Дробь называется правильной если знаменатель больше числителя. Как называются дроби? Свойства абсолютной величины

Построим произвольный треугольник, вписанный в окружность. Обозначим его как ABC.
Для доказательства всей теоремы, поскольку размеры треугольника выбраны произвольным образом, достаточно доказать, что соотношение одной произвольной стороны к противолежащему ей углу равно 2R. Пусть это будет 2R = a / sin α, то есть если взять по чертежу 2R = BC / sin A.

Проведем диаметр BD для описанной окружности. Образовавшийся треугольник BCD является прямоугольным, поскольку его гипотенуза лежит на диаметре описанной окружности (свойство углов, вписанных в окружность).

Поскольку, углы, вписанные в окружность, опирающиеся на одну и ту же дугу, равны, то угол CDB либо равен углу CAB (если точки A и D лежат по одну сторону от прямой BC), либо равен π - CAB (в противном случае).

Обратимся к свойствам тригонометрических функций. Поскольку sin(π − α) = sin α, то указанные варианты построения треугольника все равно приведут к одному результату.

Вычислим значение 2R = a / sin α, по чертежу 2R = BC / sin A. Для этого заменим sin A на соотношение соответствующих сторон прямоугольного треугольника.

2R = BC / sin A
2R = BC / (BC / DB)
2R = DB

А, поскольку, DB строился как диаметр окружности, то равенство выполняется.
Повторив то же рассуждение для двух других сторон треугольника, получаем:

Теорема синусов доказана.

Теорема синусов

Примечание . Это часть урока с задачами по геометрии (раздел теорема синусов). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение .

Теорема синусов:
Стороны треугольника пропорциональны синусам противолежащих углов, или, в расширенной формулировке:
a / sin α = b / sin β = c / sin γ = 2R
где R - радиус описанной окружности

Теорию - формулировку и доказательство теоремы подробно см. в главе "Теорема синусов" .

Задача

В треугольнике XYZ угол Х=30 угол Z=15. Перпендикуляр YQ к ZY делит сторону ХZ на части XQ и QZ.Найти XY, если QZ=1.5м

Решение .
Высота образовала два прямоугольных треугольника XYQ и ZYQ.
Для решения задачи воспользуемся теоремой синусов.
QZ / sin(QYZ) = QY / sin(QZY)

QZY = 15 градусов, Соответственно, QYZ = 180 - 90 - 15 = 75

Поскольку длина высоты треугольника теперь известна, найдем XY по той же теореме синусов.

QY / sin(30) = XY / sin(90)

Примем во внимание табличные значения некоторых тригонометрических функций:

  • синус 30 градусов равен sin(30) = 1 / 2
  • синус 90 градусов равен sin(90) = 1

QY = XY sin (30)
3/2 (√3 - 1) / (√3 + 1) = 1/2 XY
XY = 3 (√3 - 1) / (√3 + 1) ≈ 0.8 м

Ответ : 0,8 м или 3 (√3 - 1) / (√3 + 1)

Теорема синусов (часть 2)

Примечание . Это часть урока с задачами по геометрии (раздел теорема синусов). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме .

Теорию подробно см. в главе "Теорема синусов" .

Задача

Сторона АВ треугольника ABC равна 16см. Угол А равен 30 градусам. Угол В равен 105 градусам. Вычислите длину стороны ВС.

Решение .
Согласно теореме синусов, стороны треугольника пропорциональны синусам противолежащих углов:
a / sin α = b / sin β = c / sin γ

Таким образом
BC / sin α = AB / sin γ

Величину угла С найдем, исходя из того, сумма углов треугольника равна 180 градусам.
С = 180 - 30 -105 = 45 градусов.

Откуда:
BC / sin 30° = 16 / sin 45°

BC = 16 sin 30° / sin 45°

Обратившись к таблице тригонометрических функций, находим:

BC = (16 * 1 / 2) / √2/2 = 16 / √2 ≈ 11,3 см

Ответ : 16 / √2

Задача .
В треугольнике ABC угол А = α, угол С = β, ВС = 7см, ВН - высота треугольника.
Найти АН

Выпускники, которые готовятся сдавать ЕГЭ по математике и хотят получить достаточно высокие баллы, обязательно должны освоить принцип решения задач на применение теоремы синусов и косинусов. Многолетняя практика показывает, что подобные задания из раздела «Геометрия на плоскости» являются обязательной частью программы аттестационного испытания. Поэтому, если одним из ваших слабых мест являются задачи на теорему косинусов и синусов, рекомендуем обязательно повторить базовую теорию по данной теме.

Готовьтесь к экзамену вместе с образовательным порталом «Школково»

Занимаясь перед сдачей ЕГЭ, многие выпускники сталкиваются с проблемой поиска базовой теории, необходимой для решения практических задач на применение теоремы синусов и косинусов.

Учебник далеко не всегда оказывается под рукой в нужный момент. А найти необходимые формулы иногда бывает достаточно проблематично даже в Интернете.

Подготовка к аттестационному испытанию вместе с образовательным порталом «Школково» будет максимально качественной и эффективной. Чтобы задачи на теорему синусов и косинусов давались легко, рекомендуем освежить в памяти всю теорию по данной теме. Этот материал наши специалисты подготовили на основе богатого опыта и представили в понятной форме. Найти его вы можете в разделе «Теоретическая справка».

Знание базовых теорем и определений - это половина успеха при прохождении аттестационного испытания. Отточить навык решения примеров позволяют соответствующие упражнения. Чтобы их найти, достаточно перейти в раздел «Каталог» на образовательном сайте «Школково». Там представлен большой перечень заданий различного уровня сложности, который постоянно дополняется и обновляется.

Задачи на теоремы синусов и косинусов, подобные тем, что встречаются в ЕГЭ по математике, учащиеся могут выполнять в онлайн-режиме, находясь в Москве или любом другом российском городе.

В случае необходимости любое упражнение, например, можно сохранить в разделе «Избранное». Это позволит в дальнейшем вернуться к нему, чтобы еще раз проанализировать алгоритм нахождения правильного ответа и обсудить его с преподавателем в школе или репетитором.

Тригонометрия широко применяется не только в разделе алгебра — начала анализа, но также и в геометрии. В связи с этим, разумно предположить о существовании теорем и их доказательств, связанных с тригонометрическими функциями. Действительно, теоремы косинусов и синусов выводят очень интересные, а главное полезные соотношения между сторонами и углами треугольников.

С помощью данной формулы можно вывести любую из сторон треугольника:

Доказательство утверждения выводится на основе теоремы Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

Рассмотрим произвольный треугольник ABC. Из вершины C опустим высоту h к основанию фигуры, в данном случае абсолютно не важна ее длина. Теперь, если рассмотреть произвольный треугольник AСВ, то можно выразить координаты точки C через тригонометрические функции cos и sin.

Вспомним определение косинуса и распишем соотношение сторон треугольника ACD: cos α = AD/AC | умножим обе стороны равенства на AC; AD = AC * cos α.

Длину AC примем за b и получим выражение для первой координаты точки С:
x = b * cos⁡α. Аналогично, находим значение ординаты С: y = b * sin α. Далее применим теорему Пифагора и выразим h поочередно для треугольника ACD и DCB:

Очевидно, что оба выражения (1) и (2) равны между собой. Приравняем правые части и приведем подобные:

На практике данная формула позволяет найти длину неизвестной стороны треугольника по заданным углам. Теорема косинусов имеет три следствия: для прямого, острого и тупого угла треугольника.

Заменим величину cos α привычной переменной x, тогда для острого угла треугольника ABC получим:

Если же угол окажется прямым, то 2bx исчезнет из выражения, так как cos 90° = 0. Графически второе следствие можно представить следующим образом:

В случае тупого угла знак «-»перед двойным аргументом в формуле сменится на «+»:

Как видно из объяснения, ничего сложного в соотношениях нет. Теорема косинусов есть не что иное, как переложение теоремы Пифагора в тригонометрических величинах.

Практическое применение теоремы

Задание 1 . Дан треугольник ABC, у которого сторона BC = a = 4 см, AC = b = 5 см, а cos α = ½. Необходимо найти длину стороны AB.

Чтобы правильно произвести расчет, нужно определить угол α. Для этого стоит обратиться к таблице значений для тригонометрических функций, согласно которой арккосинус равен 1/ 2 для угла в 60°. Исходя из этого, воспользуемся формулой первого следствия теоремы:

Задание 2 . Для треугольника ABC известны все стороны: AB =4√2,BC=5,AC=7. Требуется найти все углы фигуры.

В данном случае не обойтись без чертежа условий задачи.

Так как значения углов остаются неизвестными, для поиска решений следует использовать полную формулу для острого угла.

По аналогии нетрудно составить формулы и рассчитать значения и других углов:

В сумме три угла треугольника должны составить 180 °: 53 + 82 + 45 = 180, следовательно, решение найдено.

Теорема синусов

Теорема гласит, что все стороны произвольного треугольника пропорциональны синусам противолежащих углов. Записываются соотношения в виде тройного равенства:

Классическое доказательство утверждения проводят на примере фигуры вписанной в окружность.

Чтобы убедиться в правдивости высказывания на примере треугольника ABC на рисунке, необходимо подтвердить тот факт, что 2R = BC / sin A. Затем доказать, что и прочие стороны соотносятся с синусами противоположных углов, как 2R или D окружности.

Для этого проводим диаметр круга из вершины B. Из свойства углов вписанных в окружность ∠GCB – прямой, а ∠CGB либо равен ∠CAB, либо (π — ∠CAB). В случае с синусом последнее обстоятельство не значительно, так как sin (π –α) = sin α. На основании приведенных умозаключений можно утверждать, что:

sin ∠CGB = BC/ BG или sin A = BC/2R,

Если рассматривать другие углы фигуры, получим расширенную формулу теоремы синусов:

Типовые задания на отработку знания теоремы синусов сводятся к поиску неизвестной стороны или угла треугольника.

Как видно из примеров, решение подобных задач не вызывает затруднений и заключается в проведении математических расчетов.

Первая часть теоремы : стороны произвольного треугольника пропорциональный синусам противоположных углов, то есть:

Вторая часть теоремы : каждая дробь равна диаметру окружности, описанной около данного треугольника, то есть: .

Комментарий репетитора по математике : использование второй части теоремы синусов закладывается чуть ли не в каждой второй конкурсной задаче на окружность. Почему? Дело в том, что равенство позволяет находить радиус окружности имея в наличие только два элемента треугольника. Это очень часто используют составители сильных задач, которые специально так подбирают условие, чтобы никакие другие элементы треугольника (и всего рисунка) не находились бы вообше! «Картинка» при этом будет плавующей. Это обстоятельство сильно усложняет работу на экзамене, ибо не дает возможность действовать в обход заложенному свойству.

Доказательство теоремы синусов:

по учебнику Атанасяна
Докажем, что для любого треугольника со сторонами a, b, c и противолежащими углами A, B и С выполняется равенство: .
Проведем высоту BH из вершины В. Возможны два случая:
1) Точка H лежит на стороне AC (это возможно когда и — острые).
По определению синуса острого угла в прямоугольном треугольнике ABH запишем

Аналогично в треугольнике CBH имеем . Приравнивая выражения для BH друг к другу получим:
2) Пусть H лежит на продолжении стороны AC (например слева от А). Это произойдет, если – тупой. Аналогично по определению синуса острого угла А в треугольнике ABH запишем равенство , но так как синусы смежных углов равны, то заменив в этом равенстве на , получим как и в первом случае. Поэтому независимо от величин углов А и С равенство верное.
После деления обеих его частей на получим . Аналогично доказывается равенство второй пары дробей

Доказательство теоремы синусов по учебнику Погорелова:

Применим формулу площади треугольника для двух углов A и C:


После приравнивания правых частей и сокращения на получим тоже самое равенство , как и в доказательстве первым способом. Из него тем же путем получаем равенство дробей.

Доказательство второй части теоремы синусов:

Опишем около данного треугольника окружность и через В проведем ее диаметр BD. Так как углы D и C опираются на одну дугу, то они равны (следствие из теоремы о вписанных углах). Тогда . Применим в треугольнике ABD определение синуса угла D: Что и требовалось доказать.

Задачи на вторую часть теоремы синусов:
1) В окружность радиуса 15 вписана трапеция. Длины диагонали и высоты трапеции соответственно равны 20 и 6. Найти боковую сторону.
2) Радиус окружность, описанной около трапеции, равен 25, а косинус ее тупого угла равен -0,28 (минус!!!). Диагональ трапеции образует с основанием угол . Найти высоту трапеции.
3) В окружность радиуса 10 вписана трапеция. Длины диагонали и средней линии трапеции соответственно равны 15 и 12. Найти длину боковой стороны трапеции.
4) Олимпиада в Финансовой академии 2009г. Хорды окружности пересекаются в точке Q. Известно, что а радиус окружности равен 4см. Найдите длину хорды PN. Олимпиада в Финансовой академии 2009г.
5) В треугольнике PST . Вокруг точки пересечения его биссектрис и вершин P и T описана окружность с радиусом 8см. Найдите радиус окружности, описанной около треугольника PST (авторская задача).

Детально разобрать теорему синусов и получить необходимую практику ее использования в задачах вам всегда поможет репетитор по математике . Ее плановое школьное изучение происходит в курсе геометрии 9 класса в теме решение треугольников (по всем программам). Если вам нужна подготовка к ЕГЭ по математике для сдачи экзамена не менее чем на 70 баллов — придется тренироваться в решении крепких планиметрических задач с номеров С4. В них теорему синусов часто применяют к вписанным треугольникам учитывая соотношение . Помните об этом!

С уважением, Колпаков Александр Николаевич,
репетитор по математике


Эта статья про обыкновенные дроби . Здесь мы познакомимся с понятием доли целого, которое приведет нас к определению обыкновенной дроби. Дальше остановимся на принятых обозначениях для обыкновенных дробей и приведем примеры дробей, скажем про числитель и знаменатель дроби. После этого дадим определения правильных и неправильных, положительных и отрицательных дробей, а также рассмотрим положение дробных чисел на координатном луче. В заключение перечислим основные действия с дробями.

Навигация по странице.

Доли целого

Сначала введем понятие доли .

Предположим, что у нас есть некоторый предмет, составленный из нескольких абсолютно одинаковых (то есть, равных) частей. Для наглядности можно представить, например, яблоко, разрезанное на несколько равных частей, или апельсин, состоящий из нескольких равных долек. Каждую из этих равных частей, составляющих целый предмет, называют долей целого или просто долей .

Заметим, что доли бывают разные. Поясним это. Пусть у нас есть два яблока. Разрежем первое яблоко на две равные части, а второе – на 6 равных частей. Понятно, что доля первого яблока будет отличаться от доли второго яблока.

В зависимости от количества долей, составляющих целый предмет, эти доли имеют свои названия. Разберем названия долей . Если предмет составляют две доли, любая из них называется одна вторая доля целого предмета; если предмет составляют три доли, то любая из них называется одна третья доля, и так далее.

Одна вторая доля имеет специальное название – половина . Одна третья доля называется третью , а одна четверная доля – четвертью .

Для краткости записи были введены следующие обозначения долей . Одну вторую долю обозначают как или 1/2 , одну третью долю – как или 1/3 ; одну четвертую долю – как или 1/4 , и так далее. Отметим, что запись с горизонтальной чертой употребляется чаще. Для закрепления материала приведем еще один пример: запись обозначает одну сто шестьдесят седьмую долю целого.

Понятие доли естественным образом распространяется с предметов на величины. Например, одной из мер измерения длины является метр. Для измерения длин меньших, чем метр, можно использовать доли метра. Так можно воспользоваться, например, половиной метра или десятой или тысячной долей метра. Аналогично применяются доли других величин.

Обыкновенные дроби, определение и примеры дробей

Для описания количества долей используются обыкновенные дроби . Приведем пример, который позволит нам подойти к определению обыкновенных дробей.

Пусть апельсин состоит из 12 долей. Каждая доля в этом случае представляет одну двенадцатую долю целого апельсина, то есть, . Две доли обозначим как , три доли – как , и так далее, 12 долей обозначим как . Каждую из приведенных записей называют обыкновенной дробью.

Теперь дадим общее определение обыкновенных дробей .

Озвученное определение обыкновенных дробей позволяет привести примеры обыкновенных дробей : 5/10 , , 21/1 , 9/4 , . А вот записи не подходят под озвученное определение обыкновенных дробей, то есть, не являются обыкновенными дробями.

Числитель и знаменатель

Для удобства в обыкновенной дроби различают числитель и знаменатель .

Определение.

Числитель обыкновенной дроби (m/n ) – это натуральное число m .

Определение.

Знаменатель обыкновенной дроби (m/n ) – это натуральное число n .

Итак, числитель расположен сверху над чертой дроби (слева от наклонной черты), а знаменатель – снизу под чертой дроби (справа от наклонной черты). Для примера приведем обыкновенную дробь 17/29 , числителем этой дроби является число 17 , а знаменателем – число 29 .

Осталось обговорить смысл, заключенный в числителе и знаменателе обыкновенной дроби. Знаменатель дроби показывает, из скольких долей состоит один предмет, числитель в свою очередь указывает количество таких долей. Например, знаменатель 5 дроби 12/5 означает, что один предмет состоит из пяти долей, а числитель 12 означает, что взято 12 таких долей.

Натуральное число как дробь со знаменателем 1

Знаменатель обыкновенной дроби может быть равен единице. В этом случае можно считать, что предмет неделим, иными словами, представляет собой нечто целое. Числитель такой дроби указывает, сколько целых предметов взято. Таким образом, обыкновенная дробь вида m/1 имеет смысл натурального числа m . Так мы обосновали справедливость равенства m/1=m .

Перепишем последнее равенство так: m=m/1 . Это равенство дает нам возможность любое натуральное число m представлять в виде обыкновенной дроби. Например, число 4 – это дробь 4/1 , а число 103 498 равно дроби 103 498/1 .

Итак, любое натуральное число m можно представить в виде обыкновенной дроби со знаменателем 1 как m/1 , а любую обыкновенную дробь вида m/1 можно заменить натуральным числом m .

Черта дроби как знак деления

Представление исходного предмета в виде n долей представляет собой не что иное как деление на n равных частей. После того как предмет разделен на n долей, мы его можем разделить поровну между n людьми – каждый получит по одной доле.

Если же у нас есть изначально m одинаковых предметов, каждый из которых разделен на n долей, то эти m предметов мы можем поровну разделить между n людьми, раздав каждому человеку по одной доле от каждого из m предметов. При этом у каждого человека будет m долей 1/n , а m долей 1/n дает обыкновенную дробь m/n . Таким образом, обыкновенную дробь m/n можно применять для обозначения деления m предметов между n людьми.

Так мы получили явную связь между обыкновенными дробями и делением (смотрите общее представление о делении натуральных чисел). Эта связь выражается в следующем: черту дроби можно понимать как знак деления, то есть, m/n=m:n .

С помощью обыкновенной дроби можно записать результат деления двух натуральных чисел, для которых не выполняется деление нацело. Например, результат деления 5 яблок на 8 человек можно записать как 5/8 , то есть, каждому достанется пять восьмых долей яблока: 5:8=5/8 .

Равные и неравные обыкновенные дроби, сравнение дробей

Достаточно естественным действием является сравнение обыкновенных дробей , ведь понятно, что 1/12 апельсина отличается от 5/12 , а 1/6 доля яблока такая же, как другая 1/6 доля этого яблока.

В результате сравнения двух обыкновенных дробей получается один из результатов: дроби либо равны, либо не равны. В первом случае мы имеем равные обыкновенные дроби , а во втором – неравные обыкновенные дроби . Дадим определение равных и неравных обыкновенных дробей.

Определение.

равны , если справедливо равенство a·d=b·c .

Определение.

Две обыкновенные дроби a/b и c/d не равны , если равенство a·d=b·c не выполняется.

Приведем несколько примеров равных дробей. Например, обыкновенная дробь 1/2 равна дроби 2/4 , так как 1·4=2·2 (при необходимости смотрите правила и примеры умножения натуральных чисел). Для наглядности можно представить два одинаковых яблока, первое разрезано пополам, а второе – на 4 доли. При этом очевидно, что две четвертых доли яблока составляют 1/2 долю. Другими примерами равных обыкновенных дробей являются дроби 4/7 и 36/63 , а также пара дробей 81/50 и 1 620/1 000 .

А обыкновенные дроби 4/13 и 5/14 не равны, так как 4·14=56 , а 13·5=65 , то есть, 4·14≠13·5 . Другим примером неравных обыкновенных дробей являются дроби 17/7 и 6/4 .

Если при сравнении двух обыкновенных дробей выяснилось, что они не равны, то возможно потребуется узнать, какая из этих обыкновенных дробей меньше другой, а какая – больше . Чтобы это выяснить, используется правило сравнения обыкновенных дробей, суть которого сводится к приведению сравниваемых дробей к общему знаменателю и последующему сравнению числителей. Детальная информация по этой теме собрана в статье сравнение дробей: правила, примеры, решения .

Дробные числа

Каждая дробь является записью дробного числа . То есть, дробь – это всего лишь «оболочка» дробного числа, его внешний вид, а вся смысловая нагрузка содержится именно в дробном числе. Однако для краткости и удобства понятие дроби и дробного числа объединяют и говорят просто дробь. Здесь уместно перефразировать известное изречение: мы говорим дробь – подразумеваем дробное число, мы говорим дробное число – подразумеваем дробь.

Дроби на координатном луче

Все дробные числа, отвечающие обыкновенным дробям, имеют свое уникальное место на , то есть, существует взаимно однозначное соответствие между дробями и точками координатного луча.

Чтобы на координатном луче попасть в точку, соответствующую дроби m/n нужно от начала координат в положительном направлении отложить m отрезков, длина которых составляет 1/n долю единичного отрезка. Такие отрезки можно получить, разделив единичный отрезок на n равных частей, что всегда можно сделать с помощью циркуля и линейки.

Для примера покажем точку М на координатном луче, соответствующую дроби 14/10 . Длина отрезка с концами в точке O и ближайшей к ней точке, отмеченной маленьким штрихом, составляет 1/10 долю единичного отрезка. Точка с координатой 14/10 удалена от начала координат на расстояние 14 таких отрезков.

Равным дробям отвечает одно и то же дробное число, то есть, равные дроби являются координатами одной и той же точки на координатном луче. Например, координатам 1/2 , 2/4 , 16/32 , 55/110 на координатном луче соответствует одна точка, так как все записанные дроби равны (она расположена на расстоянии половины единичного отрезка, отложенного от начала отсчета в положительном направлении).

На горизонтальном и направленном вправо координатном луче точка, координатой которой является большая дробь, располагается правее точки, координатой которой является меньшая дробь. Аналогично, точка с меньшей координатой лежит левее точки с большей координатой.

Правильные и неправильные дроби, определения, примеры

Среди обыкновенных дробей различают правильные и неправильные дроби . Это разделение в своей основе имеет сравнение числителя и знаменателя.

Дадим определение правильных и неправильных обыкновенных дробей.

Определение.

Правильная дробь – это обыкновенная дробь, числитель которой меньше знаменателя, то есть, если m

Определение.

Неправильная дробь – это обыкновенная дробь, в которой числитель больше или равен знаменателю, то есть, если m≥n , то обыкновенная дробь является неправильной.

Приведем несколько примеров правильных дробей: 1/4 , , 32 765/909 003 . Действительно, в каждой из записанных обыкновенных дробей числитель меньше знаменателя (при необходимости смотрите статью сравнение натуральных чисел), поэтому они правильные по определению.

А вот примеры неправильных дробей: 9/9 , 23/4 , . Действительно, числитель первой из записанных обыкновенных дробей равен знаменателю, а в остальных дробях числитель больше знаменателя.

Также имеют место определения правильных и неправильных дробей, базирующиеся на сравнении дробей с единицей.

Определение.

правильной , если она меньше единицы.

Определение.

Обыкновенная дробь называется неправильной , если она либо равна единице, либо больше 1 .

Так обыкновенная дробь 7/11 – правильная, так как 7/11<1 , а обыкновенные дроби 14/3 и 27/27 – неправильные, так как 14/3>1 , а 27/27=1 .

Давайте поразмыслим, чем же обыкновенные дроби с числителем, превосходящим или равным знаменателю, заслужили такое название – «неправильные».

Для примера возьмем неправильную дробь 9/9 . Эта дробь означает, что взято девять долей предмета, который состоит из девяти долей. То есть, из имеющихся девяти долей мы можем составить целый предмет. То есть, неправильная дробь 9/9 по сути дает целый предмет, то есть, 9/9=1 . Вообще, неправильные дроби с числителем равным знаменателю обозначают один целый предмет, и такую дробь может заменить натуральное число 1 .

Теперь рассмотрим неправильные дроби 7/3 и 12/4 . Достаточно очевидно, что из этих семи третьих долей мы можем составить два целых предмета (один целый предмет составляют 3 доли, тогда для составления двух целых предметов нам потребуется 3+3=6 долей) и еще останется одна третья доля. То есть, неправильная дробь 7/3 по сути означает 2 предмета да еще 1/3 долю такого предмета. А из двенадцати четвертых долей мы можем составить три целых предмета (три предмета по четыре доли в каждом). То есть, дробь 12/4 по сути означает 3 целых предмета.

Рассмотренные примеры приводят нас к следующему выводу: неправильные дроби, могут быть заменены либо натуральными числами, когда числитель делится нацело на знаменатель (например, 9/9=1 и 12/4=3 ), либо суммой натурального числа и правильной дроби, когда числитель не делится нацело на знаменатель (например, 7/3=2+1/3 ). Возможно, именно этим и заслужили неправильные дроби такое название – «неправильные».

Отдельный интерес вызывает представление неправильной дроби в виде суммы натурального числа и правильной дроби (7/3=2+1/3 ). Этот процесс называется выделением целой части из неправильной дроби , и заслуживает отдельного и более внимательного рассмотрения.

Также стоит заметить, что существует очень тесная связь между неправильными дробями и смешанными числами .

Положительные и отрицательные дроби

Каждая обыкновенная дробь отвечает положительному дробному числу (смотрите статью положительные и отрицательные числа). То есть, обыкновенные дроби являются положительными дробями . К примеру, обыкновенные дроби 1/5 , 56/18 , 35/144 – положительные дроби. Когда нужно особо выделить положительность дроби, то перед ней ставится знак плюс, например, +3/4 , +72/34 .

Если перед обыкновенной дробью поставить знак минус, то эта запись будет соответствовать отрицательному дробному числу. В этом случае можно говорить об отрицательных дробях . Приведем несколько примеров отрицательных дробей: −6/10 , −65/13 , −1/18 .

Положительная и отрицательная дроби m/n и −m/n являются противоположными числами . К примеру, дроби 5/7 и −5/7 – противоположные дроби.

Положительные дроби, как и положительные числа в целом, обозначают прибавление, доход, изменение какой-либо величины в сторону увеличения и т.п. Отрицательные дроби отвечают расходу, долгу, изменению какой-либо величины в сторону уменьшения. Например, отрицательную дробь −3/4 можно трактовать как долг, величина которого равна 3/4 .

На горизонтальной и направленной вправо отрицательные дроби располагаются левее начала отсчета. Точки координатной прямой, координатами которых являются положительная дробь m/n и отрицательная дробь −m/n расположены на одинаковом расстоянии от начала координат, но по разные стороны от точки O .

Здесь же стоит сказать о дробях вида 0/n . Эти дроби равны числу нуль, то есть, 0/n=0 .

Положительные дроби, отрицательные дроби, а также дроби 0/n объединяются в рациональные числа .

Действия с дробями

Одно действие с обыкновенными дробями – сравнение дробей - мы уже рассмотрели выше. Определены еще четыре арифметических действия с дробями – сложение, вычитание, умножение и деление дробей. Остановимся на каждом из них.

Общая суть действий с дробями аналогична сути соответствующих действий с натуральными числами. Проведем аналогию.

Умножение дробей можно рассматривать как действие, при котором находится дробь от дроби. Для пояснения приведем пример. Пусть у нас есть 1/6 часть яблока и нам нужно взять 2/3 части от нее. Нужная нам часть является результатом умножения дробей 1/6 и 2/3 . Результатом умножения двух обыкновенных дробей является обыкновенная дробь (которая в частном случае равна натуральному числу). Дальше рекомендуем к изучению информацию статьи умножение дробей – правила, примеры и решения .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).