Уравнения с двумя переменными примеры. Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения. Решение линейного уравнения

- (Semicolon) Одиночный разделительный знак препинания [точка, запятая, двоеточие, тире, многоточие и т.д.], служащий для внутреннего членения предложения. В русском языке употребляется в сложных предложениях, между однородными членами… … Шрифтовая терминология

Знак препинания (;), употребляющийся в сложном, реже в простом предложении для разделения относительно самостоятельных или значительно распространенных его частей … Большой Энциклопедический словарь

Сущ., кол во синонимов: 1 знак (138) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

точка с запятой - Печатный знак ";", применяемый для разделения предложения на две смысловые части. Тематики информационные технологии в целом EN semicolon … Справочник технического переводчика

Точка с запятой - как условный знак в библиогр. описании употребляется в следующих случаях: 1) перед каждый новым заглавием в сведениях о заглавии авт. сборника произведений без общего заглавия (напр.: Маккефри Э. Майор запаса; Планета под следствием; Ловушка для… … Издательский словарь-справочник

Знак препинания (;), употребляющийся в сложном, реже в простом предложении для разделения относительно самостоятельных или значительно распространённых его частей. * * * ТОЧКА С ЗАПЯТОЙ ТОЧКА С ЗАПЯТОЙ, знак препинания (;), употребляющийся в… … Энциклопедический словарь

Знак препинания (См. Знаки препинания), состоящий из точки и расположенной под ней запятой (;). Ставится в бессоюзном сложном предложении между составляющими его частями (если они распространены и имеют внутри себя запятые); в… … Большая советская энциклопедия

Знак препинания, состоящий из точки и расположенной под ней запятой, который ставится: 1) в бессоюзном сложном предложении между составляющими его частями (обычно если они значительно распространены и имеют внутри себя запятые). Бледно серое небоСловарь лингвистических терминов

Знак препинания. Сигнал более значимой границы, чем запятая: смысловой независимости и структурной сложности соединяемых частей в ряду однородных членов или в сложном предложении: Мчатся тучи, вьются тучи; Невидимкою луна Освещает снег летучий;… … Литературная энциклопедия

Точка с запятой в сложносочиненном предложении - Если части сложносочиненного предложения значительно распространены (часто они представляют собой соединение сложноподчиненных предложений) или имеют внутри себя запятые, то между такими частями ставится точка с запятой (чаще перед союзами а … Справочник по правописанию и стилистике

Книги

  • Комплект таблиц. Русский язык. Синтаксис. 5-11 классы (19 таблиц) , . Типы сложных предложений. Синтаксический разбор словосочетаний. Главные члены предложения. Второстепенные члены предложения. Синтаксический разбор предложения. Слова-предложения ДА, НЕТ. …
  • Слишком большое сходство (сборник) , Виктор Пронин. Кто из этих пятерых мужчин убийца? Кто убил шестого во время их традиционной поездки на охоту? Все обстоятельства этой злосчастной вылазки известны, все подробности жизни каждого из охотников…

Равенство f(х; у) = 0 представляет уравнение с двумя переменными. Решением такого уравнения является пара значений переменных, которая обращает уравнение с двумя переменными в верное равенство.

Если перед нами уравнение с двумя переменными, то в его записи в силу традиции на первое место мы должны поставить х, на второе – у.

Рассмотрим уравнение х – 3у = 10. Пары (10; 0), (16; 2), (-2; -4) являются решениями рассматриваемого уравнения, в то время как пара (1; 5) решением не является.

Чтобы найти другие пары решений данного уравнения, необходимо одну переменную выразить посредством другой – например, х через у. В результате мы получим уравнение
х = 10 + 3у. Вычислим значения х, выбрав произвольные значения у.

Если у = 7, то х = 10 + 3 ∙ 7 = 10 + 21 = 31.

Если у = -2, то х = 10 + 3 ∙ (-2) = 10 – 6 = 4.

Т.о., пары (31; 7), (4; -2) также являются решениями заданного уравнения.

Если уравнения с двумя переменными имеют одинаковые корни, то такие уравнения называются равносильными.

Для уравнений с двумя переменными справедливы теоремы о равносильных преобразованиях уравнений.

Рассмотрим график уравнения с двумя переменными.

Пусть дано уравнение с двумя переменными f(х; у) = 0. Все его решения можно изобразить точками на координатной плоскости, получив некоторое множество точек плоскости. Это множество точек плоскости и называется графиком уравнения f(х; у) = 0.

Так, графиком уравнения у – х 2 = 0 является парабола у = х 2 ; графиком уравнения у – х = 0 является прямая; графиком уравнения у – 3 = 0 является прямая, параллельная оси х, и др.

Уравнение вида ax + by = c, где x и y – переменные, а a, b и c – числа, называется линейным; числа a, b называются коэффициентами при переменных, с – свободным членом.

Графиком линейного уравнения ax + by = c является:

Построим график уравнения 2х – 3у = -6.

1. Т.к. ни один из коэффициентов при переменных не равен нулю, то графиком данного уравнения будет прямая.

2. Чтобы построить прямую, нам необходимо знать минимум две ее точки. Подставим в уравнения значения х и получим значения у и наоборот:

если х = 0, то у = 2; (0 ∙ х – 3у = -6);

если у = 0, то х = -3; (2х – 3 ∙ 0 = -6).

Итак, мы получили две точки графика: (0; 2) и (-3; 0).

3.Проведем прямую через полученные точки и получим график уравнения
2х – 3у = -6.

Если линейное уравнение ax + by = c имеет вид 0 ∙ х + 0 ∙ y = c, то мы должны рассмотреть два случая:

1. с = 0. В таком случае уравнению удовлетворяет любая пара (х; у), а потому графиком уравнения является вся координатная плоскость;

2. с ≠ 0. В таком случае уравнение не имеет решения, значит, его график не содержит ни одной точки.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

§ 1 Отбор корней уравнения при реальных ситуациях

Рассмотрим такую реальную ситуацию:

Мастер и ученик вместе изготовили на заказ 400 деталей. Причём мастер работал 3 дня, а ученик 2 дня. Сколько деталей изготовил каждый?

Составим алгебраическую модель данной ситуации. Пусть мастер изготавливает за 1 деньхдеталей. А ученик у деталей. Тогда мастер за 3 дня изготовит 3х деталей, а ученик изготовит за 2 дня 2у деталей. Вместе они изготовят 3х + 2удеталей. Так как по условию всего изготовлено 400 деталей, то получим уравнение:

Полученное уравнение называют линейным уравнением с двумя переменными. Здесь нам надо найти пару чисел х и у, при которых уравнение примет вид верного числового равенства. Заметим, что если х= 90, у = 65, то получим равенство:

3 ∙ 90 + 65 ∙ 2 = 400

Так как получено верное числовое равенство, то пара чисел 90 и 65 будет являться решением этого уравнения. Но найденное решение не единственно. Если х = 96 и у = 56, то получаем равенство:

96 ∙ 3 + 56 ∙ 2 = 400

Это тоже верное числовое равенство, а, значит, пара чисел 96 и 56 так же является решением этого уравнения. А вот пара чисел х= 73и у= 23 не будет являться решением этого уравнения. В самом деле, 3 ∙ 73 + 2 ∙ 23 = 400 даст нам неверное числовое равенство 265 = 400.Необходимо отметить, что если рассматривать уравнение применительно к данной реальной ситуации, то будут существовать пары чисел, которые, являясь решением данного уравнения, не будут являться решением задачи. Например, пара чисел:

х = 200 и y = -100

является решением уравнения, но ученик не может сделать -100 деталей, а поэтому такая пара чисел ответом на вопрос задачи быть не может. Таким образом, в каждой конкретной реальной ситуации необходимо разумно подходить к отбору корней уравнения.

Подведём первые итоги:

Уравнение вида ах + bу + с = 0, где а, b, с - любые числа, называют линейным уравнением с двумя переменными.

Решением линейного уравнения с двумя переменными называют пару чисел соответствующих х и у, при которых уравнение обращается в верное числовое равенство.

§ 2 График линейного уравнения

Сама запись пары (х;у) наталкивает нас на мысль о возможности изображения её в виде точки с координатами хи у на плоскости. А значит, мы можем получить геометрическую модель конкретной ситуации. Например, рассмотрим уравнение:

2х + у - 4 = 0

Подберём несколько пар чисел, которые будут являться решениями этого уравнения и построим точки с найденными координатами. Пусть это будут точки:

А(0; 4), В(2; 0), С(1; 2), D(-2; 8), Е(- 1; 6).

Заметим, что все точки лежат на одной прямой. Такую прямую называют графиком линейного уравнения с двумя переменными. Она является графической (или геометрической) моделью данного уравнения.

Если пара чисел (х;у) является решением уравнения

ах + ву + с = 0, то точка М(х;у) принадлежит графику уравнения. Можно сказать и наоборот: если точка М(х;у) принадлежат графику уравнения ах + ву + с = 0, то пара чисел (х;у) является решением этого уравнения.

Из курса геометрии мы знаем:

Для построения прямой необходимо 2 точки, поэтому для построения графика линейного уравнения с двумя переменными достаточно знать всего 2 пары решений. Но угадывание корней процедура далеко не всегда удобная, не рациональная. Можно действовать и по другому правилу. Поскольку абсцисса точки (переменная х) это независимая переменная, то можно придать ей любое удобное значение. Подставив это число в уравнение, мы найдём значение переменной у.

Например, пусть дано уравнение:

Пусть х = 0, тогда получим 0 - у + 1 = 0 или у = 1. Значит, если х = 0, то у = 1. Пара чисел (0;1) - решение этого уравнения. Зададим для переменной х ещё одно значение х = 2. Тогда получим 2 - у + 1 = 0 или у = 3. Пара чисел (2;3) также является решением этого уравнения. По двум найденным точкам уже можно построить график уравнения х - у + 1 =0.

Можно поступить и так: сначала придать некоторое конкретное значение переменной у, а уж потом вычислить значение х.

§ 3 Система уравнений

Найдите два натуральных числа, сумма которых 11, а разность 1.

Для решения этой задачи сначала составим математическую модель (а именно алгебраическую). Пусть первое число х, а второе - у. Тогда сумма чисел х + у = 11 и разность чисел х - у = 1. Так как в обоих уравнениях речь идёт об одних и тех же числах, то данные условия должны выполниться одновременно. Обычно в таких случаях используют специальную запись. Уравнения записывают одно под другим и объединяют фигурной скобкой.

Такую запись называют системой уравнений.

Теперь построим множества решений каждого уравнения, т.е. графики каждого из уравнений. Возьмём первое уравнение:

Если х =4, то у = 7. Если х = 9, то у = 2.

Через точки (4;7) и (9;2) проведём прямую.

Возьмём второе уравнение х - у = 1. Если х = 5, то у = 4. Если х = 7, то у = 6. Через точки (5;4) и (7;6) так же проведём прямую. Получили геометрическую модель задачи. Интересующая нас пара чисел (х;у) должна являться решением обоих уравнений. На рисунке мы видим единственную точку, которая лежит на обеих прямых, это - точка пересечения прямых.

Её координаты (6;5). Поэтому решением задачи будет: первое искомое число 6, второе 5.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.