Боковая поверхность усеченного конуса является частью. Объемы и площади поверхностей усеченных пирамид и конусов. Полная поверхность усеченного конуса

Инструкция

Для того, чтобы оба способа были более понятными, можно привести пару примеров.

Пример 1: длина средней линии трапеции 10 см, ее площадь 100 см². Для нахождения высоты этой трапеции надо совершить :

h = 100/10 = 10 см

Ответ: высота данной трапеции 10 см

Пример 2: площадь трапеции 100 см², длины оснований равны 8 см и 12 см. Для нахождения высоты этой трапеции нужно выполнить действие:

h = (2*100)/(8+12) = 200/20 = 10 см

Ответ: высота данной трапеции 20 см

Обратите внимание

Существует несколько видов трапеций:
Равнобедренная трапеция - это такая трапеция, в которой боковые стороны равны между собой.
Прямоугольная трапеция - это трапеция, у которой один из внутренних углов равен 90 градусам.
Стоит отметить, что в прямоугольной трапеции высота совпадает с длиной стороны при прямом угле.
Вокруг трапеции можно описать окружность, или вписать ее внутрь данной фигуры. Вписать окружность можно лишь в том случае, если сумма оснований ее равна сумме противоположных сторон. Описать же окружность можно только вокруг равнобедренной трапеции.

Полезный совет

Параллелограмм является частным случаем трапеции, ведь определение трапеции никак не противоречит определению параллелограмма. Параллелограмм - это четырехугольник, противоположные стороны которого параллельны между собой. У трапеции же в определении речь ведется лишь о паре его сторон. Поэтому любой параллелограмм является и трапецией. Обратное утверждение неверно.

Источники:

  • как найти площадь трапеции формула

Совет 2: Как найти высоту трапеции, если известна площадь

Под трапецией подразумевается четырехугольник, у которого две из четырех его сторон параллельны между собой. Параллельные стороны являются основаниями данной , две другие же являются боковыми сторонами данной трапеции . Найти высоту трапеции , если известна ее площадь , будет очень легко.

Инструкция

Необходимо разобраться, как можно вычислить площадь исходной трапеции . Для этого несколько формул, в зависимости от исходных данных:S = ((a+b)*h)/2, где a и b - оснований трапеции , а h - ее высота (Высота трапеции - перпендикуляр, опущенный от одного основания трапеции к другому);
S = m*h, где m - линяя трапеции (Средняя линяя - отрезок, основаниями трапеции и соединяющий середины ее боковых сторон).

Для того, чтобы было понятнее, подобные задачи, можно рассмотреть :Пример 1: Дана трапеция, у которой площадь 68 см², средняя линяя которой равна 8 см, требуется найти высоту данной трапеции . Для того, чтобы решить данную задачу, требуется воспользоваться ранее выведенной формулой:
h = 68/8 = 8.5 смОтвет: высота данной трапеции составляет 8.5 смПример 2: Пусть у трапеции площадь равняется 120 см², длины оснований данной трапеции 8 см и 12 см соответственно, требуется найти высоту этой трапеции . Для этого надо применить одну из выведенных формул:
h = (2*120)/(8+12) = 240/20 = 12 смОтвет: высота заданной трапеции равна 12 см

Видео по теме

Обратите внимание

Любая трапеция обладает рядом свойств:

Средняя линяя трапеции равна полусумме ее оснований;

Отрезок, который соединяет между собой диагонали трапеции, равен половине разности его оснований;

Если через середины оснований провести прямую, то она пересечет точку пересечения диагоналей трапеции;

В трапецию можно вписать окружность в том случае, если сумма оснований данной трапеции равна сумме ее боковых сторон.

Пользуйтесь этими свойствами при решении задач.

Совет 3: Как найти площадь трапеции, если известны основания

По геометрическому определению трапецией является четырехугольник, у которого только одна пара сторон параллельна. Эти стороны являются ее основаниями . Расстояние между основаниями называется высотой трапеции . Найти площадь трапеции можно, используя геометрические формулы.

Инструкция

Измерьте основания и трапеции АВСД. Обычно их дается в задачи. Пусть в данном примере задачи основание АD (а) трапеции будет равно 10 см, основание BC (b) - 6 см, высота трапеции BK (h) - 8 см. Примените геометрическую для нахождения площади трапеции , если известны длины её оснований и высоты - S= 1/2 (a+b)*h, где: - a - величина основания AD трапеции ABCD,- b - величина основания BC,- h - величина высоты BK.


Площадь трапеции. Приветствую вас! В этой публикации мы рассмотрим указанную формулу. Почему она именно такая и как её понять. Если будет понимание, то и учить её вам нет необходимости. Если же вы просто хотите посмотреть эту формулу и при чём срочно, то сразу можете прокрутить страницу вниз))

Теперь подробно и по порядку.

Трапеция это четырёхугольник, две стороны этого четырёхугольника параллельны, две другие нет. Те, что не параллельны – это основания трапеции. Две другие называются боковыми сторонами.

Если боковые стороны равны, то трапеция называется равнобедренной. Если одна из боковых сторон перпендикулярна основаниям, то такая трапеция называется прямоугольной.

В классическом виде трапецию изображают следующим образом – большее основание находится внизу, соответственно меньшее вверху. Но никто не запрещает изображать её и наоборот. Вот эскизы:


Следующее важное понятие.

Средняя линия трапеции это отрезок, который соединяет середины боковых сторон. Средняя линия параллельна основаниям трапеции и равна их полусумме.

Теперь давайте вникнем глубже. Почему именно так?

Рассмотрим трапецию с основаниями a и b и со средней линией l , и выполним некоторые дополнительные построения: через основания проведём прямые, а через концы средней линии перпендикуляры до пересечения с основаниями:


*Буквенные обозначения вершин и других точек не введены умышленно, чтобы избежать лишних обозначений.

Посмотрите, треугольники 1 и 2 равны по второму признаку равенства треугольников, треугольники 3 и 4 тоже самое. Из равенства треугольников следует равенство элементов, а именно катетов (они обозначены соответственно синим и красным цветом).

Теперь внимание! Если мы мысленно «отрежем» от нижнего основания синий и красный отрезок, то у нас останется отрезок (это сторона прямоугольника) равный средней линии. Далее, если мы «приклеим» отрезанные синий и красный отрезок к верхнему основанию трапеции, то у нас получится также отрезок (это тоже сторона прямоугольника) равный средней линии трапеции.

Уловили? Получается, что сумма оснований будет равна двум средним линиям трапеции:

Посмотреть ещё одно объяснение

Сделаем следующее – построим прямую проходящую через нижнее основание трапеции и прямую, которая пройдёт через точки А и В:


Получим треугольники 1 и 2, они равны по стороне и прилегающим к ней углам (второй признак равенства треугольников). Это означает что полученный отрезок (на эскизе он обозначен синим) равен верхнему основанию трапеции.

Теперь рассмотрим треугольник:


*Средняя линия данной трапеции и средняя линия треугольника совпадают.

Известно, что треугольника равна половине параллельного ей основания, то есть:

Хорошо, разобрались. Теперь о площади трапеции.

Площадь трапеции формула:


Говорят: площадь трапеции равна произведению полусуммы её оснований и высоты.

То есть, получается, что она равна произведению средней линии и высоты:

Вы, наверное, уже заметили, что это очевидно. Геометрически это можно выразить так: если мы мысленно отрежем от трапеции треугольники 2 и 4 и положим их соответственно на треугольники 1 и 3:


То у нас получится прямоугольник по площади равный площади нашей трапеции. Площадь этого прямоугольника будет равна произведению средней линии и высоты, то есть можем записать:

Но дело тут не в записи, конечно, а в понимании.

Скачать (посмотреть) материал статьи в формате *pdf

На этом всё. Успеха вам!

С уважением, Александр.

Конус. Усеченный конус

Конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной кривой и точку вне кривой (рис.32).

Данная кривая называется направляющей , прямые – образующими , точка – вершиной конической поверхности.

Прямой круговой конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной окружности и точку на прямой, которая перпендикулярна плоскости окружности и проходит через ее центр. В дальнейшем эту поверхность будем кратко называть конической поверхностью (рис.33).

Конусом (прямым круговым конусом ) называется геометрическое тело, ограниченное конической поверхностью и плоскостью, которая параллельна плоскости направляющей окружности (рис.34).


Рис. 32 Рис. 33 Рис. 34

Конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг оси, содержащей один из катетов треугольника.

Круг, ограничивающий конус, называется его основанием . Вершина конической поверхности называется вершиной конуса. Отрезок, соединяющий вершину конуса с центром его основания, называется высотой конуса. Отрезки, образующие коническую поверхность, называются образующими конуса. Осью конуса называется прямая, проходящая через вершину конуса и центр его основания. Осевым сечением называется сечение, проходящее через ось конуса. Разверткой боковой поверхности конуса называется сектор, радиус которого равен длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса.

Для конуса верны формулы:

где R – радиус основания;

H – высота;

l – длина образующей;

S осн – площадь основания;

S бок

S полн

V – объем конуса.

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию конуса (рис.35).


Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг оси, содержащей боковую сторону трапеции, перпендикулярную основаниям.

Два круга, ограничивающие конус, называются его основаниями . Высотой усеченного конуса называется расстояние между его основаниями. Отрезки, образующие коническую поверхность усеченного конуса называются образующими . Прямая, проходящая через центры оснований, называется осью усеченного конуса. Осевым сечением называется сечение, проходящее через ось усеченного конуса.

Для усеченного конуса верны формулы:

(8)

где R – радиус нижнего основания;

r – радиус верхнего основания;

H – высота, l – длина образующей;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

V – объем усеченного конуса.

Пример 1. Сечение конуса параллельное основанию делит высоту в отношении 1:3, считая от вершины. Найти площадь боковой поверхности усеченного конуса, если радиус основания и высота конуса равны 9 см и 12 см.

Решение. Сделаем рисунок (рис. 36).

Для вычисления площади боковой поверхности усеченного конуса используем формулу (8). Найдем радиусы оснований О 1 А и О 1 В и образующую АВ.

Рассмотрим подобные треугольники SO 2 B и SO 1 A , коэффициент подобия , тогда

Отсюда

Так как то

Площадь боковой поверхности усеченного конуса равна:

Ответ: .

Пример2. Четверть круга радиуса свернута в коническую поверхность. Найти радиус основания и высоту конуса.

Решение. Четверить круга является разверткой боковой поверхности конуса. Обозначим r – радиус его основания, H – высота. Площадь боковой поверхности вычислим по формуле: . Она равна площади четверти круга: . Получим уравнение с двумя неизвестными r и l (образующая конуса). В данном случае образующая равна радиусу четверти круга R , значит, получим следующее уравнение: , откуда Зная радиус основания и образующую, найдем высоту конуса:

Ответ: 2 см, .

Пример 3. Прямоугольная трапеция с острым углом 45 О, меньшим основанием 3см и наклонной боковой стороной равной , вращается вокруг боковой стороны перпендикулярной основаниям. Найти объем полученного тела вращения.

Решение. Сделаем рисунок (рис. 37).

В результате вращения получим усеченный конус, чтобы найти его объем вычислим радиус большего основания и высоту. В трапеции O 1 O 2 AB проведем AC^O 1 B . В имеем: значит, этот треугольник равнобедренный AC =BC =3 см.

Ответ:

Пример 4. Треугольник со сторонами 13 см, 37 см и 40 см вращается вокруг внешней оси, которая параллельна большей стороне и находится от нее на расстоянии 3 см (Ось расположена в плоскости треугольника). Найти площадь поверхности полученного тела вращения.

Решение . Сделаем рисунок (рис. 38).

Поверхность полученного тела вращения состоит из боковых поверхностей двух усеченных конусов и боковой поверхности цилиндра. Для того чтобы вычислить эти площади необходимо знать радиусы оснований конусов и цилиндра (BE и OC ), образующие конусов (BC и AC ) и высоту цилиндра (AB ). Неизвестной является только CO . это расстояние от стороны треугольника до оси вращения. Найдем DC . Площадь треугольника ABC с одной стороны равна произведению половины стороны AB на высоту, проведенную к ней DC , с другой стороны, зная все стороны треугольника, его площадь вычислим по формуле Герона.

– это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии.Основаниями конуса являются геометрические круги.

Усеченный конус может быть получен в результате вращения прямоугольной трапеции вокруг ее боковой стороны, которая является ее высотой. Границей конуса является круг радиуса R , круг радиуса r и боковая поверхность конуса. Боковую поверхность конуса описывает боковая сторона трапеции во время ее вращения.

Площадь боковой поверхности усеченного конуса через направляющую и радиусы его оснований

При нахождении площади боковую поверхность усеченного конуса целесообразней рассматривать как разность боковой поверхности конуса и боковой поверхности отсеченного конуса.

Пусть от данного конуса AMB отсекли конус A`MB` . Необходимо вычислить боковую площадь усеченного конуса AA`B`B . Известно, что радиусы его оснований AO=R, A`O` =r , образующая равна L .Обозначим MB` за x . Тогда боковая поверхность конуса A`MB` будет равна πrx. А боковая поверхность конуса AMB будет равна πR(L+x).
Тогда боковую поверхность усеченного конуса AA`B`B можно выразить через разность боковой поверхности конуса AMB и конуса A`MB` :

Треугольники OMB и O`MB` – подобны по равенству углов ∠{MOB} = ∠{MO`B`} и ∠{OMB} = ∠{O`MB`} . Из подобия этих треугольников следует:
Воспользуемся производной пропорции. Имеем:
Отсюда находим x :
Подставив это выражение в формулу площади боковой поверхности, имеем:
Таким образом, площадь боковой поверхности усеченного конуса равна произведению числа π на его направляющую и сумму радиусов его оснований.

Пример расчета площади боковой поверхности усеченного конуса, если известны его радиус и образующая
Радиус большего основания, образующая и высота усеченного конуса равны 7, 5 и 4 см соответственно. Найдите площадь боковой поверхности конуса.
Осевое сечение усеченного конуса представляет собой равнобедренную трапецию, с основаниями 2R и 2r . Образующая усеченного конуса, являющаяся боковой стороной трапеции, высота, опушенная на большое основание и разность радиусов основания усеченного конуса, образуют египетский треугольник. Это прямоугольный треугольник с соотношением сторон 3:4:5. По условию задачи образующая равна 5, а высота – 4, тогда разность радиусов основания усеченного конуса будет равна 3.
Имеем:
L=5
R=7
R=4
Формула площади боковой поверхности усеченного конуса имеет следующий вид:

Подставив значения, имеем:

Площади боковой поверхности усеченного конуса через направляющую и средний радиус

Средний радиус усеченного конуса равен половине суммы радиусов его оснований:


Тогда формула площади боковой поверхности усеченного конуса может быть представлена следующим образом:

Площадь боковой поверхности усеченного конуса равна произведению длины окружности среднего сечения на его образующую.

Площади боковой поверхности усеченного конуса через радиусы его основания и угол наклона образующей к плоскости основания

Если меньшее основание ортогонально спроектировать на большее основание, то тогда проекция боковой поверхности усеченного конуса будет иметь вид кольца, площадь которого вычисляется по формуле:

Тогда:

Площади боковой поверхности усеченного конуса по Архимеду


Площадь боковой поверхности усеченного конуса равна площади такого круга, радиус которого является средней пропорциональной между образующей и суммой радиусов его оснований

Полная поверхность усеченного конуса

Полная поверхность конуса – это сумма площади его боковой поверхности и площади оснований конуса:

Основаниями конуса является круги с радиусом R и r . Их площадь равна произведению числа на квадрат их радиуса:


Площадь боковой поверхности вычисляется по формуле:

Тогда площадь полной поверхности усеченного конуса равна:

Формула имеет следующий вид:

Пример расчета площади полной поверхности усеченного конуса, если известны его радиус и образующая
Радиус основания усеченного конуса 1 и 7 дм, а диагонали осевого сечения взаимно перпендикулярны. Найдите площадь полную площадь усеченного конуса
Осевое сечение усеченного конуса представляет собой равнобедренную трапецию, с основаниями 2R и 2r . То есть основания трапеции равны 2 и 14 дм соответственно. Так как диагонали трапеции взаимно перпендикулярны, то высота равна полусумме ее оснований. Тогда:

Образующая усеченного конуса, являющаяся боковой стороной трапеции, высота, опушенная на большое основание и разность радиусов основания усеченного конуса, образуют прямоугольный треугольник.
По теореме Пифагора найдем образующую усеченного конуса:

Формула площади полной поверхности усеченного конуса имеет следующий вид:

Подставив значения из условия задачи и найденные значения, имеем: