Основные параметры орбит. Параметры орбит и движения исз ссрнс. Построение эскиза орбит и положения спутников

Гравитационная постоянная Земли и заданное значение большой полуоси =2.6560031*10^7 эллиптической орбиты в метрах определяют период обращения ИСЗ по орбите T в секундах (Т/3600 - в часах):

4.30778135*10^4.

Из равенства центростремительного ускорения ускорению силы тяготения легко получаются расчетные соотношения для основных параметров орбиты:

линейная скорость

Рассчитаем линейную скорость ИСЗ

3.873956985*10^3.

Максимальное расстояние прямой радиовидимости (между судном и ИСЗ вблизи линии горизонта) определяется по формуле

2.578457546*10^7 ,

где - радиус шаровой модели Земли.

Показать, что прямая радиовидимость одного ИСЗ имеет место с точек земной поверхности, образующих шаровой сегмент, максимальная геоцентрическая угловая ширина которого равна

Построение эскиза орбит и положения спутников

Эскиз соответствует картине расположения орбит, Земли и НИСЗ, видимой наблюдателем с "бесконечно" удаленной точки северного конца оси вращения Земли. Все НИСЗ и орбиты находятся на сфере радиуса а. На эскизе a=6-8см. Радиус Земли примерно в 4 раза меньше. Экваториальное сечение орбит и Земли - на рис.2. Нижний конец вертикальной прямой, проходящей через центр Земли пусть направлен на точку весеннего равноденствия (созвездие Овна). Нижняя точка пересечения этой вертикали и внешней окружности пусть представляет восходящий узел первой (нулевой) орбиты (тогда верхняя точка пересечения - нисходящий узел).

Для эскиза примем, что угол наклонения орбит (между плоскостью орбиты и экваториальной плоскостью) равен 60; тогда все кратчайшие расстояния от точек орбиты до оси узлов при проектировании на экваториальную плоскость "сократятся" вдвое, поскольку cos(60)=0.5.

Для определения проекции спутника, которому соответствует фаза u (угол между радиусами-векторами ИСЗ и восходящего угла), достаточно отложить с помощью транспортира этот угол на внешней окружности (в направлении движения ИСЗ) и из полученной точки опустить перпендикуляр на ось узлов; средняя точка этого перпендикуляра и есть искомая проекция. Задаваясь достаточным количеством точек, получим проекцию орбиты - эллипс, малая полуось которого вдвое меньше радиуса a круговой орбиты. В "Глонасс" и "Навстар" используется соответственно 3 и 6 орбит; угол между соседними восходящими углами соответственно 120 и 60.

Внешняя окружность делится на шесть одинаковых частей (в "Навстар" имеет место совмещение пар осей узлов).

В учебных примерах примем, что в "Глонасс" 24 ИСЗ, в "Навстар" 18 ИСЗ, соответственно по 8 и 3 на орбите. Номер орбиты соответствует номеру восходящего узла, отмечаемого против часовой стрелки. Если номера ИСЗ обозначить через "м" (причем соответственно 1м24 и 1м18), то номер орбиты равен наибольшему целому числу в частном от деления м-1 на соответственно 8 и 3.

Угловой промежуток между ИСЗ одинаков - соответственно 45 и 120 эскиз строится на момент, когда фаза первого ИСЗ на первой орбите равна н10. При переходе с орбиты на соседнюю орбиту вводится дополнительная фаза соответственно 15 и 40.На орбите положение ИСЗ можно указать крупной точкой, от которой проводится стрелка, соответствующая направлению движения. Возле этих точек указывается номер ИСЗ; номер подчеркивается, если ИСЗ находится над экваториальной плоскостью.

1. Возмущение фокального параметра орбиты

2. Возмущение эксцентриситета орбиты

результатом интегрирования получается тригонометрическая функция с периодом

3. Возмущение долготы восходящего узла орбиты

4. Возмущение наклонения орбиты

5. Возмущение аргумента перицентра орбиты

6. Время орбитального движения

при допущении, что j=1 то драконический период равен сидерическому:

где

Выводы

1.Фокальный параметр

Изменение фокального параметра носит периодический характер. При прохождении точки начала интегрирования (начального положения космического аппарата) фокальный параметр возвращает начальное значение из чего можно сделать вывод, что период изменения фокального параметра равен периоду обращении КА. На счет вековых свойств, то фокальный параметр ими не обладает, это видно по графику зависимости и из формул (численное отклонение обусловлено погрешностью численного метода интегрирования).

Этот периодический параметр обуславливает изменение геометрии эллипса орбиты с перемещением КА по орбите, но при достижении конечного полного оборота возвращается в первоначальное состояние. Это говорит о неизменности формы орбиты с течением времени.

2.Эксцентриситет

Эксцентриситет изменяется тоже периодически. Из графика и теоретической зависимости видно, что его изменение описывается при помощи суммы и произведений тригонометрических функций. Зависимость теоретическая достаточно адекватно описывает полученную численным методом зависимость. Это дает нам право определить период изменения данного параметра как период обращения КА. По поводу вековых изменений они отсутствуют вследствие зависимости на графике и интегрирования теоретической зависимости после интегрирования получаем тригонометрическую функцию с периодом в 2 (отклонение в цифрах обусловлены погрешностью численного метода интегрирования).

Эксцентриситет, как параметр формы орбиты, связан с фокальным параметром, и это говорит о том, что этот параметр подтверждает, что форма орбиты с течением времени не меняется.


3.Долгота восходящего узла

Долгота восходящего узла имеет непериодический характер, так как при совершении полного оборота КА не возвращает первоначальное значение. Оно имеет волнистую периодичность, равную периоду обращения КА, но уходит по нисходящей за оборот. Наличие периодически повторяющей волнистости обусловлено присутствием в формуле тригонометрических функций с периодом 2 . Этот параметр является, по сути дела, вековым. После интегрирования теоретической зависимости мы получаем конкретное значение, которое зависит от числа оборотов. Опять же, теоретические формулы достаточно приемлемо описывают изменение сего параметра.



Этот вековой параметр показывает, что орбита крутится вокруг Земли с течением движения по ней КА, в конце витка она не приходит начальное положение, а приходит в какое-то другое со смещением.

4.Наклонение орбиты

Наклонение плоскости орбиты носит периодический характер. Этот вывод можно сделать на основе модельных данных и аналитической зависимости. Адекватность численных данных и аналитических видна. Формула теоретическая и график зависимости имеют тригонометрические зависимости, что и обуславливает периодичность. Вековых свойств наклонение не имеет в силу теоретической зависимости, после интегрирования которой получаем ноль и численной, которая показывает тот же самый эффект.

С физической точки зрения этот параметр показывает нам, что плоскость орбиты периодически поворачивается относительно плоскости экватора.

5.Аргумент перицентра

Аргумент перицентра ведет себя как периодический и как вековой параметр. Периодичность обусловлена наличием тригонометрических функций в формуле, а вековые тем, что при прохождении КА полного оборота значении до прохождения не совпадает со значением после. Теоретическая зависимость наглядно демонстрирует нам факт векового изменения, так как после ее интегрирования появляется выражение, зависящее от числа оборотов.

С точке зрения орбиты, при повороте орбиты относительно точки овна (можно Гринвича) также орбита поворачивается в своей плоскости (прецессия линии апсид). Причем, если наклонение меньше чем 63,4 0 то прецессия происходит в противоположенную сторону движения КА. Этот параметр необходимо учитывать в первую очередь с точки зрения радиосвязи иначе в какой-то момент, когда ожидалась зона радиосвязи КА просто уйдет в тень планеты.



6.Время орбитального движения

Время зависит от аргумента широты линейно. Оно является самостоятельным параметром, который все время растет. Нас больше волнует период обращения.

Периодом обращения называется время полного оборота КА по свой орбите.

Нецентральность гравитационного поля Земли не заставляет изменяться полуоси в вековом стиле, сто параметр j примерно равен 1 и из этого можно сделать вывод на основе теоретической формулы и графика численного метода равен примерно единице, из чего следует, что драконический период обращения равен сидерическому.

В наше время человечество использует несколько различных орбит для размещения спутников. Наибольшее внимание приковано к геостационарной орбите, которая может быть использована для «стационарного» размещения спутника над той или иной точкой Земли. Орбита, выбираемая для работы спутника, зависит от его назначения. К примеру, спутники, используемые для прямого вещания телевизионных программ, помещают на геостационарную орбиту. Многие спутники связи также находятся на геостационарной орбите. Другие спутниковые системы, в частности те, которые используются для связи между спутниковыми телефонами, вращаются на низкой околоземной орбите. Аналогично спутниковые системы, используемые для систем навигации, таких как Navstar или Система глобального позиционирования (GPS), также находятся на относительно низких околоземных орбитах. Существует ещё бесчисленное множество других спутников – метеорологические, исследовательские и так далее. И каждый из них, в зависимости от своего назначения, получает «прописку» на определённой орбите.

Читайте также:

Конкретная орбита, избираемая для работы спутника, зависит от множества факторов, среди которых – функции спутника, а также обслуживаемая им территория. В одних случаях это может быть крайне низкая околоземная орбита (LEO), находящаяся на высоте всего 160 километров над Землёй, в других случаях спутник находится на высоте более 36 000 километров над Землёй – то есть, на геостационарной орбите GEO. Более того, ряд спутников использует не круговую орбиту, а эллиптическую.

Притяжение Земли и спутниковые орбиты

По мере обращения спутников на околоземной орбите они потихоньку с неё смещаются из-за силы притяжения Земли. Если бы спутники не вращались по орбите, они бы начали постепенно падать на Землю и сгорели бы в верхних слоях атмосферы. Однако само вращение спутников вокруг Земли создаёт силу, отталкивающую их от нашей планеты. Для каждой из орбит существует своя расчётная скорость, которая позволяет сбалансировать силу притяжения Земли и центробежную силу, удерживая аппарат на постоянной орбите и не давая ему ни набирать, ни терять высоту.

Вполне понятно, что чем ниже орбита спутника, тем сильнее на него влияет притяжение Земли и тем большая требуется скорость для преодоления этой силы. Чем больше расстояние от поверхности Земли до спутника – тем, соответственно, меньшая требуется скорость для его нахождения на постоянной орбите. Для аппарата, вращающегося на расстоянии около 160 км над поверхностью Земли, требуется скорость примерно 28 164 км/ч, а это значит, что такой спутник совершает виток вокруг Земли примерно за 90 минут. На расстоянии 36 000 км над поверхностью Земли спутнику для нахождения на постоянной орбите требуется скорость немногим менее 11 266 км/ч, что даёт возможность такому спутнику обращаться вокруг Земли примерно за 24 часа.

Определения круговой и эллиптической орбит

Все спутники обращаются вокруг Земли, используя один из двух базовых типов орбит.

  • Круговая спутниковая орбита: при обращении космического аппарата вокруг Земли по круговой орбите его расстояние над земной поверхностью остаётся всегда одинаковым.
  • Эллиптическая спутниковая орбита: Вращение спутника по эллиптической орбите означает изменение расстояния до поверхности Земли в разное время в течение одного витка.
Читайте также:

Спутниковые орбиты

Существует множество различных определений, связанных с различными типами спутниковых орбит:

  • Центр Земли: Когда спутник обращается вокруг земли – по круговой или эллиптической орбите – орбита спутника формирует плоскость, которая проходит через центр земного притяжения или же Центр Земли.
  • Направление движения вокруг Земли: Способы обращения спутника вокруг нашей планеты можно разбить на две категории в соответствии с направлением этого обращения:

1. Ускорительная орбита: Обращение спутника вокруг Земли называют ускорительным, если спутник вращается в том же направлении, в котором вращается Земля;
2. Ретроградная орбита: Обращение спутника вокруг Земли называют ретроградным, если спутник вращается в направлении, противоположном направлению вращения Земли.

  • Трасса орбиты: трассой орбиты спутника называют точку на земной поверхности, при пролёте над которой спутник находится прямо над головой в процессе движения по орбите вокруг Земли. Трасса образует круг, в центре которого расположен Центр Земли. Следует отметить, что геостационарные спутники представляют собой особый случай, поскольку они постоянно находятся над одной и той же точкой над поверхностью Земли. Это означает, что их трасса орбиты состоит из одной точки, расположенной на экваторе Земли. Также можно добавить, что трасса орбиты спутников, вращающихся строго над экватором, тянется вдоль этого самого экватора.

Для этих орбит, как правило, характерно смещение трассы орбиты каждого спутника в западном направлении, поскольку Земля под спутником обращается в восточном направлении.

  • Орбитальные узлы: Это точки, в которых трасса орбиты переходит из одного полушария в другое. Для неэкваториальных орбит существует два таких узла:

1. Восходящий узел: Это узел, в котором трасса орбиты переходит из южного полушария в северное.
2. Нисходящий узел: Это узел, в котором трасса орбиты переходит из северного полушария в южное.

  • Высота спутника: При расчёте многих орбит необходимо учитывать высоту спутника над центром Земли. Этот показатель включает расстояние от спутника до поверхности Земли плюс радиус нашей планеты. Как правило, считается, что он равен 6370 километрам.
  • Орбитальная скорость: Для круговых орбит она всегда одинакова. Однако в случае с эллиптическими орбитами всё обстоит иначе: скорость обращения спутника по орбите изменяется в зависимости от его позиции на этой самой орбите. Она достигает своего максимума при наибольшем приближении к Земле, где спутнику предстоит максимальное противостояние силе притяжения планеты, и снижается до минимума при достижении точки наибольшего удаления от Земли.
  • Угол подъёма: Углом подъёма спутника называют угол, на котором спутник расположен над линией горизонта. Если угол слишком мал, сигнал может быть перекрыт расположенными близко объектами – в случае, если приёмная антенна поднята недостаточно высоко. Однако и для антенн, которые подняты над препятствием, также существует проблема при приёме сигнала со спутников, имеющих низкий угол подъёма. Причина здесь в том, что спутниковый сигнал в таком случае должен пройти большее расстояние через земную атмосферу и в результате он подвергается большему ослаблению. Минимально допустимым углом подъёма для более-менее удовлетворительного приёма принято считать угол в пять градусов.
  • Угол наклона: Не все спутниковые орбиты следуют вдоль линии экватора – на самом деле, большая часть низких околоземных орбит не придерживается этой линии. А поэтому необходимо определять угол наклона орбиты спутника. Диаграмма, расположенная ниже, иллюстрирует данный процесс.

Угол наклона спутниковой орбиты

Прочие показатели, связанные со спутниковой орбитой

Для того чтобы спутник мог использоваться для предоставления услуг связи, наземные станции должны иметь возможность «следить» за ним с целью получения с него сигнала и отправки сигнала на него. Понятно, что связь со спутником возможна лишь в то время, когда он находится в зоне видимости наземных станций, и, в зависимости от типа орбиты, он может находиться в зоне видимости лишь в короткие промежутки времени. Для уверенности в том, что связь со спутником возможна в течение максимального промежутка времени, существует несколько вариантов, которые можно использовать:

  • Первый вариант состоит в использовании эллиптической орбиты, точка апогея которой находится в аккурат над планируемым размещением наземной станции, что даёт возможность спутнику пребывать в зоне видимости этой станции в течение максимального промежутка времени.
  • Второй вариант заключается в запуске нескольких спутников на одну орбиту, и, таким образом, в то время, когда один из них исчезает из виду и связь с ним теряется, на его место приходит другой. Как правило, для организации более-менее бесперебойной связи требуется запуск на орбиту трёх спутников. Однако процесс смены одного «дежурного» спутника другим вносит в систему дополнительные сложности, а также ряд требований к минимум трём спутникам.

Определения круговых орбит

Круговые орбиты можно классифицировать по нескольким параметрам. Такие термины, как Низкая околоземная орбита, Геостационарная орбита (и им подобные) указывают на отличительную черту конкретной орбиты. Краткий обзор определений круговых орбит представлен в таблице ниже.

  • В 4. Микроклимат производственных помещений, параметры микроклимата и их воздействие на организм человека. Способы нормализации микроклимата.
  • Гидравлический расчет сложного трубопровода. Обобщенные параметры трубопроводов. Характеристика сети.
  • Гидромашины, их общая классификация и основные параметры.
  • Группа статистических критериев, которые не включают в расчёт параметры вероятностного распределения и основаны на оперировании частотами или рангами.
  • Измерительные преобразователи рода тока. Параметры переменных напряжений. Связь между ними. Аналитическое уравнение и график функции Иордана.
  • Качественные параметры оценки данных психодиагностики
  • Траектория движения искусственного спутника земли (ИСЗ) называется его орбитой.

    Орбита – это плоская кривая 2 порядка (окружность или эллипс), в одной из фокусов которой находится центр масс, притягивающий тело. Движение спутника происходит в плоскости, сохраняющей свою пространственную ориентацию.

    Две плоскости (плоскость орбиты, плоскость экватора), эллипс

    G – действительный фокус, где находится центр масс (Земля).

    G’ – мнимый фокус.

    S – спутник (где-то на орбите)

    r – радиус-вектор спутника (GS)

    |r| - геоцентрическое расстояние (число)

    Система координат X,Y,Z – это абсолютная (звездная) система координат – это декартова система координат, неподвижная относительно звезд.

    Ось Z направлена вдоль оси вращения земли и указывает на север.

    Плоскость OXY совпадает с плоскостью экватора.

    П – перигей – ближайшая к притягивающему центру масс точка орбиты.

    А – апогей – наиболее удаленная от притягивающего центра масс точка орбиты.

    АП – это линия апсид – линия, проходящая через фокусы и соединяющая апогей и перигей

    Угол v – это истинная аномалия – угол между линией апсид и радиус-вектором

    ВН – это линия узлов – линия пересечения плоскости орбиты с плоскостью экватора.

    В – восходящий узел орбиты – это точка, в которой орбита пересекает плоскость экватора в приближении спутника с юга на север

    Н – нисходящий узел орбиты – это точка, в которой орбита пересекает плоскость экватора в приближении спутника с севера на юг.

    i – наклонение орбиты – угол между плоскостью орбиты и плоскостью экватора.

    omega – долгота восходящего узла – угол между положительным направлением абсциссы (осью x) и линией углов в сторону восходящего узла.

    u – аргумент широты спутника – это угол между линией узлов и радиус-вектором

    omegasmall – аргумент перигея – это угол между линией узлов и линией апсид направлении перигея.

    O – делит апсид пополам, перпендикулярно ей к орбите – C.

    AO = a – большая полуось эллипса.

    CO = b – малая полуось эллипса.

    e – эксцентриситет эллипса – показывает степень сжатия эллипса.

    e=sqrt(1-(a2/b2)) – степень сжатия. 0=окружность.

    T – период обращения – время между двумя последовательными прохождениями спутником одной и той же точки орбиты.

    Виды орбит ИСЗ

    1. Полярные орбиты, i~90o; такие спутники могут быть использованы для съемки любой точки планеты, но вывод спутника на такую орбиту сложен и очень затратен

    2. Экваториальные орбиты i~0o; плоскости орбиты и экватора практически совпадают. Полюса и средние широты не снять.

    3. Круговые орбиты. e=0. Одинаковая высота полета, будет один масштаб.

    4. Стационарные орбиты. i~0, e=0; Экваториальная и круговая. Период обращения таких спутников равен периоду обращения земли. Неподвижен относительно поверхности земли.

    5. Орбиты солнечно-синхронные. Им свойственно обеспечение одинаковой освещенности земной поверхности вдоль трассы полета космического аппарата. Параметры орбиты выбираются таким образом, чтобы плоскость орбиты поворачивалась вокруг земной оси, причем угол спутникового разворота по знаку и величине равен угловому перемещению земли вокруг солнца.

    6. Незамкнутые, т.е. парабола или гипербола вместо эллипса. Используется для вывода космических аппаратов.

    Виды изображений

    Изображение – это функция двух переменных f(x,y), определенная в некоторой области C плоскости Oxy и имеющая известное множество своих значений.

    Черно-белая фотография: f(x,y)>=0; 0<=x<=a; 0<=y<=b; где f(x,y) – яркость изображения в точке x,y; a – ширина кадра, b – высота.

    С учетом особенностей функции f разделяют следующие классы изображений:

    1. Полутоновые (серые) – Ч/Б (градации серого) фотография – множество значений функции в области C может быть дискретным f e {f0,f1,…,fn, n>1} либо непрерывным {0<=f<=fmax}. Цветные изображения относятся сюда же, т.к. несколько монохромных цветовых компонент задают цвет (аналоговые, цифровые)

    2. Бинарные (двухуровневые) изображения. f e {0,1};

    3. Линейные – изображение представляет собой одну кривую или их множество.

    4. Точечные изображения – изображение представляет собой k точек с координатами (xi,yi), а яркость fi e ;


    | 2 | | |