Причина образования космической пыли. Космическая пыль. Влияние космической пыли на процессы жизнедеятельности

Маргарита Ильинична Ивенсен (1903 – 1977) - советская детская поэтесса. Маргарита Ильинична Шор-Ивенсен, урождённая Симонович, родилась 28 июня 1903 года в Москве. Родители жили скромно. Её отец любил и знал изобразительное искусство, покупал для дочери книги и художественные альбомы. Маргарита окончила гимназию, хорошо рисовала, с раннего возраста писала стихи. В тридцатые годы начала печататься, реализовав себя в детской поэзии. Первая книжечка стихов “Нас много” вышла в 1931 году с иллюстрациями Брея.
В 1934 году М. И. Шор вступила в союз советских писателей. Она взяла псевдоним - Маргарита Ивенсен - и с этим именем вошла в детскую литературу.
Поэтесса много работала для детского радиовещания. Её стихи печатались в хрестоматиях. Вышли также сборники ее стихов "Если будет война", "Маю салют", "Про Мишку-неряху"
В начале Великой Отечественной войны Маргарита Ивенсен с семьёй была эвакуирована в Башкирию, затем в октябре 1942 года они переехали в Чистополь. Здесь Маргарита Ивенсен работала диктором и корреспондентом радио. В Москву вернулись со всей писательской колонией в июне 1943 года.
По возвращении Маргарита Ивенсен продолжала писать стихи для детей. На её произведения было написано много песен известными композиторами: А. Александровым, А. Пахмутовой, В. Мурадели, З. Левиной и др. Занималась Маргарита Ильинична также переводами, но она писала и “взрослые” стихи. О "взрослой" поэзии Ивенсен тепло отозвался И. Бродский, отметив качество стиха поэтессы (в ответ на письмо к нему дочери Ивенсен Агды Шор).


Маргарита Ильинична Ивенсен (1903 – 1977) - советская детская
поэтесса. Маргарита Ильинична Шор-Ивенсен, урождённая Симонович, родилась
28 июня 1903 года в Москве. Родители жили скромно. Её отец любил и знал
изобразительное искусство, покупал для дочери книги и художественные
альбомы.
Маргарита окончила гимназию, хорошо рисовала, с раннего возраста
писала стихи. В тридцатые годы начала печататься, реализовав себя в
детской поэзии. Первая книжечка стихов “Нас много” вышла в 1931 году с
иллюстрациями Брея.
В 1934 году М. И. Шор вступила в союз советских писателей. Она взяла
псевдоним - Маргарита Ивенсен - и с этим именем вошла в детскую
литературу.
Поэтесса много работала для детского радиовещания. Её стихи печатались
в хрестоматиях. Вышли также сборники ее стихов "Если будет война", "Маю
салют", "Про Мишку-неряху" . . .

В начале Великой Отечественной войны Маргарита Ивенсен с семьёй была
эвакуирована в Башкирию, затем в октябре 1942 года они переехали в
Чистополь. Здесь Маргарита Ивенсен работала диктором и корреспондентом
радио. В Москву вернулись со всей писательской колонией в июне 1943 года.
По возвращении Маргарита Ивенсен продолжала писать стихи для детей. На
её произведения было написано много песен известными композиторами: А.
Александровым, А. Пахмутовой, В. Мурадели, З. Левиной и др. Занималась
Маргарита Ильинична также переводами, но она писала и “взрослые” стихи. О
"взрослой" поэзии Ивенсен тепло отозвался Иосиф Бродский, отметив качество
стиха поэтессы (в ответ на письмо к нему дочери Ивенсен Агды Шор). . .

Стихи детям

Осень

Падают, падают листья.
В нашем саду листопад...
Жёлтые, красные листья
По ветру вьются, летят.

Птицы на юг улетают,
Гуси, грачи, журавли! -
Вот уж последняя стая
Крыльями машет вдали.

В руки возьмём по корзинке,
В лес за грибами пойдём,
Пахнут пеньки и тропинки
Вкусным осенним грибом! . .

* * * * * * *

Рецензии

Ежедневная аудитория портала Стихи.ру - порядка 200 тысяч посетителей, которые в общей сумме просматривают более двух миллионов страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

КОСМИЧЕСКАЯ ПЫЛЬ, твёрдые частицы с характерными размерами от около 0,001 мкм до около 1 мкм (и, возможно, до 100 мкм и более в межпланетной среде и протопланетных дисках), обнаруженные почти во всех астрономических объектах: от Солнечной системы до очень далёких галактик и квазаров. Характеристики пыли (концентрация частиц, химический состав, размер частиц и т. д.) значительно меняются от одного объекта к другому, даже для объектов одного типа. Космическая пыль рассеивает и поглощает падающее излучение. Рассеянное излучение с той же длиной волны, что и падающее, распространяется во все стороны. Излучение, поглощённое пылинкой, трансформируется в тепловую энергию, и частица излучает обычно в более длинноволновой области спектра по сравнению с падающим излучением. Оба процесса дают вклад в экстинкцию - ослабление излучения небесных тел пылью, находящейся на луче зрения между объектом и наблюдателем.

Пылевые объекты исследуют почти во всём диапазоне электромагнитных волн - от рентгеновского до миллиметрового. Электрическое дипольное излучение быстро вращающихся ультрамелких частиц, по-видимому, даёт некоторый вклад в микроволновое излучение на частотах 10-60 ГГц. Важную роль играют лабораторные эксперименты, в которых измеряют показатели преломления, а также спектры поглощения и матрицы рассеяния частиц - аналогов космических пылинок, моделируют процессы образования и роста тугоплавких пылинок в атмосферах звёзд и протопланетных дисках, изучают образование молекул и эволюцию летучих пылевых компонентов в условиях, похожих на существующие в тёмных межзвёздных облаках.

Космическую пыль, находящуюся в различных физических условиях, непосредственно изучают в составе упавших на поверхность Земли метеоритов, в верхних слоях земной атмосферы (межпланетная пыль и остатки небольших комет), при полётах КА к планетам, астероидам и кометам (околопланетная и кометная пыль) и за пределы гелиосферы (межзвёздная пыль). Наземные и космические дистанционные наблюдения космической пыли охватывают Солнечную систему (межпланетная, околопланетная и кометная пыль, пыль около Солнца), межзвёздную среду нашей Галактики (межзвёздная, околозвёздная и небулярная пыль) и других галактик (внегалактическая пыль), а также очень удалённые объекты (космологическая пыль).

Частицы космической пыли в основном состоят из углеродистых веществ (аморфный углерод, графит) и магниево-железистых силикатов (оливины, пироксены). Они конденсируются и растут в атмосферах звёзд поздних спектральных классов и в протопланетарных туманностях, а затем выбрасываются в межзвёздную среду давлением излучения. В межзвёздных облаках, особенно плотных, тугоплавкие частицы продолжают расти в результате аккреции атомов газа, а также при столкновении и слипании частиц друг с другом (коагуляции). Это ведёт к появлению оболочек из летучих веществ (в основном льдов) и к образованию пористых агрегатных частиц. Разрушение пылинок происходит в результате распыления в ударных волнах, возникающих после вспышек сверхновых звёзд, или испарения в процессе звездообразования, начавшемся в облаке. Оставшаяся пыль продолжает эволюционировать вблизи сформировавшейся звезды и позднее проявляется в форме межпланетного пылевого облака или кометных ядер. Парадоксально, но вокруг проэволюционировавших (старых) звёзд пыль является «свежей» (недавно образовавшейся в их атмосфере), а вокруг молодых звёзд - старой (проэволюционировавшей в составе межзвёздной среды). Предполагается, что космологическая пыль, возможно существующая в удалённых галактиках, сконденсировалась в выбросах вещества после взрывов массивных сверхновых звёзд.

Лит. смотри при ст. Межзвёздная пыль.

Здравствуйте!

Сегодня мы поговорим на весьма интереснейшую тему, связанною с такой наукой, как астрономия! Речь пойдёт о космической пыли. Предполагаю, что многие впервые узнали о ней. Значит, нужно рассказать о ней всё, что только мне известно! В школе - астрономия была моим одним из любимых предметов, скажу больше - самым любимым, потому, именно по астрономии я сдавала экзамен. Хотя мне и выпал 13 билет, который был самым сложным, но с экзаменом я сдала прекрасно и осталась довольна!

Ежели сказать совсем доступно, что такое космическая пыль, то можно представить все-все осколки, которые только есть во Вселенной от космического вещества, например, от астероидов. А Вселенная ведь - это не только Космос! Не путайте, дорогие мои и хорошие! Вселенная - это весь наш мир - весь наш огромный Земной шар!

Как образуется космическая пыль?

Например, космическая пыль может образовываться оттого, когда в Космосе сталкиваются два астероида и при столкновении, происходит процесс их разрушения на мелкие частицы. Многие учёные склоняются и к тому, что её образование связано с тем, когда сгущается межзвездный газ.

Как возникает космическая пыль?

Как она образуется, мы с вами только выяснили, теперь узнаем о том, как она возникает. Как правило, эти пылиночки просто возникают в атмосферах красных звездочек, если вы слышали, такие красные звезды называют ещё - звёздами карликами; возникают, когда на звёздах происходят различные взрывы; когда активно выбрасывается газ из самих ядер галактик; протозвёздная и планетарная туманность - тоже способствует её возникновению, впрочем, как и сама звёздная атмосфера и межзвездные облака.

Какие виды космической пыли можно различать, учитывая её происхождение?

Что касается именно видов, относительно происхождения, то выделим следующие виды:

межзвездный вид пыли, когда на звездах происходит взрыв, то происходит огромный выброс газа и мощный выброс энергии

межгалактический,

межпланетный,

околопланетный: появилась, как "мусор", остатки, после образования иных планет.

Есть виды, которые классифицируются не по происхождению, а по внешним признакам?

    кружочки чёрного цвета, небольшие, блестящие

    кружочки чёрного цвета, но покрупнее размером, имеющие шероховатую поверхность

    кружочки шарики чёрно-белого цвета, кои в своём составе имеют силикатную основу

    кружочки, которые состоят из стекла и металла, они разнородные, и небольшие (20 нм)

    кружочки похожие на порошочек магнетита, они чёрные и похожи на чёрный песок

    пепловидноые и шлакообразные кружочки

    вид, который образовался от столкновения астероидов, комет, метеоритов

Удачный вопрос! Конечно, может. И от столкновения метеоритов тоже. От столкновения любых небесных тел возможно её образование.

Вопрос об образовании и возникновении космической пыли до сих пор является спорным, и разные ученые выдвигают свои точки зрения, но вы можете придерживаться одной или двух близких вам точек зрения в этом вопросе. Например, той, что более понятна.

Ведь даже относительно её видов нет абсолютно точной классификации!

шарики, основа коих является однородной; их оболочка является окисленной;

шарики, основа коих является силикатной; так как они имеют вкрапления газа, то вид их часто похож на шлаки либо на пену;

шарики, основа коих является металлической с ядром из никеля и кобальта; оболочка тоже окисленная;

кружочки наполнение коих является полым.

они могут быть ледяными, а оболочка их состоит из легких элементов; в крупных ледяных частицах есть даже атомы, имеющие магнитные свойства,

кружочки с силикатными и графитными вкраплениями,

кружочки, состоящие из оксидов, в основе коих есть двухатомные окислы:

Космическая пыль до конца не изучена! Очень много открытых вопросов, ибо они являются спорными, но, думаю, основные представления всё-таки у нас теперь имеются!

Космический рентгеновский фон

Колебания и волны: Характеристики различных колебательных систем (осцилляторов).

Разрыв Вселенной

Пылевые околопланетные комплексы: fig4

Свойства космической пыли

С. В. Божокин

Санкт-Петербургский государственный технический университет

Содержание

Введение

Многие люди с восторгом любуются прекрасным зрелищем звездного неба, одного из величайших творений природы. В ясном осеннем небе хорошо заметно, как через все небо пролегает слабо светящаяся полоса, называемая Млечным Путем, имеющая неправильные очертания с разной шириной и яркостью. Если рассматривать Млечный Путь, образующий нашу Галактику, в телескоп, то окажется, что эта яркая полоса распадается на множество слабо светящихся звезд, которые для невооруженного глаза сливаются в сплошное сияние. В настоящее время установлено, что Млечный Путь состоит не только из звезд и звездных скоплений, но также из газовых и пылевых облаков .

Огромные межзвездные облака из светящихся разреженных газов получили название газовых диффузных туманностей . Одна из самых известных - туманность в созвездии Ориона , которая видна даже невооруженным глазом около средней из трех звездочек, образующих "меч" Ориона. Газы, ее образующие, светятся холодным светом, переизлучая свет соседних горячих звезд. В состав газовых диффузных туманностей входят главным образом водород , кислород , гелий и азот . Такие газовые или диффузные туманности служат колыбелью для молодых звезд, которые рождаются так же, как некогда родилась наша Солнечная система . Процесс звездообразования непрерывен, и звезды продолжают возникать и сегодня.

В межзвездном пространстве наблюдаются также диффузные пылевые туманности. Эти облака состоят из мельчайших твердых пылинок. Если вблизи пылевой туманности окажется яркая звезда, то ее свет рассеивается этой туманностью и пылевая туманность становится непосредственно наблюдаемой (рис. 1). Газовые и пылевые туманности могут вообще поглощать свет звезд, лежащих за ними, поэтому на снимках неба они часто видны как черные зияющие провалы на фоне Млечного Пути . Такие туманности называют темными. На небе южного полушария есть одна очень большая темная туманность, которую мореплаватели прозвали Угольным мешком. Между газовыми и пылевыми туманностями нет четкой границы, поэтому часто они наблюдаются совместно как газопылевые туманности.


Диффузные туманности являются лишь уплотнениями в той крайне разреженной межзвездной материи , которая получила название межзвездного газа . Межзвездный газ обнаруживается лишь при наблюдениях спектров далеких звезд, вызывая в них дополнительные. Ведь на большом протяжении даже такой разреженный газ может поглощать излучение звезд. Возникновение и бурное развитие радиоастрономии позволили обнаружить этот невидимый газ по тем радиоволнам, которые он излучает. Огромные темные облака межзвездного газа состоят в основном из водорода, который даже при низких температурах излучает радиоволны на длине 21 см. Эти радиоволны беспрепятственно проходят сквозь газ и пыль. Именно радиоастрономия помогла нам в исследовании формы Млечного Пути. Сегодня мы знаем, что газ и пыль, перемешанная с большими скоплениями звезд, образуют спираль, ветви которой, выходя из центра Галактики , обвивают ее середину, создавая нечто похожее на каракатицу с длинными щупальцами, попавшую в водоворот.

В настоящее время огромное количество вещества в нашей Галактике находится в виде газопылевых туманностей. Межзвездная диффузная материя сконцентрирована сравнительно тонким слоем в экваториальной плоскости нашей звездной системы. Облака межзвездного газа и пыли загораживают от нас центр Галактики. Из-за облаков космической пыли десятки тысяч рассеянных звездных скоплений остаются для нас невидимыми. Мелкая космическая пыль не только ослабляет свет звезд, но и искажает их спектральный состав . Дело в том, что когда световое излучение проходит через космическую пыль, то оно не только ослабляется, но и меняет цвет. Поглощение света космической пылью зависит от длины волны, поэтому из всего оптического спектра звезды сильнее поглощаются синие лучи и слабее - фотоны, соответствующие красному цвету. Этот эффект приводит к явлению покраснения света звезд, прошедших через межзвездную среду.

Для астрофизиков огромное значение имеет изучение свойств космической пыли и выяснение того влияния, которое оказывает эта пыль при изучении физических характеристик астрофизических объектов . Межзвездное поглощение и межзвездная поляризация света , инфракрасное излучение областей нейтрального водорода, дефицит химических элементов в межзвездной среде, вопросы образования молекул и рождение звезд - во всех этих проблемах огромная роль принадлежит космической пыли, рассмотрению свойств которой и посвящена данная статья.

Происхождение космической пыли

Космические пылинки возникают в основном в медленно истекающих атмосферах звезд - красных карликов , а также при взрывных процессах на звездах и бурном выбросе газа из ядер галактик . Другими источниками образования космической пыли являются планетарные и протозвездные туманности , звездные атмосферы и межзвездные облака. Во всех процессах образования космических пылинок температура газа падает при движении газа наружу и в какой-то момент переходит через точку росы , при которой происходит конденсация паров веществ , образующих ядра пылинок. Центрами образования новой фазы обычно являются кластеры . Кластеры представляют собой небольшие группы атомов или молекул, образующие устойчивую квазимолекулу. При столкновениях с уже сформировавшимся зародышем пылинки к нему могут присоединяться атомы и молекулы, либо вступая в химические реакции с атомами пылинки (хемосорбция), либо достраивая формирующийся кластер. В наиболее плотных участках межзвездной среды, концентрация частиц в которых см -3 , рост пылинки может быть связан с процессами коагуляции , при которых пылинки могут слипаться друг с другом, не разрушаясь при этом. Процессы коагуляции, зависящие от свойств поверхности пылинок и их температур, идут только в том случае, когда столкновения между пылинками происходят при низких относительных скоростях соударений.


На рис. 2 показан процесс роста кластеров космической пылинки с помощью присоединения мономеров . Получающаяся при этом аморфная космическая пылинка может представлять собой кластер атомов, обладающий фрактальными свойствами . Фракталами называются геометрические объекты : линии, поверхности, пространственные тела, имеющие сильно изрезанную форму и обладающие свойством самоподобия . Самоподобие означает неизменность основных геометрических характеристик фрактального объекта при изменении масштаба. Например, изображения многих фрактальных объектов оказываются очень похожими при увеличении разрешения в микроскопе. Фрактальные кластеры представляют собой сильно разветвленные пористые структуры, образующиеся в сильно неравновесных условиях при объединении твердых частиц близких размеров в одно целое. В земных условиях фрактальные агрегаты получаются при релаксации паров металлов в неравновесных условиях , при образовании гелей в растворах, при коагуляции частиц в дымах. Модель фрактальной космической пылинки показана на рис. 3. Отметим, что процессы коагуляции пылинок, происходящие в протозвездных облаках и газопылевых дисках , значительно усиливаются при турбулентном движении межзвездного вещества.


Ядра космических пылинок, состоящие из тугоплавких элементов , размером в сотые доли микрона образуются в оболочках холодных звезд при плавном истечении газа или во время взрывных процессов. Такие ядра пылинок устойчивы ко многим внешним воздействиям.