Вычислить площадь поверхности образованной вращением кубической параболы. Вычисление площади поверхности вращения

§1. Системы линейных уравнений.

Система вида

называется системой m линейных уравнений сn неизвестными.

Здесь
- неизвестные,- коэффициенты при неизвестных,
- свободные члены уравнений.

Если все свободные члены уравнений равны нулю, система называется однородной .Решением системы называется совокупность чисел
, при подстановке которых в систему вместо неизвестных все уравнения обращаются в тождества. Система называетсясовместной , если она имеет хотя бы одно решение. Совместная система, имеющая единственное решение, называетсяопределенной . Две системы называютсяэквивалентными , если множества их решений совпадают.

Система (1) может быть представлена в матричной форме с помощью уравнения

(2)

.

§2. Совместность систем линейных уравнений.

Назовем расширенной матрицей системы (1) матрицу

Теорема Кронекера - Капелли . Система (1) совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы:

.

§3. Решение систем n линейных уравнений с n неизвестными.

Рассмотрим неоднородную систему n линейных уравнений сn неизвестными:

(3)

Теорема Крамера .Если главный определитель системы (3)
, то система имеет единственное решение, определяемое по формулам:

т.е.
,

где - определитель, получаемый из определителязаменой-го столбца на столбец свободных членов.

Если
, а хотя бы один из≠0, то система решений не имеет.

Если
, то система имеет бесконечно много решений.

Систему (3) можно решить, используя ее матричную форму записи (2). Если ранг матрицы А равенn , т.е.
, то матрицаА имеет обратную
. Умножив матричное уравнение
на матрицу
слева, получим:

.

Последнее равенство выражает способ решения систем линейных уравнений с помощью обратной матрицы.

Пример. Решить систему уравнений с помощью обратной матрицы.

Решение. Матрица
невырожденная, так как
, значит, существует обратная матрица. Вычислим обратную матрицу:
.


,

Задание . Решить систему методом Крамера.

§4. Решение произвольных систем линейных уравнений.

Пусть дана неоднородная система линейных уравнений вида (1).

Предположим, что система совместна, т.е. выполнено условие теоремы Кронекера-Капелли:
. Если ранг матрицы
(числу неизвестных), то система имеет единственное решение. Если
, то система имеет бесконечно много решений. Поясним.

Пусть ранг матрицы r (A )= r < n . Поскольку
, то существует некоторый ненулевой минор порядкаr . Назовем его базисным минором. Неизвестные, коэффициенты которых образуют базисный минор, назовем базисными переменными. Остальные неизвестные назовем свободными переменными. Переставим уравнения и перенумеруем переменные так, чтобы этот минор располагался в левом верхнем углу матрицы системы:

.

Первые r строк линейно независимы, остальные выражаются через них. Следовательно, эти строки (уравнения) можно отбросить. Получим:

Дадим свободным переменным произвольные числовые значения: . Оставим в левой части только базисные переменные, свободные перенесем в правую часть.

Получили систему r линейных уравнений сr неизвестными, определитель которой отличен от 0. Она имеет единственное решение.

Эта система называется общим решением системы линейных уравнений (1). Иначе: выражение базисных переменных через свободные называется общим решением системы. Из него можно получить бесконечное множествочастных решений , придавая свободным переменным произвольные значения. Частное решение, полученное из общего при нулевых значениях свободных переменных называетсябазисным решением . Число различных базисных решений не превосходит
. Базисное решение с неотрицательными компонентами называетсяопорным решением системы.

Пример .

,r =2.

Переменные
- базисные,
- свободные.

Сложим уравнения; выразим
через
:

- общее решение.

- частное решение при
.

- базисное решение, опорное.

§5. Метод Гаусса.

Метод Гаусса - это универсальный метод исследования и решения произвольных систем линейных уравнений. Он состоит в приведении системы к диагональному (или треугольному) виду путем последовательного исключения неизвестных с помощью элементарных преобразований, не нарушающих эквивалентности систем. Переменная считается исключенной, если она содержится только в одном уравнении системы с коэффициентом 1.

Элементарными преобразованиями системы являются:

Умножение уравнения на число, отличное от нуля;

Сложение уравнения, умноженного на любое число, с другим уравнением;

Перестановка уравнений;

Отбрасывание уравнения 0 = 0.

Элементарные преобразования можно совершать не над уравнениями, а над расширенными матрицами получающихся эквивалентных систем.

Пример .

Решение. Выпишем расширенную матрицу системы:

.

Выполняя элементарные преобразования, приведем левую часть матрицы к единичному виду: на главной диагонали будем создавать единицы, а вне ее - нули.









Замечание . Если при выполнении элементарных преобразований получено уравнение вида 0= к (где к 0), то система несовместна.

Решение систем линейных уравнений методом последовательного исключения неизвестных можно оформлять в виде таблицы .

Левый столбец таблицы содержит информацию об исключенных (базисных) переменных. Остальные столбцы содержат коэффициенты при неизвестных и свободные члены уравнений.

В исходную таблицу записывают расширенную матрицу системы. Далее приступают к выполнению преобразований Жордана:

1. Выбирают переменную , которая станет базисной. Соответствующий столбец называют ключевым. Выбирают уравнение, в котором эта переменная останется, будучи исключенной из других уравнений. Соответствующую строку таблицы называют ключевой. Коэффициент, стоящий на пересечении ключевой строки и ключевого столбца, называют ключевым.

2. Элементы ключевой строки делят на ключевой элемент.

3. Ключевой столбец заполняют нулями.

4. Остальные элементы вычисляют по правилу прямоугольника. Составляют прямоугольник, в противоположных вершинах которого находятся ключевой элемент и пересчитываемый элемент; из произведения элементов, стоящих на диагонали прямоугольника с ключевым элементом, вычитают произведение элементов другой диагонали, полученную разность делят на ключевой элемент.

Пример . Найти общее решение и базисное решение системы уравнений:

Решение.

Общее решение системы:

Базисное решение:
.

Перейти от одного базиса системы к другому позволяет преобразование однократного замещения: вместо одной из основных переменных в базис вводят одну из свободных переменных. Для этого в столбце свободной переменной выбирают ключевой элемент и выполняют преобразования по указанному выше алгоритму.

§6. Нахождение опорных решений

Опорным решением системы линейных уравнений называется базисное решение, не содержащее отрицательных компонент.

Опорные решения системы находят методом Гаусса при выполнении следующих условий.

1. В исходной системе все свободные члены должны быть неотрицательны:
.

2. Ключевой элемент выбирают среди положительных коэффициентов.

3. Если при переменной, вводимой в базис, имеется несколько положительных коэффициентов, то в качестве ключевой строки берется та, в которой отношение свободного члена к положительному коэффициенту будет наименьшим.

Замечание 1 . Если в процессе исключения неизвестных появится уравнение, в котором все коэффициенты неположительны, а свободный член
, то система не имеет неотрицательных решений.

Замечание 2 . Если в столбцах коэффициентов при свободных переменных нет ни одного положительного элемента, то переход к другому опорному решению невозможен.

Пример.

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипсаВокруг оси Ох.

Таким образом,

530. Найти площадь поверхности, образованной вращением вокруг оси Ox дуги синусоиды у = sin х от точки X = 0 до точки X = It.

531. Вычислить площадь поверхности конуса с высотой h и радиусом г.

532. Вычислить площадь поверхности, образованной

вращением астроиды х3 -)- у* — а3 вокруг оси Ох.

533. Вычислить площадь поверхности, образованной цращением петли кривой 18 уг — х (6 — х)г вокруг оси Ох.

534. Найти поверхность тора, производимого вращением круга X2 - j - (у—З)2 = 4 вокруг оси Ох.

535. Вычислить площадь поверхности, образованной вращением окружности X = a cost, y = asint вокруг оси Ох.

536. Вычислить площадь поверхности, образованной вращением петли кривой х = 9t2, у = St — 9t3 вокруг оси Ох.

537. Найти площадь поверхности, образованной вращением дуги кривой х = е*sint, у = el cost вокруг оси Ox

от t = 0 до t = —.

538. Показать, что поверхность, производимая вращением дуги циклоиды х = a (q> —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоидыВокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискатыВокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривойИ осью Ох.

542. Найти площадь области, ограниченной кривой

И осью Ох.

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

петли:

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

И осью Ох.

548. Найти площадь области, ограниченной кривой

И осью Ох.

549. Найти площадь области, ограниченной осью Oxr

прямойИ кривой

Приветствую вас, уважаемые студенты вуза Аргемоны!

Сегодня мы продолжим учиться материализации предметов. В прошлый раз мы вращали плоские фигуры и получали объёмные тела. Некоторые из них - очень даже заманчивые и полезные. Думаю, что многому, что изобретает маг, можно в дальнейшем найти применение.

Сегодня мы будет вращать кривые. Понятно, что таким образом мы можем получить какой-то предмет с очень тонкими гранями (колбочка или флакон для зелий, ваза для цветов, стакан для напитков и т.п.), потому как вращающаяся кривая именно такого рода предметы и может сотворить. Другими словами, вращением кривой мы можем получить какую-то поверхность - замкнутую со всех сторон или нет. Почему прямо сейчас вспомнилась дырявая чаша, из которой всё время пил сэр Шурф Лонли-Локли.

Вот мы и сотворим дырявую чашу и недырявую, и подсчитаем площадь сотворённой поверхности. Думаю, для чего-то она (вообще площадь поверхности) ведь будет нужна - ну хотя бы для нанесения специальной магической краски. А с другой стороны, площади магических артефактов могут потребоваться для расчёта приложенных к ним магических сил или ещё чего-то. Мы научимся это находить, а уж где применить - найдём.

Итак, форму чаши вполне нам может дать кусок параболы. Возьмём самую простейшую y=x 2 на промежутке . Видно, что при вращении её вокруг оси OY получается как раз чаша. Без дна.

Заклинание для расчёта площади поверхности вращения выглядит следующим образом:

Здесь |y| - это расстояние от оси вращения до любой точки кривой, которая вращается. Как известно, расстояние - это перпендикуляр.
Немного труднее со вторым элементом заклинания: ds - это дифференциал дуги. Эти слова нам ничего не дают, поэтому не будем заморачиваться, а перейдём на язык формул, где этот дифференциал явно представлен для всех известных нам случаев:
- декартовой системы координат;
- записи кривой в параметрическом виде;
- полярной системы координат.

Для нашего случая расстояние от оси вращения до любой точки на кривой равно х. Считаем площадь поверхности получившейся дырявой чаши:

Чтобы сделать чашу с дном, нужно взять ещё кусочек, но другой кривой: на интервале это линия y=1.

Ясно, что при её вращении вокруг оси OY получится донышко чаши в виде круга единичного радиуса. И мы знаем, как считается площадь круга (по формуле пи*r^2. Для нашего случая площадь круга будет равна пи), но вычислим его по новой формуле - для проверки.
Расстояние от оси вращения до любой точки этого кусочка кривой также равно х.

Ну вот, расчёты наши верны, что радует.

А теперь домашнее задание .

1. Найти площадь поверхности, полученной вращением ломаной ABC, где A=(1; 5), B=(1; 2), C=(6; 2), вокруг оси ОХ.
Совет. Записать все отрезки в параметрическом виде.
AB: x=1, y=t, 2≤t≤5
BC: x=t, y=2, 1≤t≤6
Кстати, на что похож получившийся предмет?

2. Ну а теперь придумайте что-то сами. Трёх предметов, думаю, хватит.

Поэтому сразу перейду к основным понятиям и практическим примерам.

Посмотрим на лаконичную картинку

И вспомним: что можно вычислить с помощью определённого интеграла ?

В первую очередь, конечно, площадь криволинейной трапеции . Знакомо со школьных времён.

Если же данная фигура вращается вокруг координатной оси, то речь уже идёт о нахождении объёма тела вращения . Тоже просто.

Что ещё? Не так давно была рассмотрена задача о длине дуги кривой .

И сегодня мы научимся рассчитывать ещё одну характеристику – ещё одну площадь. Представьте, что линия вращается вокруг оси . В результате этого действия получается геометрическая фигура, называемая поверхностью вращения . В данном случае она напоминает такой горшок без дна. И без крышки. Как бы сказал ослик Иа-Иа, душераздирающее зрелище =)

Чтобы исключить двусмысленную трактовку, сделаю занудное, но важное уточнение:

с геометрической точки зрения наш «горшок» имеет бесконечно тонкую стенку и две поверхности с одинаковыми площадями – внешнюю и внутреннюю. Так вот, все дальнейшие выкладки подразумевают площадь только внешней поверхности .

В прямоугольной системе координат площадь поверхности вращения рассчитывается по формуле:

или, если компактнее: .

К функции и её производной предъявляются те же требования, что и при нахождении длины дуги кривой , но, кроме того, кривая должна располагаться выше оси . Это существенно! Нетрудно понять, что если линия располагается под осью , то подынтегральная функция будет отрицательной : , и поэтому к формуле придётся добавить знак «минус» дабы сохранить геометрический смысл задачи.

Рассмотрим незаслуженно обойденную вниманием фигуру:

Площадь поверхности тора

В двух словах, тор – это бублик . Хрестоматийный пример, рассматриваемый практически во всех учебниках по матану, посвящён нахождению объёма тора, и поэтому в целях разнообразия я разберу более редкую задачу о площади его поверхности . Сначала с конкретными числовыми значениями:

Пример 1

Вычислить площадь поверхности тора, полученного вращением окружности вокруг оси .

Решение : как вы знаете, уравнение задаёт окружность единичного радиуса с центром в точке . При этом легко получить две функции:

– задаёт верхнюю полуокружность;
– задаёт нижнюю полуокружность:

Суть кристально прозрачна: окружность вращается вокруг оси абсцисс и образует поверхность бублика. Единственное, здесь во избежание грубых оговорок следует проявить аккуратность в терминологии: если вращать круг , ограниченный окружностью , то получится геометрическое тело , то есть сам бублик. И сейчас разговор о площади его поверхности , которую, очевидно, нужно рассчитать как сумму площадей:

1) Найдём площадь поверхности, которая получается вращением «синей» дуги вокруг оси абсцисс. Используем формулу . Как я уже неоднократно советовал, действия удобнее проводить поэтапно:

Берём функцию и находим её производную :

И, наконец, заряжаем результат в формулу:

Заметьте, что в данном случае оказалось рациональнее удвоить интеграл от чётной функции по ходу решения, нежели предварительно рассуждать о симметрии фигуры относительно оси ординат.

2) Найдём площадь поверхности, которая получается вращением «красной» дуги вокруг оси абсцисс. Все действия будут отличаться фактически только одним знаком. Оформлю решение в другом стиле, который, само собой, тоже имеет право на жизнь:


3) Таким образом, площадь поверхности тора:

Ответ :

Задачу можно было решить в общем виде – вычислить площадь поверхности тора, полученного вращением окружности вокруг оси абсцисс, и получить ответ . Однако для наглядности и бОльшей простоты я провёл решение на конкретных числах.

Если вам необходимо рассчитать объём самого бублика, пожалуйста, обратитесь к учебнику, в качестве экспресс-справки:

Согласно теоретической ремарке, рассматриваем верхнюю полуокружность. Она «прорисовывается» при изменении значения параметра в пределах (легко видеть, что на данном промежутке), таким образом:

Ответ :

Если решить задачу в общем виде, то получится в точности школьная формула площади сферы , где – её радиус.

Что-то больно простая задачка, даже стыдно стало…. предлагаю вам исправить такую недоработку =)

Пример 4

Вычислить площадь поверхности, полученной вращением первой арки циклоиды вокруг оси .

Задание креативное. Постарайтесь вывести или интуитивно догадаться о формуле вычисления площади поверхности, полученной вращением кривой вокруг оси ординат. И, конечно, снова следует отметить преимущество параметрических уравнений – их не нужно как-то видоизменять; не нужно заморачиваться с нахождением других пределов интегрирования.

График циклоиды можно посмотреть на странице Площадь и объем, если линия задана параметрически . Поверхность вращения будет напоминать… даже не знаю с чем сравнить… что-то неземное – округлой формы с остроконечным углублением посередине. Вот для случая вращения циклоиды вокруг оси ассоциация в голову мгновенно пришла – продолговатый мяч для игры в регби.

Решение и ответ в конце урока.

Завершаем наш увлекательный обзор случаем полярных координат . Да, именно обзор, если вы заглянете в учебники по математическому анализу (Фихтенгольца, Бохана, Пискунова, др. авторов), то сможете раздобыть добрый десяток (а то и заметно больше) стандартных примеров, среди которых вполне возможно найдётся нужная вам задача.

Как вычислить площадь поверхности вращения,
если линия задана в полярной системе координат?

Если кривая задана в полярных координатах уравнением , и функция имеет непрерывную производную на данном промежутке, то площадь поверхности, полученной вращением данной кривой вокруг полярной оси, рассчитывается по формуле , где – угловые значения, соответствующие концам кривой.

В соответствии с геометрическим смыслом задачи подынтегральная функция , а это достигается только при условии ( и заведомо неотрицательны). Следовательно, необходимо рассматривать значения угла из диапазона , иными словами кривая должна располагаться выше полярной оси и её продолжения. Как видите, та же история, что и в двух предыдущих параграфах.

Пример 5

Вычислить площадь поверхности, образованной вращением кардиоиды вокруг полярной оси.

Решение : график данной кривой можно посмотреть в Примере 6 урока о полярной системе координат . Кардиоида симметрична относительно полярной оси, поэтому рассматриваем её верхнюю половинку на промежутке (что, собственно, обусловлено и вышесказанным замечанием).

Поверхность вращения будет напоминать яблочко.

Техника решения стандартна. Найдём производную по «фи»:

Составим и упростим корень:

Надеюсь, с заштатными

Данная формула называется формулой объема тела по площади параллельных сечений.

Пример. Найти объем эллипсоида x 2 + y 2 + z 2 = 1 . a 2b 2c 2

Рассекая эллипсоид плоскостью, параллельной плоскости Oyz и на расстояниих от нее (-а ≤х ≤а ), получим эллипс (см. рис. 15):

Площадь этого эллипса равна

S(x) = π bc1

Поэтому, по формуле (16), имеем

Вычисление площади поверхности вращения

Пусть кривая АВ является графиком функцииу = f (x ) ≥ 0, гдех [а ,b ], a функцияу = f (x ) и её производнаяу" = f" (x ) непрерывны на этом отрезке.

Тогда площадь S поверхности, образованной вращением кривойАВ вокруг осиОх вычисляется по формуле

2 π

1 +(y ′) 2 dx .

Если кривая АВ задана параметрическими уравнениямих = x (t ),у = у (t ),t 1 ≤t ≤t 2 , то формула для площади поверхности вращения принимает вид

S x = 2 π ∫ y (t )(x ′ (t ))2 + (y ′ (t ))2 dt .

Пример Найти площадь поверхности шара радиуса R. Решение:

Можно считать, что поверхность шара образована вращением полуокружности y = R 2 − x 2 ,- R ≤х ≤R , вокруг осиОх. По формуле (19) находим

− x

S = 2 π

R 2− x 21 +

dx =

− x

− R

2 π ∫ R2 − x2 + x2 dx= 2 π Rx− R R = 4 π R2 .

−R

Пример . Дана циклоида x = a (t − sin t ) , 0 ≤ t ≤ 2 π . y = a (1− cost ) ,

Найти площадь поверхности, образованной вращением её вокруг оси Ох. Решение:

При вращении половины дуги циклоиды вокруг оси Ох площадь поверхности вращения равна

1 S x

2π π ∫ a (1− cost )

(a(1 − cos t)) 2 + (asin t) 2 dt=

2π ∫ π a 2

2 sin2 t

2 cost + cos2

t + sin 2 tdt=

4 π a 2

π ∫ sin2

2 2sin2 t dt = 8π a 2

π ∫ sin2 t

sin t

dt =

= −8 π a 2 ∫

− cos

d cos

= − 16 π a

32π a

= −16 π a

0 −

1− 0+

= −16 π a

1 S x = 32 π a 2 . Следовательно,

64 π a 2 .

Вычисление длины дуги плоской кривой

Прямоугольные координаты

Пусть в дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего прямоугольных координатах дана плоская кривая АВ, уравнение которой у = f(x), где, а ≤ х≤ b.

Под длиной дуги АВ понимается предел, к которому стремится длина ломаной линии, вписанной в эту звена ее стремится к нулю. Покажем, что если функция у = f(x) и ее производная y′ = f′ (x) непрерывны на отрезке [а ,b ], то криваяАВ имеет длину, равную

Если уравнение кривой АВ задано в параметрической форме

x = x(t) , α ≤ t ≤ β , y= y(t) ,

где x (t ) иy (t ) – непрерывные функции с непрерывными производными иx (α ) =а, x (β ) =b , то длинаl кривойАВ находится по формуле

(x ′ (t ))2 + (y ′ (t ))2 dt . = R arcsin

π .

− x

Значит, l = 2π R. Если уравнение окружности записать в параметрическом видех = R cost, у = R sint (0 ≤t ≤ 2π ), то

(− Rsin t) 2 + (Rcos t) 2 dt= Rt0 2 π = 2 π R.

l = ∫

Полярные координаты

Пусть кривая АВ задана уравнением в полярных координатах r =r (ϕ ),α ≤ ϕ ≤ β . Предположим, чтоr (ϕ ) иr" (ϕ ) непрерывны на отрезке [α ,β ].

Если в равенствах х = r cosϕ ,у =r sinϕ , связывающих полярные и декартовы координаты,

параметром считать угол ϕ , то кривуюАВ можно задать параметрическиx = r (ϕ ) cos ϕ ,

y = r (ϕ ) sinϕ .

Применяя формулу (15), получаем l = ∫ r 2 + r ′ 2 d ϕ .

Пример Найти длину кардиоиды r =a (1 + cosϕ ). Решение:

Кардиоида r =a (1 + cosϕ ) имеет вид, изображенный на рисунке 14. Она симметрична относительно полярной оси. Найдем половину длины кардиоиды:

1 l =

π∫

(a (1 + cos ϕ ))2 + (a (− sin ϕ ))2 d ϕ =

A π ∫

2 + 2cosϕ d ϕ =a π ∫

2 2cos2 ϕ d ϕ =

2a π ∫ cosϕ d ϕ = 4a sinϕ

Таким образом, 1 2 l = 4 a . Значит,l = 8а.