следовательно, прямая A 1 C перпендикулярна плоскости BC 1 D. Вычислительная же часть задачи особых трудностей не вызывает, так как h скр = EF находится как разность между диагональю куба и высотами двух одинаковых правильных пирамид A 1 AB 1 D 1 и CC 1 BD.

СПОСОБ IV.

Данный способ имеет достаточно широкое применение. Для задач средней и повышенной трудности его можно считать основным. Нет необходимости применять его только тогда, когда один из трех предыдущих способов работает проще и быстрее, так как в таких случаях способ IV может только усложнить решение задачи, или сделать его труднодоступным. Данный способ очень выгодно использовать в случае перпендикулярности скрещивающихся прямых, так как нет необходимости построения проекции одной из прямых на "экран"

Задача 5. Все та же "классическая" задача (с непересекающимися диагоналями двух смежных граней куба) перестает казаться сложной, как только находится "экран" - диагональное сечение куба.

Рисунок 14

Экран:

Рисунок 15

Рассмотрим плоскость A 1 B 1 CD. C 1 F (A 1 B 1 CD), т. к. C 1 FB 1 C и C 1 FA 1 B 1 . Тогда проекцией C 1 D на "экран" будет являться отрезок DF. Проведем EMDF. Отрезок EM и будет являться расстоянием между двумя непересекающимися диагоналями двух смежных граней. Находим EM из прямоугольного треугольника EDF. Ответ:.

Задача 6. В правильной треугольной пирамиде найти расстояние и угол между скрещивающимися прямыми: боковым ребром l и стороной основания a .

Рисунок 16

В данной и аналогичных ей задачах способ IV быстрее других способов приводит к решению, так как построив сечение, играющее роль "экрана", перпендикулярно AC (треугольник BDM), видно, что далее нет необходимости строить проекцию другой прямой (BM) на этот экран. DH - искомое расстояние. DH находим из треугольника MDB, используя формулы площади. Ответ: .

Пусть плоскость `alpha` параллельна плоскости `beta`, прямая `b` лежит в плоскости `beta`, точка `B` лежит на прямой `b`. Очевидно, что расстояние от точки `B` до плоскости `alpha` равно расстоянию от прямой `b` до плоскости `alpha` и равно расстоянию между плоскостями `alpha` и `beta`.

Рассмотрим две скрещивающиеся прямые `a` и `b`. Проведём через прямую `a` плоскость, параллельную прямой `b`. Через прямую `b` проведём плоскость, перпендикулярную плоскости `alpha`, пусть линия пересечения этих плоскостей `b_1` (эта прямая есть проекция прямой `b` на плоскость `alpha`). Точку пересечения прямых `a` и `b_1` обозначим `A`. Точка `A` является проекцией некоторой точки `B` прямой `b`. Из того, что `AB_|_alpha`, следует, что `AB_|_a` и `AB_|_b_1`; кроме того `b``||``b_1`, значит `AB_|_b` - . Прямая `AB` пересекает скрещивающиеся прямые `a` и `b` и перпендикулярна и той, и другой. Отрезок `AB` называется общим перпендикуляром двух скрещивающихся прямых.

Длина общего перпендикуляра скрещивающихся прямых равна расстоянию от любой точки прямой `b` до плоскости `alpha`.

* Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Пусть в пространстве задана прямая `l_1` с известным направляющим вектором `veca_1` (направляющим вектором прямой называется ненулевой вектор, параллельный этой прямой), прямая `l_2` с известным направляющим вектором `veca_2`, точки `A_1` и `A_2`, лежащие соответственно на `l_1` и `l_2`, кроме того, известен вектор `vec(A_1A_2)=vecr`. Пусть отрезок `P_1P_2` - общий перпендикуляр к `l_1` и `l_2` (см. рис. 9). Задача заключается в нахождении длины этого отрезка. Представим вектор `vec(P_1P_2)` в виде суммы `vec(P_1A_1)+vec(A_1A_2)+vec(A_2P_2)`. Затем, пользуясь коллинеарностью векторов `vec(P_1A_1)` и `veca_1`, `vec(A_2P_2)` и `veca_2`, получим для вектора `vec(P_1P_2)` представление `vec(P_1P_2)=xveca_1+yveca_2+vecr`, где `x` и `y` - неизвестные пока числа. Эти числа можно найти из условия перпендикулярности вектора `vec(P_1P_2)` векторам `veca_1` и `veca_2`, т. е. из следующей системы линейных уравнений:

x a → 1 + y a → 2 + r → · a → 1 = 0 , x a → 1 + y a → 2 + r → · a → 2 = 0 . \left\{\begin{array}{l}\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_1=0,\\\left(x{\overrightarrow a}_1+y{\overrightarrow a}_2+\overrightarrow r\right)\cdot{\overrightarrow a}_2=0.\end{array}\right.

После этого находим длину вектора `vec(P_1P_2):`

`P_1P_2=sqrt((xveca_1+yveca_2+vecr)^2)`.

Вычислить расстояние между скрещивающимися диагоналями двух соседних граней куба с ребром `a`.

Пусть дан куб `A...D_1` c ребром `a`. Найдём расстояние между прямыми `AD_1` и `DC_1` (рис. 10). Введём базис `veca=vec(DA)`, `vecb=vec(DC)`, `vecc=vec(DD_1)`. За направляющие векторы прямых `AD_1` и `DC_1` можно взять `vec(AD_1)=vecc-veca` и `vec(DC_1)=vecb+vecc`. Если `P_1P_2` - общий перпендикуляр к рассматриваемым прямым, то `vec(P_1P_2)=x(vecc-veca)+y(vecb+vecc)+veca`.

Составим систему уравнений для нахождения неизвестных чисел `x` и `y`:

x c → - a → + y b → + c → + a → · c → - a → = 0 , x c → - a → + y b → + c → + a → · b → + c → = 0 . \left\{\begin{array}{l}\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow c-\overrightarrow a\right)=0,\\\left(x\left(\overrightarrow c-\overrightarrow a\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a\right)\cdot\left(\overrightarrow b+\overrightarrow c\right)=0.\end{array}\right.

Приведём эту систему к равносильной:

2 x + y - 1 = 0 , x + 2 y = 0 . \left\{\begin{array}{l}2x+y-1=0,\\x+2y=0.\end{array}\right.

Отсюда находим `x=2/3`, `y=-1/3`. Тогда

`vec(P_1P_2)=2/3(vecc-veca)-1/3(vecb+vecc)+veca=1/3veca-1/3vecb+1/3vecc`,

Наряду с точкой и плоскостью. Это бесконечная фигура, которой можно соединить любые две точки в пространстве. Прямая всегда принадлежит какой-либо плоскости. Исходя из расположения двух прямых, следует применять разные методы поиска расстояния между ними.

Существует три варианта расположения двух прямых в пространстве друг относительно друга: они параллельны, пересекаются или . Второй вариант возможен, только если они в одной плоскости, не исключает принадлежности двум параллельным плоскостям. Третья ситуация говорит о том, что прямые лежат в разных параллельных плоскостях.

Чтобы найти расстояние между двумя параллельными прямыми, нужно определить длину перпендикулярного отрезка, соединяющего их в любых двух точках. Поскольку прямые имеют две одинаковые координаты, что следует из определения их параллельности, то уравнения прямых в двухмерном координатном пространстве можно записать так:
L1: а х + b у + с = 0;
L2: а х + b у + d = 0.
Тогда можно найти длину отрезка по формуле:
s = |с - d|/√(a² + b²), причем нетрудно заметить, что при С = D, т.е. совпадении прямых, расстояние будет равно нулю.

Понятно, что расстояние между пересекающимися прямыми в двухмерной координат не имеет смысла. Зато когда они расположены в разных плоскостях, его можно найти как длину отрезка, лежащего в плоскости, перпендикулярной им обеим. Концами этого отрезка будут точки, являющиеся проекциями любых двух точек прямых на эту плоскость. Иными , его длина равна расстоянию между параллельными плоскостями, содержащими эти прямые. Таким образом, если плоскости заданы общими уравнениями:
α: А1 х + В1 у + С1 z + Е = 0,
β: А2 х + В2 у + С2 z + F = 0,
расстояние между прямыми можно по формуле:
s = |Е – F|/√(|А1 А2| + В1 В2 + С1 С2).

Обратите внимание

Прямые вообще и скрещивающиеся в частности интересны не только математикам. Их свойства полезны во многих других областях: в строительстве и архитектуре, в медицине и в самой природе.

Совет 2: Как найти расстояние между двумя параллельными прямыми

Определение расстояния между двумя объектами, находящимися в одной или нескольких плоскостях, является одной из самых распространенных задач в геометрии. Руководствуясь общепринятыми методами, вы можете найти расстояние между двумя параллельными прямыми.

Инструкция

Параллельными называются прямые, лежащие в одной плоскости, которые либо не пересекаются, либо совпадают. Для нахождения расстояния между параллельными прямыми следует выбрать произвольную точку на одной из них, после чего опустить перпендикуляр ко второй прямой. Теперь остается лишь измерить длину получившегося отрезка. Длина соединяющего две параллельные прямые перпендикуляра и будет являться расстоянием между ними.

Обратите внимание на порядок проведения перпендикуляра от одной параллельной прямой к другой, поскольку от этого зависит точность рассчитанного расстояния. Для этого воспользуйтесь чертежным инструментом «треугольником» с прямым углом. Выберите точку на одной из прямых, приложите к ней одну из сторон треугольника, примыкающих к прямому углу (катет), а вторую сторону совместите с другой прямой. Остро заточенным карандашом проведите вдоль первого катета линию так, чтобы она достигла противоположной прямой.

Цели и задачи:

  • образовательная – формирование и развитие у учащихся пространственных представлений; выработка навыков решения задач на нахождение расстояния между скрещивающимися прямыми
  • воспитательная - воспитывать волю и настойчивость для достижения конечных результатов при нахождении расстояния между скрещивающимися прямыми; воспитывать любовь и интерес к изучению математики.
  • развивающая – развитие у учащихся логического мышления, пространственных представлений, развитие навыков самоконтроля.

Проект соответствует следующим пунктам тематического учебного плана школьного предмета.

  1. Скрещивающиеся прямые.
  2. Признак параллельности прямой и плоскости
  3. Ортогональная проекция в пространстве.
  4. Объем многогранников.

Вступление.

Скрещивающиеся прямые - это удивительно!

Если бы их не было, жизнь была бы во сто крат менее интересной. Так и хочется сказать, что если и стереометрию стоит изучать, то из-за того, что в ней есть скрещивающиеся прямые. Сколько у них глобальных, интереснейших свойств: в архитектуре, в строительстве, в медицине, в природе.

Так хочется, чтобы наше удивление перед уникальностью скрещивающихся прямых передалось и вам. Но как это сделать?

Может быть ответом на этот вопрос будет наш проект?

Известно, что длина общего перпендикуляра скрещивающихся прямых равна расстоянию между этими прямыми.

Теорема: Расстояние между двумя скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Следующая теорема дает один из способов нахождения расстояния и угла между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми равно расстоянию от точки, являющейся проекцией одной из данных прямых на перпендикулярную ей плоскость, до проекции другой прямой на эту же плоскость.

Основополагающий вопрос:

А можно найти расстояние между скрещивающимися прямыми без построения их общего перпендикуляра?

Рассмотрим задачу с кубом.

Почему с кубом? Да потому что в кубе скрыта вся геометрия, в том числе и геометрия скрещивающихся прямых.

Задача.

Ребро куба равно a . Найти расстояние между прямыми, на которых лежат скрещивающиеся диагонали двух смежных граней куба.

Применим различные методы исследования к данной задаче.

  • по определению;
  • методом проекций;
  • методом объемов;
  • методом координат.

Исследования.

Класс делится на группы по методу исследования задачи. Перед каждой группой стоит задача – показать и доказать применение данного метода для нахождения расстояния между скрещивающимися прямыми. Завершающим этапом исследования задачи являются защита проектов в виде презентаций, публикаций или сайтов. Ребята и учитель имеют возможность оценить проект каждой группы по критериям, разработанных для публикаций, презентаций.

Метод объемов.

  • построить пирамиду, в которой высота, опущенная из вершины этой пирамиды на плоскость основания, является искомым расстоянием между двумя скрещивающимися прямыми;
  • доказать, что эта высота и есть искомое расстояние;
  • найти объём этой пирамиды двумя;
  • способами и выразить эту высоту;

Этот метод очень интересен своей нестандартностью, красотой и индивидуальностью. Метод объёмов способствует развитию пространственного воображения и умению мысленно создавать представления о форме фигур.

В результате дополнительных построений мы получили пирамиду DAB 1 C.

В пирамиде DAB 1 C, высота, опущенная из вершины D на плоскость основания AB 1 C будет являться искомым расстоянием между скрещивающимися прямыми АС и DC 1 .

Рассмотрим пирамиду Вывод: Рассмотрим эту же пирамиду, но уже с вершиной в точке D:

Учитывая, что V1 = V2 , получим d=

Искомое расстояние.

Метод проекций.

  1. Выбираем плоскость, перпендикулярную одной из скрещивающихся прямых.
  2. Проецируем каждую прямую на эту плоскость.
  3. Расстояние между проекциями будет расстоянием между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми можно определить как расстояние между ортогональными проекциями этих прямых на плоскость проекций.

Использование определения скрещивающихся прямых.

Дополнительные построения: А1В, ВD, AK.

А 1 О ВD, ОС BD

BD пересекающимся прямым А 1 О и ОС