Что называется погрешностью приближения. Относительная погрешность. учитель математики МОУ «Упшинская ООШ»

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения . По-другому его называют абсолютной погрешностью . Погрешность приближения представляет собой взятую по модулю разность между точным значением числа и его приближенным значением.

Если a - это точное значение числа, а b - его приближенное значение, то погрешность приближения определяется по формуле |a – b|.

Допустим, что в результате измерений было получено число 1,5. Однако в результате вычисления по формуле точное значение этого числа равно 1,552. В таком случае погрешность приближения будет равна |1,552 – 1,5| = 0,052.

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, |π – 3,14| = |3,14159... – 3,14| = 0,00159... . Здесь получается, что погрешность приближения выражена иррациональным числом.

Как известно, приближение может выполняться как по недостатку, так и по избытку. То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15. Причина, по которой в вычислениях используется его приближение по недостатку, заключается в применении правил округления. Согласно этим правилам, если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку. Если меньше пяти, то по недостатку. Так как третьей цифрой после запятой у числа π является 1, то поэтому при приближении с точностью до 0,01 оно выполняется по недостатку.

Действительно, если вычислить погрешности приближения до 0,01 числа π по недостатку и по избытку, то получим:

|3,14159... – 3,14| = 0,00159...
|3,14159... – 3,15| = 0,0084...

Так как 0,00159...

Говоря о погрешности приближения, также как и в случае с самим приближением (по избытку или недостатку), указывают его точность. Так в приводимом выше примере с числом π следует сказать, что оно равно числу 3,14 с точностью до 0,01. Ведь модуль разности между самим числом и его приближенным значением не превышает 0,01 (0,00159... ≤ 0,01).

Точно также π равно 3,15 с точностью до 0,01, так как 0,0084... ≤ 0,01. Однако если говорить о большей точности, например до 0,005, то мы можем сказать, что π равно 3,14 с точностью до 0,005 (так как 0,00159... ≤ 0,005). Сказать же это по отношению к приближению 3,15 мы не можем (так как 0,0084... > 0,005).

Абсолютная и относительная погрешность

Элементы теории погрешностей

Точные и приближенные числа

Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

Различают следующие основные источники погрешностей:

1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


Абсолютная и относительная погрешность

Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

(1.1.2-2)

Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

, то , а если и ,

то тогда .

Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

· при сложении и вычитании чисел абсолютные погрешности чисел складываются

· при умножении и делении чисел друг на друга складываются их относительные погрешности


· при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

(1.1.2-3)

где и известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

Если величина известна, то , а если известна величина , то

Инструкция

В первую очередь, проведите несколько измерений прибором одной и той же величины, чтобы иметь возможность действительное значение. Чем больше будет проведено измерений, тем точнее будет результат. Например, взвесьте на электронных весах. Допустим, вы получили результаты 0,106, 0,111, 0,098 кг.

Теперь посчитайте действительное значение величины (действительное, поскольку истинное найти невозможно). Для этого сложите полученные результаты и разделите их на количество измерений, то есть найдите среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

Источники:

  • как найти погрешность измерений

Неотъемлемой частью любого измерения является некоторая погрешность . Она представляет собой качественную характеристику точности проведенного исследования. По форме представления она может быть абсолютной и относительной.

Вам понадобится

  • - калькулятор.

Инструкция

Вторые возникают от влияния причин, и случайный характер. К ним можно отнести неправильное округление при подсчете показаний и влияние . Если такие ошибки значительно меньше, чем деления шкалы этого прибора измерения, то в качестве абсолютной погрешности целесообразно взять половину деления.

Промах или грубая погрешность представляет собой результат наблюдения, который резко отличается от всех остальных.

Абсолютная погрешность приближенного числового значения – это разность между результатом, в ходе измерения и истинным значением измеряемой величины. Истинное или действительное значение отражает исследуемую физическую величину. Эта погрешность является самой простой количественной мерой ошибки. Её можно рассчитать по следующей формуле: ∆Х = Хисл - Хист. Она может принимать положительное и отрицательное значение. Для большего понимания рассмотрим . В школе 1205 учащихся, при округлении до 1200 абсолютная погрешность равняется: ∆ = 1200 - 1205 = 5.

Существуют определенные расчета погрешности величин. Во-первых, абсолютная погрешность суммы двух независимых величин равна сумме их абсолютных погрешностей: ∆(Х+Y) = ∆Х+∆Y. Аналогичный подход применим для разности двух погрешностей. Можно воспользоваться формулой: ∆(Х-Y) = ∆Х+∆Y.

Источники:

  • как определить абсолютную погрешность

Измерения физических величин всегда сопровождаются той или иной погрешностью . Она представляет собой отклонение результатов измерения от истинного значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

Погрешности могут возникнуть в результате влияния различных факторов. Среди них можно выделить несовершенство средств или методов измерения, неточности при их изготовлении, несоблюдение специальных условий при проведении исследования.

Существует несколько классификаций . По форме представления они могут быть абсолютными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:∆х = хисл- хист. Вторые определяются отношением абсолютных погрешностей к величине истинного значения показателя.Формула расчета имеет вид:δ = ∆х/хист. Измеряется в процентах или долях.

Приведенная погрешность измерительного прибора находится как отношение ∆х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

По условиям возникновения различают основные и дополнительные. Если измерения проводились в нормальных условиях, то возникает первый вид. Отклонения, обусловленные выходом значений за пределы нормальных, является дополнительной. Для ее оценки в документации обычно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

Также погрешности физических измерений подразделяются на систематические, случайные и грубые. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые возникают от влияния причин, и характер. Промах представляет собой результат наблюдения, который резко отличается от всех остальных.

В зависимости от характера измеряемой величины могут использоваться различные способы измерения погрешности. Первый из них это метод Корнфельда. Он основан на исчислении доверительного интервала в пределах от минимального до максимального результата. Погрешность в этом случае будет представлять собой половину разности этих результатов: ∆х = (хmax-xmin)/2. Еще один из способов – это расчет средней квадратической погрешности.

Измерения могут проводиться с разной степенью точности. При этом абсолютно точными не бывают даже прецизионные приборы. Абсолютная и относительная погрешности могут быть малы, но в реальности они есть практически всегда. Разница между приближенным и точным значениями некой величины называется абсолютной погрешностью . При этом отклонение может быть как в большую, так и в меньшую сторону.

Вам понадобится

  • - данные измерений;
  • - калькулятор.

Инструкция

Перед тем как рассчитывать абсолютную погрешность, примите за исходные данные несколько постулатов. Исключите грубые погрешности. Примите, что необходимые поправки уже вычислены и внесены в результат. Такой поправкой может быть, перенос исходной точки измерений.

Примите в качестве исходного положения то, что и учтены случайные погрешности. При этом подразумевается, что они меньше систематических, то есть абсолютной и относительной, характерных именно для этого прибора.

Случайные погрешности влияют на результат даже высокоточных измерений. Поэтому любой результат будет более или менее приближенным к абсолютному, но всегда будут расхождения. Определите этот интервал. Его можно выразить формулой (Xизм- ΔХ)≤Хизм ≤ (Хизм+ΔХ).

Определите величину, максимально приближенную к значению. В измерениях берется арифметическое, которое можно по формуле, на рисунке. Примите результат за истинную величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

Зная истинную величину , вы можете найти абсолютную погрешность, необходимо учитывать при всех последующих измерениях. Найдите величину Х1 – данные конкретного измерения. Определите разность ΔХ, отняв от большего меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание

Как правило, на практике абсолютно точное измерение провести не удается. Поэтому за эталонную величину принимается предельная погрешность. Она представляет собой максимальное значение модуля абсолютной погрешности.

Полезный совет

В практических измерениях за величину абсолютной погрешности обычно принимается половина наименьшей цены деления. При действиях с числами за абсолютную погрешность принимается половина значения цифры, которая находится в следующим за точными цифрами разряде.

Для определения класса точности прибора более важным бывает отношение абсолютной погрешности к результату измерений или к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методики. Точность зависит также от внимательности и состояния экспериментатора. Погрешности разделяются на абсолютные, относительные и приведенные.

Инструкция

Пусть однократное измерение величины дало результат x. Истинное значение обозначено за x0. Тогда абсолютная погрешность Δx=|x-x0|. Она оценивает абсолютную . Абсолютная погрешность складывается из трех составляющих: случайных погрешностей, систематических погрешностей и промахов. Обычно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

Истинное значение измеряемой величины в промежутке (x-Δx ; x+Δx). Короче это записывается как x0=x±Δx. Важно измерять x и Δx в одних и тех же единицах измерения и записывать в одном и том же формате , например, целая часть и три запятой. Итак, абсолютная погрешность дает границы интервала, в котором с некоторой вероятностью находится истинное значение.

Относительная погрешность отношение абсолютной погрешности к действительному значению величины: ε(x)=Δx/x0. Это безразмерная величина, она может записываться также в процентах.

Измерения прямые и косвенные. В прямых измерениях сразу замеряется искомая величина соответствующим прибором. Например, тела линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

Если результат представляет собой зависимость от трех непосредственно измеряемых величин, имеющих погрешности Δx1, Δx2, Δx3, то погрешность косвенного измерения ΔF=√[(Δx1 ∂F/∂x1)²+(Δx2 ∂F/∂x2)²+(Δx3 ∂F/∂x3)²]. Здесь ∂F/∂x(i) – частные производные от функции по каждой из непосредственно измеряемых величин.

Полезный совет

Промахи – это грубые неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методики эксперимента. Чтобы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и подробно расписывайте полученный результат.

Источники:

Результат любого измерения неизбежно сопровождается отклонением от истинного значения. Вычислить погрешность измерения можно несколькими способами в зависимости от ее типа, например, статистическими методами определения доверительного интервала, среднеквадратического отклонения и пр.

В месяц потребуется сахар. Иногда забор крови на анализ многократно в течение дня, иногда достаточно 1-2 раз в неделю. Самоконтроль особенно необходим и больным 1 типом диабета.

Допустимая погрешность у глюкометра по мировым стандартам

Глюкометр не считается высокоточным прибором. Он предназначен только для ориентировочного определения концентрации сахара в крови.

Допустимая погрешность у глюкометра по мировым стандартам составляет 20% при гликемии более 4,2 ммоль/л.

Например, если при самоконтроле уровень сахара 5 ммоль/л, то реальное значение концентрации находится в промежутке от 4 до 6 ммоль/л.

Допустимая погрешность у глюкометра в стандартных измеряется , а не в ммоль/л. Чем выше показатели, тем больше погрешность в абсолютных числах. Например, если достигает около 10 ммоль/л, то ошибка не превышает 2 ммоль/л, а если сахар - около 20 ммоль/л, то с результатом лабораторного измерения может быть до 4 ммоль/л.

В большинстве случаев глюкометр завышает показатели гликемии.

Стандарты допускают превышение заявленной погрешности измерения в 5% случаев. Это значит, что каждое двадцатое исследование может существенно искажать результаты.

Допустимая погрешность у глюкометров разных фирм

Глюкометры подлежат обязательной сертификации. В сопровождающих прибор документах обычно указаны цифры допустимой погрешности измерений. Если этого пункта нет в инструкции, то погрешность соответствует 20%.

Некоторые производители уделяют особое внимание точности измерений. Существуют приборы европейских фирм, которые имеют допустимую погрешность меньше 20%. Наилучший показатель на сегодняшний день составляет 10-15%.

Погрешность у глюкометра при самоконтроле

Допустимая погрешность измерения характеризует работу прибора. На точность исследования влияют и некоторые другие факторы. Неправильно подготовленная кожа, слишком малый или большой объем полученной капли крови, недопустимый температурный режим - все это может приводить к ошибкам.

Только в том случае, если все правила самоконтроля соблюдаются, можно рассчитывать на заявленную допустимую погрешность исследования.

Правила самоконтроля с помощью глюкометра можно узнать у лечащего врача.

Точность глюкометра можно проверить в сервисном центре. Гарантийные обязательства производителей предусматривают бесплатные консультации и устранение неполадок.

Разность точного и приближенного значений величины называется погрешностью приближения (обозначается х),

т.е. х=х-а - погрешность приближения

откуда х=а + х,

т.е. истинное значение равно сумме приближенного значения и погрешности приближения.

Модуль разности точного и приближенного значений величины называется абсолютной погрешностью приближенного значения числа х.

т.е. -абсолютная погрешность приближения.

Запись х= а h означает, что истинное значение величины х заключено между границами, т.е. а - h х а + h

Пример 1. На предприятии 1284рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 -1284 = 16. При округлении до 1280 абсолютная погрешность состав­ляет 1284 - 1280 = 4.

Пример 2. Даны приближенные значения числа х= ; Какое из этих трех приближений является лучшим?

Решение:

Находим ; Лучшим приближением числа х является

Пример 3. Длина детали х (см) заключена в границах 33 х 34. Найти границу абсолютной погрешности измерения детали.

Решение: Примем за приближенное значение длины детали среднее арифметическое границ: а=(33+34)/2 = 33,5 (см).

Тогда граница абсолютной погрешности приближенного значения длины детали не превзойдет 0,5 (см). Величину можно найти и как полуразность верхней и нижней границ, т.е. = (34-33)/2 = 0,5 (см). Длина детали х , найденная с точностью до =0,5 (см), заключена между приближенными значениями числа х :

33,5-0,5 х 33,5+0,5;

х=33,5 0,5 (см).

Отношение абсолютной погрешности приближения к модулю приближенного значения величины называется относительной погрешностью приближения и обозначается .

Является относительной погрешностью приближения

Пример 1. При измерении длины L и диаметра проводника получили L =(10,0 0,1) м, d = (2,5 0,1) мм. Какое из этих измерений точнее?

Решение: Измерение длины проводника производилось с точностью до 0,1м=100мм, а измерение диаметра проводника – с точностью до 0,1мм.

При измерении длины проводника допускается абсолютная погрешность в 100мм на 10000мм, и, следовательно, допустимая абсолютная погрешность составляет

измеряемой величины.

При измерении диаметра допустимая абсолютная погрешность составляет

измеряемой величины. Следовательно, измерение длины проводника выполнено точнее.

Пример 2. Известно, что 0,111 является приближенным значением для Найти абсолютную и относительную погрешности этого приближения.

Решение: Здесь х= , а =0,111. Тогда = х-а = 1/9 – 0,111 = 1/9000-а.п.п,

-о.п.п

Пример 3. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна или, округленно, %.
В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относи­тельная) не превосходит некоторого числа.

Пример 4.

Продавец взвешивает арбуз на ча­шечных весах. В наборе гирь наименьшая- 50 г. Взвешивание дало 3600 г. Это число - приближенное. Точная масса арбуза неизвестна. Но абсолютная по­грешность не превышает 50 г. Относительная погреш­ность не превосходит %.

Комплексные числа.

Графическое изображение комплексных чисел.
Изображение комплексных чисел.

Комплексные числа записываются в виде: a+ bi . Здесь a и b действительные числа , а i мнимая единица, т.e. i 2 = –1.Число a называется абсциссой , a b – ординатой комплексного числа a+ bi. Комплексное число 0+ bi называется чисто мнимым числом .Запись bi означает то же самое, что и 0+ bi .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Сопряжённые комплексные числа имеют одинаковый модуль

Рассмотрим на плоскости декартову прямоугольную систему координат xOy . Каждому комплексному числу z = a + bi можно сопоставить точку с координатами (a;b) , и наоборот, каждой точке с координатами (c;d) можно сопоставить комплексное число w = c + di . Таким образом, между точками плоскости и множеством комплексных чисел устанавливается взаимно однозначное соответствие. Поэтому комплексные числа можно изображать как точки плоскости. Плоскость, на которой изображают комплексные числа, обычно называют комплексной плоскостью.

Пример. Изобразим на комплексной плоскости числа

Z 1 = 2 + i; z 2 = 3i; z 3 = -3 + 2i; z 4 = -1 – i.

в
а

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

Например,

Задачи для самостоятельного решения

При измерении длин отрезков и площадей фигур, при взвешивании тел и других измерениях получаются числа, выражающие эти величины.

Ввиду погрешностей измерения полученные числа являются приближёнными значениями измеряемой величины.

У каждого из вас есть линейка и карандаш. Давайте попытаемся измерить длину карандаша.

Из рисунка видно, что длина карандаша чуть меньше 10 см. Если бы на этой линейке не было миллиметровых делений, то мы бы сказали, что длина карандаша равна 10 см. Но это было бы не совсем точное измерение.

Такую неточность называют погрешностью измерения .

В нашем случае, на линейке есть миллиметровые деления, поэтому мы можем измерить длину карандаша с более высокой точностью – 9,8 см.

Приближённое значение отличается от точного значения в этом случае на 0,2 см. Чтобы узнать, на сколько приближённое значение отличается от точного, надо из большего числа вычесть меньшее, т.е. найти модуль разности точного и приближённого значений. Этот модуль разности называют абсолютной погрешностью .


Определение :

Абсолютной погрешностью приближённого значения называют модуль разности точного и приближённого значений.

Значение абсолютной погрешности не всегда можно найти. Но обычно известна её оценка сверху – например, при измерении длины отрезка линейкой с сантиметровыми делениями абсолютная погрешность измерения не превышает 1 сантиметра, а при взвешивании на весах с гирями 100 грамм, 200 грамм, 500 грамм и 1 килограмм абсолютная погрешность взвешивания не превышает ста грамм.

Посмотрите, на слайде изображён отрезок CD .


Его длина расположена между цифрами 7 см и 8 см. Понятно, что 7 см – это приближённое значение длины отрезка CD с недостатком , а 8 см – это приближённое значение длины отрезка CD с избытком .

Если истинную длину отрезка обозначить за х , то получим, что длина отрезка CD удовлетворяет неравенству:

Пусть истинное значение измеряемой величины равно.

Измерение дало результат.

Тогда разность – это абсолютная погрешность измерения.

Число называют границей абсолютной погрешности измерения, если выполняется неравенство:

Принято писать

Точность приближённого значения зависит от многих причин. Если приближённое значение получено в процессе измерения, то, конечно же, его точность будет зависеть от прибора , с помощью которого выполнялось это измерение.

Вот, например , комнатный термометр. На нём деления нанесены через один градус. Это даёт возможность измерять температуру воздуха с точностью до 1 градуса. А на весах, у которых цена деления шкалы 20 г, можно взвешивать с точностью до 20 г. Или, к примеру, ещё, механические часы. Цена одного деления, которых 1 мин. По ним можно сказать время с точностью до 1 минуты.


Для оценки качества измерения можно использовать относительную погрешность приближённого значения .

Определение:

Относительной погрешностью приближённого значения называется отношение абсолютной погрешности к модулю приближённого значения.

Относительную погрешность принято выражать в процентах. В тех случаях, когда абсолютная погрешность приближенного значения неизвестна, а известна лишь его точность, ограничиваются оценкой относительной погрешности.

Например: при измерении (в сантиметрах) длины книжной полки и толщины компакт-диска получили следующие результаты:


Чем меньше точнее .

Итоги:

Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Число называют границей абсолютной погрешности измерения , если выполняется неравенство:

Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения.

Чем меньше относительная погрешность измерения, тем оно

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8)

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,5

у=х 2

у ≈2,3

Найдем значение у при х = 1,5 по формуле

у =1,5 2 = 2,25

Приближенное значение отличается от точного на 2,3 – 2,25 = 0,05

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,8

у=х 2

у ≈3,2

Найдем значение у при х = 1,8 по формуле

у =1,8 2 = 3,24

Приближенное значение отличается от точного на 3,24 – 3,2 = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

х

1,5

Точное значение у

(по формуле)

1,8

2,25

Приближенное значение у (по графику)

3,24

2,3

3,2

у=х 2

Определение. Абсолютной погрешностью

у = 2,3 А.П. = |2,25 – 2,3| = |- 0,0 5| = 0,05

у = 3,2 А.П. = |3,24 – 3,2| = | 0,0 4| = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью

Пример 1 пуд равна 16,38. Округлите это значение до целых и найдите абсолютную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 2 верста равна 1067 м. Округлите это значение до десятков и найдите абсолютную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 3 сажень равна 2,13 м. Округлите это значение до десятых и найдите абсолютную погрешность приближенного значения.

Решение. 2, 1 3 ≈ 2,1

2,13 – точное значение;

2,1 – приближенное значение.

А.П. = | 2,13 2,1 | = | 0,03 | = 0,03

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Пример 4 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите абсолютную погрешность приближенного значения.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Всегда ли можно найти абсолютную погрешность?

АВ ≈ 5,3 см

Найдем длину отрезка АВ

Точного значения длины отрезка АВ мы определить не можем, поэтому и абсолютную погрешность приближенного значения найти невозможно.

В подобных случаях в качестве погрешности указывают такое число, больше которого абсолютная погрешность быть не может.

В нашем примере в качестве такого числа можно взять число 0,1.

ПОЧЕМУ? Цена деления линейки равна 0,1 см и поэтому абсолютная погрешность приближенного значения 5,3 не больше 0,1.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в санти-метрах) с точностью до 0,1

АВ ≈ 5,3 см

t ≈ 28 0 с точностью до 1

t ≈ 14 0 с точностью до 2

Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в сантиметрах) с точностью до 0,1

АВ ≈ 5,3 см

Если х ≈ а и абсолютная погрешность приближенного значения не превосходит некоторого числа h , то число а называют приближенным значением х с точностью до h

х а с точностью до h

х = а ± h

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

АВ ≈ 5,3 см

с точностью до 0,1

t ≈ 28 0 с точностью до 1

с точностью до 2

Определение . Относительной погрешностью (точностью) приближенного значения называется отношение абсолютной погрешности (точности) к модулю приближенного значения

Для оценки качества измерения можно использовать определения относительной погрешности и относительной точности

l = 100,0 ± 0,1

b = 0,4 ± 0,1

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение .

Пример 5 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите относительную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения

Пример 6 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите относительную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Пример 7 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите относительную погрешность приближенного значения.

Величиной называется то, что может быть в определенных единицах выражено числом. Например, длина, площадь, объем – это величины. Значение величины, в истинности которого мы не сомневаемся, называется точным (в дальнейшем х - точное число ). Но обычно на практике, отыскивая значение какой-либо величины, получают лишь ее приближенное значение (в дальнейшем а - приближенное число ). Например, при измерении физических величин с помощью измерительных приборов.

Модуль разности точного и приближенного значений величины называется абсолютной погрешностью приближения Предельной абсолютной погрешностью приближения или границей погрешности или оценкой абсолютной погрешности называется число . Таких оценок может быть бесконечное число. Лучшей оценкой погрешности является наименьшая оценка.

Краткая запись точного числа: …

Отношение абсолютной погрешности приближения к модулю точного значения величины называется относительной погрешностью . На практике используется Для предельной относительной погрешности (оценки относительной погрешности): . Относительная погрешность обычно выражается в %.

В дальнейшем слово оценка опускается.

ПРИМЕР. Найти абсолютную и относительную погрешность приближения а=3,14 для х=π .

Известно, что 3,14 π .

Отсюда следует, что, т.е.

Если учесть, что 3,14 π то получим лучшую оценку

Цифра в десятичной записи приближенного значения величины х называется верной в широком смысле , если абсолютная погрешность приближения не превосходит единицы того разряда r , которому принадлежит эта цифра (Нулевым разрядом считается разряд единиц, десятичные цифры считаются отрицательными разрядами). Существует еще понятие верной цифры в узком смысле : . В дальнейшем будем рассматривать верные цифры в широком смысле. Остальные цифры числа называются сомнительными . Значащими цифрами числа, записанного в десятичной форме, называются все верные цифры числа, начиная с первой слева, отличной от 0. Все нули слева являются незначащими. По количеству значащих цифр можно легко оценить абсолютную погрешность приближенного числа. За оценку абсолютной погрешности можно взять 0,5 разряда, следующего за последней значащей цифрой. Предельную относительную погрешность можно принять равной дроби, числитель которой 1, а знаменатель – удвоенное целое число, записанное при помощи всех значащих цифр данного числа.

ПРИМЕР. а=0,065;

ЗАДАЧА 1.1. Объем помещения V определен с предельной относительной погрешностью δ Сколько значащих цифр в V ?

ЗАДАЧА 1.3. Округлите сомнительные цифры приближенного числа а δ

Задание 1.2.

Округлите сомнительные цифры приближенного числа а , если известна относительная погрешность δ

а=694,6 ,

В теории приближенных вычислений рассматриваются два вида задач: прямая и обратная.

Прямая задача. Выполнить действия над приближенными числами при заданных погрешностях приближений. Оценить погрешность полученного результата.

Обратная задача. Выполнить действия над приближенными числами при заданной погрешности результата. Установить, какими должны быть погрешности исходных приближений.

Правила подсчета цифр для прямой задачи

1. В алгебраической сумме приближенных значений, в записи которых все цифры верны, следует оставлять столько десятичных знаков, сколько их имеет слагаемое с наименьшим числом десятичных знаков. Слагаемые с большим числом десятичных знаков следует предварительно округлить, оставив на один десятичный знак больше, чем у выделенного слагаемого.

2,3+4,681=2,3+4,68=6,98≈7,0

2. В произведении приближенных значений следует оставлять столько значащих цифр, сколько их имеет сомножитель с наименьшим количеством значащих цифр. Сомножители с большим числом значащих цифр следует предварительно округлить, оставив на одну значащую цифру больше, чем у выделенного сомножителя. Аналогично для деления.

23 ∙ 1,056 ≈ 23 ∙ 1,06 =24,38 ≈ 24; 10,1 ∙ 0,5 ≈ 5

3. При возведении приближенного числа в степень или при извлечении корня в результате следует оставлять столько значащих цифр, сколько их имеет основание степени или подкоренное число.

4. При выполнении последовательного ряда действий над приближенными числами в промежуточных результатах следует оставлять на одну цифру больше, чем рекомендуют предыдущие правила. В окончательном результате эта цифра отбрасывается по правилам округления.

Правило подсчета цифр для обратной задачи

Для того, чтобы в результате ряда промежуточных действий получить число с n верными цифрами, исходные данные следует брать с таким числом верных цифр, которые согласно предыдущим правилам обеспечивают n+1 верную цифру в результате. Окончательный результат округлить до n цифр.

Метод границ аргументов (МГА)

ДАНО: - монотонная функция;

Приближенные значения аргументов и оценки погрешностей.

В результате оставляют верные цифры плюс 1 сомнительную (в соответствии с полученной погрешностью).

Метод границ погрешностей.

Оценка погрешности результата вычисляется как функция погрешностей исходных данных. Вывод формулы осуществляется по соотношениям, приведенным в таблице.

Таблица 1.1.

Принцип равных влияний.

Принцип заключается в том, что оценки погрешностей аргументов одинаково влияют на погрешность результата, т.е. считаются равными.

Замечания.

1. Правило четной цифры : если при округлении первая из отброшенных цифр =5, и за ней не следуют отличные от нуля цифры, то последняя цифра усиливается, если она нечетная, и остается без изменения, если она четная.

2. Приближенное значение а величины х называется недостаточным , если x>a и избыточным , если x

3. Нули справа будут значащими, если они являются верными цифрами.

4. При вычислениях нижнюю границу можно округлять в сторону уменьшения, а верхнюю – в сторону увеличения.

5. Дополнительная цифра к промежуточному результату может быть добавлена только в том случае, если в арифметическом действии участвуют исходные данные.

ЗАДАЧА 1.4.

Стороны прямоугольника Вычислить диагональ прямоугольника по формуле:

2 ) Правило подсчета цифр

Искомый результат должен содержать одну значащую цифру, следовательно, при выполнении арифметических действий должно быть получено число с двумя значащими цифрами. Последним действием является извлечение корня, значит, значение подкоренного выражения также должно иметь две значащие цифры. В нашем случае это двузначное число, т.е. результат сложения не должен иметь десятичных знаков, а соответственно и слагаемые. Но слагаемыми являются квадраты исходных данных. Поэтому исходные данные следует брать без десятичных знаков.