Найти параллельные прямые ab и. Признаки параллельности двух прямых. Свойства параллельных прямых. Аксиома параллельных линий

Понятие одночлена

Определение одночлена: одночлен - это алгебраическое выражение, в котором используется только умножение.

Стандартный вид одночлена

Что такое стандартный вид одночлена? Одночлен записан в стандартном виде, если в нём на первом месте стоит числовой множитель и этот множитель, его называют коэффициентом одночлена, только один в одночлене, буквы одночлена расположены в алфавитном порядке и каждая буква встречается только один раз.

Пример одночлена в стандартном виде:

здесь на первом месте число, коэффициент одночлена, и это число только одно в нашем одночлене, каждая буква встречается только один раз и буквы расположены в алфавитном порядке, в данном случае это латинский алфавит.

Ещё пример одночлена в стандартном виде:

каждая буква встречается лишь однажды, расположены они в латинском алфавитном порядке, но где коэффициент одночлена, т.е. числовой множитель, который должен стоять на первом месте? Он здесь равен единице: 1adm.

Коэффициент одночлена может быть отрицательным? Да, может, пример: -5a.

Коэффициент одночлена может быть дробным? Да, может, пример: 5,2a.

Если одночлен состоит только из числа, т.е. не имеет букв, как привести его к стандартному виду? Любой одночлен, представляющий собой число, уже находится в стандартном виде, пример: число 5 - это одночлен стандартного вида.

Приведение одночленов к стандартному виду

Как привести одночлен к стандартному виду? Рассмотрим примеры.

Пусть дан одночлен 2a4b, нужно привести его к стандартному виду. Перемножаем два его числовых множителя и получаем 8ab. Теперь одночлен записан в стандартном виде, т.е. имеет только один числовой множитель, записанный на первом месте, каждая бува в одночлене встречается только один раз и расположены эти буквы в алфавитном порядке. Итак, 2a4b = 8ab.

Дано: одночлен 2a4a, привести одночлен к стандартному виду. Перемножаем числа 2 и 4, произведение aa заменяем второй степенью a 2 . Получаем: 8a 2 . Это стандартный вид данного одночлена. Итак, 2a4a = 8a 2 .

Подобные одночлены

Что такое подобные одночлены? Если одночлены различаются только лишь коэффициентами или равны, то они называются подобными.

Пример подобных одночленов: 5a и 2a. Эти одночлены различаются только коэффициентами, значит они подобны.

Подобны ли одночлены 5abc и 10cba? Приведем к стандартному виду второй одночлен, получим 10abc. Теперь видно, что одночлены 5abc и 10abc отличаются только своими коэффициентами, а это означает, что они подобны.

Сложение одночленов

Чему равна сумма одночленов? Суммировать мы можем только подобные одночлены. Рассмотрим пример сложения одночленов. Чему равна сумма одночленов 5a и 2a? Суммой этих одночленов будет одночлен, подобный им, коэффициент которого равен сумме коэффициентов слагаемых. Итак, сумма одночленов равна 5a + 2a = 7a.

Ещё примеры сложения одночленов:

2a 2 + 3a 2 = 5a 2
2a 2 b 3 c 4 + 3a 2 b 3 c 4 = 5a 2 b 3 c 4

Ещё раз. Складывать можно только подобные одночлены, сложение сводится к сложению их коэффициентов.

Вычитание одночленов

Чему равна разность одночленов? Вычитать мы можем только подобные одночлены. Рассмотрим пример вычитания одночленов. Чему равна разность одночленов 5a и 2a? Разностью этих одночленов будет одночлен, подобный им, коэффициент которого равен разности коэффициентов данных одночленов. Итак, разность одночленов равна 5a - 2a = 3a.

Ещё примеры вычитания одночленов:

10a 2 - 3a 2 = 7a 2
5a 2 b 3 c 4 - 3a 2 b 3 c 4 = 2a 2 b 3 c 4

Умножение одночленов

Чему равно произведение одночленов? Рассмотрим пример:

т.е. произведение одночленов равно одночлену, множители которого составлены из множителей исходных одночленов.

Ещё пример:

2a 2 b 3 * a 5 b 9 = 2a 7 b 12 .

Как получился такой результат? В каждом сомножителе имеется «а» в степени: в первом - «а» в степени 2, а во втором - «а» в степени 5. Значит в произведении будет «а» в степени 7, ведь при умножении одинаковых букв показатели их степеней складываются:

A 2 * a 5 = a 7 .

Это же относится и к сомножителю «b».

Коэффициент первого сомножителя равен двум, а второго - одному, поэтому получаем в результате 2 * 1 = 2.

Вот так посчитался результат 2a 7 b 12 .

Из этих примеров видно, что коэффициенты одночленов перемножаются, а одинаковые буквы заменяются суммами их степеней в произведении.

В этом уроке мы дадим строгое определение одночлена, рассмотрим различные примеры из учебника. Вспомним правила умножения степеней с одинаковыми основаниями. Дадим определение стандартного вида одночлена, коэффициента одночлена и его буквенной части. Рассмотрим два основных типовых действия над одночленами, а именно приведение к стандартному виду и вычисление конкретного численного значения одночлена при заданных значениях входящих в него буквенных переменных. Сформулируем правило приведения одночлена к стандартному виду. Научимся решать типовые задачи с любыми одночленами.

Тема: Одночлены. Арифметические операции над одночленами

Урок: Понятие одночлена. Стандартный вид одночлена

Рассмотри некоторые примеры:

3. ;

Найдем общие черты для приведенных выражений. Во всех трех случаях выражение является произведением чисел и переменных, возведенных в степень. На основании этого дадим определение одночлена : одночленом называют такое алгебраическое выражение, которое состоит из произведения степеней и чисел.

Теперь приведем примеры выражений, не являющихся одночленами:

Найдем отличие этих выражений от предыдущих. Оно состоит в том, что в примерах 4-7 есть операции сложения, вычитания или деления, тогда как в примерах 1-3, являющихся одночленами, этих операций нет.

Приведем еще несколько примеров:

Выражение под номером 8 является одночленом, так как это произведение степени на число, тогда как пример 9 не является одночленом.

Теперь выясним действия над одночленами .

1.Упрощение. Рассмотрим пример №3 ;и пример №2 /

Во втором примере мы видим только один коэффициент - , каждая переменная встречается только один раз, то есть переменная «а » представлена в единственном экземпляре, как «», аналогично переменные «» и «» встречаются только один раз.

В примере №3 наоборот, есть два различных коэффициента - и , переменную «» мы видим дважды - как «» и как «», аналогично переменная «» встречается два раза. То есть, данное выражение следует упростить, таким образом, приходим к первому действию, выполняемому над одночленами - приведение одночлена к стандартному виду . Для этого приведем к стандартному виду выражение из примера 3, затем определим эту операцию и научимся приводить к стандартному виду любой одночлен.

Итак, рассмотри пример:

Первым действием в операции приведения к стандартному виду всегда нужно перемножить все числовые множители:

;

Результат данного действия будет называться коэффициентом одночлена .

Далее необходимо перемножить степени. Перемножим степени переменной «х » согласно правилу умножения степеней с одинаковыми основаниями, в котором говорится, что при умножении показатели степени складываются:

теперь перемножим степени «у »:

;

Итак, приведем упрощенное выражение:

;

Любой одночлен можно привести к стандартному виду. Сформулируем правило приведения к стандартному виду :

Перемножить все числовые множители;

Поставить полученный коэффициент на первое место;

Перемножить все степени, то есть получить буквенную часть;

То есть, любой одночлен характеризуется коэффициентом и буквенной частью. Забегая вперед, отметим, что одночлены, имеющие одинаковую буквенную часть, называются подобными.

Теперь нужно наработать технику приведения одночленов к стандартному виду . Рассмотри примеры из учебника:

Задание: привести одночлен к стандартному виду, назвать коэффициент и буквенную часть.

Для выполнения задания воспользуемся правилом приведения одночлена к стандартному виду и свойствами степеней.

1. ;

3. ;

Комментарии к первому примеру : Для начала определим, действительно ли данное выражение является одночленом, для этого проверим, есть ли в нем операции умножения чисел и степеней и нет ли в нем операций сложения, вычитания или деления. Можем сказать, что данное выражение является одночленом, так как вышеуказанное условие выполняется. Далее, согласно правилу приведения одночлена к стандартному виду, перемножим численные множители:

- мы нашли коэффициент заданного одночлена;

; ; ; то есть, получена буквенная часть выражения:;

запишем ответ: ;

Комментарии ко второму примеру : Следуя правилу выполняем:

1) перемножить числовые множители:

2) перемножить степени:

Переменные и представлены в единственном экземпляре, то есть их перемножить ни с чем нельзя, они переписываются без изменений, степень перемножается:

запишем ответ:

;

В данном примере коэффициент одночлена равен единице, а буквенная часть .

Комментарии к третьему примеру: а налогично предыдущим примерам выполняем действия:

1) перемножить численные множители:

;

2) перемножить степени:

;

выпишем ответ: ;

В данном случае коэффициент одночлена равен «», а буквенная часть .

Теперь рассмотрим вторую стандартную операцию над одночленами . Поскольку одночлен это алгебраическое выражение, состоящее из буквенных переменных, которые могут принимать конкретные числовые значения, то мы имеем арифметическое числовое выражение, которое следует вычислить. То есть, следующая операция над многочленами состоит в вычислении их конкретного числового значения .

Рассмотрим пример. Задан одночлен:

данный одночлен уже приведен к стандартному виду, его коэффициент равен единице, а буквенная часть

Ранее мы говорили, что алгебраическое выражение не всегда можно вычислить, то есть переменные, которые в него входят, могут принимать не любое значение. В случае одночлена же входящие в него переменные могут быть любыми, это является особенностью одночлена.

Итак, в заданном примере требуется вычислить значение одночлена при , , , .

Понятие параллельных прямых

Определение 1

Параллельные прямые – прямые, которые лежат в одной плоскости, не совпадают и не имеют общих точек.

Если у прямых есть общая точка, тогда они пересекаются .

Если все точки прямых совпадают , то имеем по сути одну прямую.

Если прямые лежат в разных плоскостях, то условий их параллельности несколько больше.

При рассмотрении прямых на одной плоскости можно дать следующее определение:

Определение 2

Две прямые на плоскости называют параллельными , если они не пересекаются.

В математике параллельные прямые принято обозначать с помощью знака параллельности « $\parallel$ ». Например, тот факт, что прямая $c$ параллельна прямой $d$ обозначается следующим образом:

$c \parallel d$.

Зачастую рассматривается понятие параллельных отрезков.

Определение 3

Два отрезка называют параллельными , если они лежат на параллельных прямых.

Например, на рисунке параллельными являются отрезки $AB$ и $CD$, т.к. они принадлежат параллельным прямым:

$AB \parallel CD$.

Вместе с тем, отрезки $MN$ и $AB$ или $МN$ и $CD$ параллельными не являются. Этот факт можно записать с помощью символов следующим образом:

$MN ∦ AB$ и $MN ∦ CD$.

Аналогичным образом определяется параллельность прямой и отрезка, прямой и луча, отрезка и луча или двух лучей.

Историческая справка

С греческого языка понятие «параллелос» переводится «рядом идущий» или «проведенный друг возле друга». Этот термин использовался в древней школе Пифагора еще до того, как параллельные прямые получили свое определение. Согласно историческим фактам Евклидом в $III$ в. до н.э. в его трудах все же был раскрыт смысл понятия параллельных прямых.

В древности знак для обозначения параллельных прямых имел отличный вид того, что мы используем в современной математике. Например, древнегреческим математиком Паппом в $III$ в. н.э. параллельность обозначалась с помощью знака равенства. Т.е. тот факт, что прямая $l$ параллельна прямой $m$ ранее обозначался «$l=m$». Позднее для обозначения параллельности прямых стали использовать привычный нам знак «$\parallel$, а знак равенства стали использовать для обозначения равенства чисел и выражений.

Параллельные прямые в жизни

Зачастую мы не замечаем, что в обычной жизни нас окружает огромное число параллельных прямых. Например, в нотной тетради и сборнике песен с нотами нотный стан выполнен с помощью параллельных линий. Также параллельные линии встречаются и в музыкальных инструментах (например, струны арфы, гитары, клавиши фортепиано и т.п.).

Электрические провода, которые расположены вдоль улиц и дорог, также проходят параллельно. Рельсы линий метро и железных дорог располагаются параллельно.

Кроме быта параллельные линии можно встретить в живописи, в архитектуре, при строительстве зданий.

Параллельные прямые в архитектуре

На представленных изображениях архитектурные сооружения содержат параллельные прямые. Использование параллельности прямых в строительстве помогает увеличить срок службы таких сооружений и придает им необычайную красоту, привлекательность и величие. Линии электропередач также умышленно проводятся параллельно, чтобы избежать их пересечения или соприкосновения, что привело бы к замыканию, перебоям и отсутствию электричества. Чтобы поезд мог беспрепятственно перемещаться рельсы также выполнены параллельными линиями.

В живописи параллельные линии изображают сводящимися в одну линию или близкими к тому. Такой прием называется перспективой, которая следует из иллюзии зрения. Если долго смотреть вдаль, то параллельные прямые будут похожи на две сходящиеся линии.

Которые лежат в одной плоскости и либо совпадают, либо не пересекаются. В некоторых школьных определениях совпадающие прямые не считаются параллельными, здесь такое определение не рассматривается.

Свойства

  1. Параллельность - бинарное отношение эквивалентности , поэтому разбивает всё множество прямых на классы параллельных между собой прямых.
  2. Через любую точку можно провести ровно одну прямую, параллельную данной. Это отличительное свойство евклидовой геометрии , в других геометриях число 1 заменено другими (в геометрии Лобачевского таких прямых минимум две)
  3. 2 параллельные прямые в пространстве лежат в одной плоскости.
  4. При пересечении 2 параллельных прямых третьей, называемой секущей :
    1. Секущая обязательно пересекает обе прямые.
    2. При пересечении образуется 8 углов, некоторые характерные пары которых имеют особые названия и свойства:
      1. Накрест лежащие углы равны.
      2. Соответственные углы равны.
      3. Односторонние углы в сумме составляют 180°.

В геометрии Лобачевского

В геометрии Лобачевского в плоскости через точку Невозможно разобрать выражение (лексическая ошибка): C вне данной прямой AB

Проходит бесконечное множество прямых, не пересекающих A B . Из них параллельными к A B называются только две.

Прямая C E называется равнобежной (параллельной) прямой A B в направлении от A к B , если:

  1. точки B и E лежат по одну сторону от прямой A C ;
  2. прямая C E не пересекает прямую A B , но всякий луч, проходящий внутри угла A C E , пересекает луч A B .

Аналогично определяется прямая, равнобежная A B в направлении от B к A .

Все остальные прямые, не пересекающие данную, называются ультрапараллельными или расходящимися .

См. также


Wikimedia Foundation . 2010 .

  • Скрещивающиеся прямые
  • Нестерихин, Юрий Ефремович

Смотреть что такое "Параллельные прямые" в других словарях:

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ - ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, непересекающиеся прямые, лежащие в одной плоскости … Современная энциклопедия

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ Большой Энциклопедический словарь

    Параллельные прямые - ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, непересекающиеся прямые, лежащие в одной плоскости. … Иллюстрированный энциклопедический словарь

    Параллельные прямые - в евклидовой геометрии, прямые, которые лежат в одной плоскости и не пересекаются. В абсолютной геометрии (См. Абсолютная геометрия) через точку, не лежащую на данной прямой, проходит хотя бы одна прямая, не пересекающая данную. В… … Большая советская энциклопедия

    параллельные прямые - непересекающиеся прямые, лежащие в одной плоскости. * * * ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, непересекающиеся прямые, лежащие в одной плоскости … Энциклопедический словарь

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ - в евклидовой геометрии прямые, к рые лежат в одной плоскости и не пересекаются. В абсолютной геометрии через точку, не лежащую на данной прямой, проходит хотя бы одна прямая, не пересекающая данную. В евклидовой геометрии существует только одна… … Математическая энциклопедия

    ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ - непересекающиеся прямые, лежащие в одной плоскости … Естествознание. Энциклопедический словарь

    Параллельные миры в фантастике - Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. У это … Википедия

    Параллельные миры - Параллельный мир (в фантастике) реальность, существующая каким то образом одновременно с нашей, но независимо от неё. Эта автономная реальность может иметь различные размеры: от небольшой географической области до целой вселенной. В параллельном … Википедия

    Параллельные - линии Прямые линии называются П., если ни они, ни ихпродолжения взаимно не пересекаются. Весточки одной из таких прямыхнаходятся на одинаковом расстоянии от другой. Однако, принято говорить: две П. прямые пересекаются в бесконечности. Такой… … Энциклопедия Брокгауза и Ефрона

Книги

  • Комплект таблиц. Математика. 6 класс. 12 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 12 листов. Делимость…

Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Определение.

Две прямые на плоскости называются параллельными , если они не имеют общих точек.

Определение.

Две прямые в трехмерном пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых - признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых . В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы . Покажем их на чертеже.

Теорема.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.


Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 -9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Теорема.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Теорема.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Теорема.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Теорема.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.


Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Теорема.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к (направляющих векторов прямых или нормальных векторов прямых) или к (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и - направляющие векторы прямых a и b , а и - нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t - некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b - , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b - , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Пример.

Параллельны ли прямые и ?

Решение.

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что - нормальный вектор прямой , а - нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

Ответ:

Нет, прямые не параллельны.

Пример.

Являются ли прямые и параллельными?

Решение.

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.