Как найти площадь геометрических фигур. Как вычислить и обозначить площадь. Как находить площадь фигур на клетчатой бумаге

Инструкция

Удобно действовать, если ваша фигура - многоугольник. Вы всегда сможете разбить его на конечное число , и вам достаточно помнить одну только формулу - площади треугольника. Итак, треугольника – это половина от произведения длины его стороны на длину высоты, проведенной к этой самой стороне. Суммировав площади отдельных треугольников, в которые вашей волей преобразована более сложная , вы узнаете искомый результат.

Сложнее решить задачку с определением площади произвольной фигуры. У такой фигуры могут быть не только , но и криволинейные границы. Есть способы для приблизительного вычисления. Простые.

Во-первых, вы можете использовать палетку. Это инструмент из прозрачного материала с нанесенной на его поверхность сеткой квадратов или треугольников с известной площадью. Наложив палетку поверх фигуры, для которой ищете площадь, вы пересчитываете число ваших единиц измерения, которые перекрывают изображение. Сочетайте неполностью закрытые единицы измерения друг с другом, дополняя их в уме до полных. Далее, умножив площадь одной фигуры палетки на число, которое подсчитали, вы узнаете приблизительную площадь вашей произвольной фигуры. Понятно, что чем более частая сетка нанесена на вашей палетке, тем точнее ваш результат.

Во-вторых, вы можете внутри границ произвольной фигуры, для которой определяете площадь, очертить максимальное число треугольников. Определить площадь каждого и сложить их площади. Это будет очень приблизительный результат. Если вы желаете, то можете также раздельно определить площадь сегментов, ограниченных дугами. Для этого представьте себе, что сегмент - часть от . Постройте этот круг, а после от его центра проведите радиусы к краям дуги. Отрезки образуют между собой угол α. Площадь всего определяется по π*R^2*α/360. Для каждой более мелкой части вашей фигуры вы определяете площадь и получаете общий результат, сложив полученные значения.

Третий способ сложнее, но точнее и для кого-то, проще. Площадь любой фигуры можно определить с помощью интегрального . Определенный функции показывает площадь от графика функции до абсциссы. Площадь заключенную между двумя графиками, можно определить вычитанием определенного интеграла, с меньшим значением, из интеграла в тех же границах, но с большим значением. Для использования этого метода удобно перенести вашу произвольную фигуру в систему координат и далее определить их функции и действовать методами высшей математики, в которую здесь и сейчас углубляться не станем.

Существует бесконечное количество плоских фигур самой разной формы, как правильных, так и неправильных. Общее свойство всех фигур - любая из них обладает площадью. Площади фигур - это размеры части плоскости, занимаемой этими фигурами, выраженные в определенных единицах. Величина эта всегда бывает выражена положительным числом. Единицей измерения служит площадь квадрата, чья сторона равняется единице длины (например, одному метру или одному сантиметру). Приблизительное значение площади любой фигуры можно вычислить, умножив количество единичных квадратов, на которые она разбита, на площадь одного квадрата.

Другие определения данного понятия выглядят следующим образом:

1. Площади простых фигур - скалярные положительные величины, удовлетворяющие условиям:

У равных фигур - равные величины площадей;

Если фигура делится на части (простые фигуры), то ее площадь - сумма площадей данных фигур;

Квадрат, имеющий стороной единицу измерения, служит единицей площади.

2. Площади фигур сложной формы (многоугольников) - положительные величины, имеющие свойства:

У равных многоугольников - одинаковые величины площадей;

В случае, если многоугольник составляют несколько других многоугольников, его площадь равняется сумме площадей последних. Это правило справедливо для неперекрывающихся многоугольников.

В качестве аксиомы принято утверждение, что площади фигур (многоугольников) - положительные величины.

Определение площади круга дается отдельно как величины, к которой стремится площадь вписанного в окружность данного круга - при том, что число его сторон стремится к бесконечности.

Площади фигур неправильной формы (произвольных фигур) не имеют определения, определяются лишь способы их вычисления.

Вычисление площадей уже в древности было важной практической задачей при определении размеров земельных участков. Правила вычисления площадей за несколько сотен лет были сформулированы греческими учеными и изложены в «Началах» Евклида как теоремы. Интересно, что правила определения площадей простых фигур в них - те же, что и в настоящее время. Площади имеющих криволинейный контур, рассчитывались с применением предельного перехода.

Вычисление площадей простых прямоугольника, квадрата), знакомых всем со школьной скамьи, достаточно просто. Необязательно даже запоминать содержащие буквенные обозначения формулы площадей фигур. Достаточно помнить несколько простых правил:

2. Площадь прямоугольника вычисляется умножением его длины на ширину. При этом необходимо, чтобы длина и ширина были выражены в одних и тех же единицах измерения.

3. Площадь сложной фигуры вычисляем, разделив ее на несколько простых и сложив полученные площади.

4. Диагональ прямоугольника делит его на два треугольника, чьи площади равны и равняются половине его площади.

5. Площадь треугольника вычисляется как половина произведения его высоты и основания.

6. Площадь круга равняется произведению квадрата радиуса на всем известное число «π».

7. Площадь параллелограмма вычисляем как произведение смежных сторон и синуса лежащего между ними угла.

8. Площадь ромба - ½ результата умножения диагоналей на синус внутреннего угла.

9. Площадь трапеции находим умножением ее высоты на длину средней линии, которая равняется среднему арифметическому оснований. Другой вариант определения площади трапеции - перемножить ее диагонали и синус лежащего между ними угла.

Детям в начальной школе для наглядности часто даются задания: найти площадь нарисованной на бумаге фигуры с помощью палетки или листа прозрачной бумаги, разграфленной на клеточки. Такой лист бумаги накладывается на измеряемую фигуру, считается число полных клеточек (единиц площади), поместившихся в ее контуре, затем число неполных, которое делится пополам.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Как находить площадь фигур на клетчатой бумаге:

Проиллюстрируем первый способ.

Пусть нужно найти площадь такой вот трапеции, построенной на листе в клетку

Просто считаем клеточки и видим, что в нашем случае, и. Подставляем в формулу:

Вроде бы даже прямоугольный и, но чему тут равно, и чему равно? Как узнать? Применим для полной ясности оба способа

I способ.

II способ (скажу по секрету - этот способ лучше!)

Нужно окружить нашу фигуру прямоугольником. Вот так:

Получился один (нужный) треугольник внутри и целых три ненужных треугольника снаружи. Но зато площади этих ненужных треугольников легко считаются на листе в клетку!

Вот мы их посчитаем, а потом просто вычтем из целого прямоугольника.

Почему же этот способ лучше? Потому что он работает и для самых хитрых фигур.

Окружаем ее прямоугольником и снова получаем одну нужную, но сложную площадь и много ненужных, но простых.

А теперь чтобы найти площадь просто находим площадь прямоугольника и вычитаем из него оставшуюся площадь фигур на клетчатой бумаге.

ПЛОЩАДЬ ФИГУР НА КЛЕТЧАТОЙ БУМАГЕ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Алгоритм нахождения площади фигур на клетчатой бумаге:

Способ 1: (удобен для стандартных фигур: треугольника, трапеции и т.д.)

  1. Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади.
  2. Подставить найденные значения в уравнение площади.

Способ 2: (очень удобен для сложных фигур, но и для простых неплох)

  1. Достроить искомую фигуру до прямоугольника.
  2. Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника.
  3. Из площади прямоугольника вычесть сумму площадей всех лишних фигур.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Знания о том, как измерить Землю, появились еще в древности и постепенно оформились в науку геометрию. С греческого языка это слово так и переводится - «землемерие».

Мерой протяжённости плоского участка Земли по длине и ширине является площадь. В математике она обычно обозначается латинской буквой S (от англ. «square» - «площадь», «квадрат») или греческой буквой σ (сигма). S обозначает площадь фигуры на плоскости или площадь поверхности тела, а σ – площадь поперечного сечения провода в физике. Это основные символы, хотя могут быть и другие, например, в сфере сопротивления материалов, А - площадь сечения профиля.

Формулы расчета

Зная площади простых фигур, можно находить параметры более сложных . Античными математиками были выведены формулы, по которым можно легко их вычислять. Такими фигурами являются треугольник, четырёхугольник, многоугольник, круг.

Чтобы найти площадь сложной плоской фигуры, её разбивают на множество простых фигур, таких как треугольники, трапеции или прямоугольники. Затем математическими методами выводят формулу для площади этой фигуры. Подобный метод используют не только в геометрии, но и в математическом анализе для вычисления площадей фигур, ограниченных кривыми .

Треугольник

Начнём с самой простой фигуры - треугольника. Они бывают прямоугольные, равнобедренные и равносторонние. Возьмём любой треугольник ABC со сторонами AB=a, BC=b и AC=c (∆ ABC). Чтобы найти его площадь, вспомним известные из школьного курса математики теоремы синусов и косинусов. Отпуская все выкладки, придём к следующим формулам:

  • S=√ - известная всем формула Герона, где p=(a+b+c)/2 - полупериметр треугольника;
  • S=a h/2, где h - высота, опущенная на сторону a;
  • S=a b (sin γ)/2, где γ - угол между сторонами a и b;
  • S=a b/2, если ∆ ABC - прямоугольный (здесь a и b - катеты);
  • S=b² (sin (2 β))/2, если ∆ ABC - равнобедренный (здесь b - одно из «бёдер», β - угол между «бёдрами» треугольника);
  • S=a² √¾, если ∆ ABC - равносторонний (здесь a - сторона треугольника).

Четырёхугольник

Пусть имеется четырёхугольник ABCD, у которого AB=a, BC=b, CD=c, AD=d. Чтобы найти площадь S произвольного 4-угольника, нужно разделить его диагональю на два треугольника, площади которых S1 и S2 в общем случае не равны.

Затем по формулам вычислить их и сложить, т. е. S=S1+S2. Однако, если 4-угольник принадлежит к определённому классу, то его площадь можно найти по заранее известным формулам:

  • S=(a+c) h/2=e h, если 4-угольник - трапеция (здесь a и c - основания, e - средняя линия трапеции, h - высота, опущенная на одно из оснований трапеции;
  • S=a h=a b sin φ=d1 d2 (sin φ)/2, если ABCD - параллелограмм (здесь φ - угол между сторонами a и b, h - высота, опущенная на сторону a, d1 и d2 - диагонали);
  • S=a b=d²/2, если ABCD - прямоугольник (d - диагональ);
  • S=a² sin φ=P² (sin φ)/16=d1 d2/2, если ABCD - ромб (a - сторона ромба, φ - один из его углов, P - периметр);
  • S=a²=P²/16=d²/2, если ABCD - квадрат.

Многоугольник

Чтобы найти площадь n-угольника, математики разбивают его на простейшие равные фигуры -треугольники, находят площадь каждого из них и затем складывают. Но если многоугольник относится к классу правильных, то используют формулу:

S=a n h/2=a² n/=P²/, где n - количество вершин (или сторон) многоугольника, a - сторона n-угольника, P - его периметр, h - апофема, т. е. отрезок, проведённый из центра многоугольника к одной из его сторон под углом 90°.

Круг

Круг - это совершенный многоугольник, имеющий бесконечное число сторон . Нам необходимо вычислить предел выражения справа в формуле площади многоугольника при числе сторон n, стремящемуся к бесконечности. В этом случае периметр многоугольника превратится в длину окружности радиуса R, которая будет границей нашего круга, и станет равен P=2 π R. Подставим это выражение в указанную выше формулу. Мы получим:

S=(π² R² cos (180°/n))/(n sin (180°/n)).

Найдём предел этого выражения при n→∞. Чтобы это сделать, учтём, что lim (cos (180°/n)) при n→∞ равен cos 0°=1 (lim - знак предела), а lim = lim при n→∞ равен 1/π (мы перевели градусную меру в радианную, используя соотношение π рад=180°, и применили первый замечательный предел lim (sin x)/x=1 при x→∞). Подставив в последнее выражение для S полученные значения, придём к известной формуле:

S=π² R² 1 (1/π)=π R².

Единицы измерения

Применяются системные и внесистемные единицы измерения . Системные единицы относятся к СИ (Система Интернациональная). Это квадратный метр (кв. метр, м²) и единицы, производные от него: мм², см², км².

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) - сечения балки в строительной механике, в квадратных метрах (м²) - квартиры или дома, в квадратных километрах (км²) - территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.