Уравнение координатных плоскостей. Уравнение плоскости, виды уравнения плоскости. Уравнение параллельной плоскости

Уравнение поверхности в пространстве

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

Общее уравнение плоскости

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С - координаты вектора

вектор нормали к плоскости. Возможны следующие частные случаи:

А = 0 - плоскость параллельна оси Ох

В = 0 - плоскость параллельна оси Оу

С = 0 - плоскость параллельна оси Оz

D = 0 - плоскость проходит через начало координат

А = В = 0 - плоскость параллельна плоскости хОу

А = С = 0 - плоскость параллельна плоскости хОz

В = С = 0 - плоскость параллельна плоскости yOz

А = D = 0 - плоскость проходит через ось Ох

В = D = 0 - плоскость проходит через ось Оу

С = D = 0 - плоскость проходит через ось Oz

А = В = D = 0 - плоскость совпадает с плоскостью хОу

А = С = D = 0 - плоскость совпадает с плоскостью xOz

В = С = D = 0 - плоскость совпадает с плоскостью yOz

Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны.

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор.

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору.

Векторы и вектор должны быть компланарны, т.е.

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Пусть заданы два вектора и, коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны. Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали

Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид:

A(x - x0) + B(y - y0) + C(z - z0) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор. Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору. Тогда скалярное произведение

Таким образом, получаем уравнение плоскости

Теорема доказана.

Рассмотрим ПДСК {O,i ,j ,k } в пространстве R 3 . Пусть  – некоторая плоскость и вектор N перпендикулярен . Зафиксируем на плоскости  произвольную точку М 0 и возьмем текущую точку М пространства.. Обозначим `r =
и`r 0 =
. Тогда
=`r `r 0 , а точка М тогда и только тогда, когда векторы ` N и
ортогональны. Последнее возможно, когда

N .
= 0, т.е.N . (`r – `r 0) = 0, (9)

это уравнение называется векторным уравнением плоскости. Вектор ` N называют нормальным вектором плоскости.

Если ` N =(А , В , С ), М 0 (х 0 , у 0 , z 0) , М(х , у , z ) , то уравнение (9) примет вид

А(х х 0) + В(у у 0) + С(z z 0) = 0, (10).

Это уравнение называют уравнением плоскости, проходящей через заданную точку перпендикулярно заданному вектору.

Как известно, через три точки можно провести единственную плоскость. Пусть М 1 (х 1 , у 1 , z 1), М 3 (х 2 , у 2 , z 2), М 3 (х 3 , у 3 , z 3). Найдем уравнение этой плоскости. Согласно векторному уравнению (9), чтобы записать это уравнение, необходимо знать точку плоскости и нормальный вектор. Точка у нас есть (например М 1). А в качестве нормального вектора подойдет любой вектор, перпендикулярный этой плоскости. Известно, что векторное произведение двух векторов перпендикулярно плоскости, в которой лежат эти векторы. Следовательно, векторное произведение векторов
и
можно взять в качестве нормального вектора плоскости :

` N =

Тогда уравнение плоскости  в векторной форме имеет вид

. (

) =
.
.
= 0.

(заметим, что получили условие компланарности векторов
,
,
).

Через координаты точек М 1 , М 2 , М 3 и М это уравнение запишется так

, (11)

и называется уравнением плоскости, проходящей через три заданные точки М 1 (х 1 , у 1 , z 1), М 2 (х 2 , у 2 , z 2), М 3 (х 3 , у 3 , z 3).

Рассмотрим вновь уравнение (9), преобразуем его:

Ах + Ву + Cz +(–Ах 0 – Ву 0 – Cz 0) = 0 ,

Ах + Ву + Cz +D = 0, где D = (–Ах 0 – Ву 0 – Cz 0) .

Уравнение

Ах + Ву + Cz +D = 0, (12)

называется общим уравнением плоскости. Здесь векторN = (A , B , C ) – нормальный вектор плоскости (т.е. вектор, перпендикулярный плоскости). Справедлива теорема:

Теорема 4.2.

В пространстве R 3 всякая плоскость может быть описана линейным относительно переменных x y , z уравнением и наоборот, любое уравнение первой степени определяет некоторую плоскость.

Изучим расположение плоскости относительно системы координат по ее общему уравнению Ах + Ву + Cz +D = 0 .

Если коэффициент D = 0, то координаты точки О(0, 0, 0) удовлетворяют уравнению Ах + Ву + Cz = 0, значит, эта точка лежит на плоскости, т.е. плоскость с уравнением Ах + Ву + Cz = 0 проходит через начало координат.

Если в общем уравнении плоскости отсутствует одна из переменных (соответствующий коэффициент равен нулю), то плоскость параллельна одноименной оси координат. Например, уравнение Ах + Cz + D = 0 определяет плоскость, параллельную оси ОУ. Действительно, вектор нормали имеет координаты ` N = (А, 0, С) и легко проверить, что ` N j . Но если плоскость и вектор перпендикулярны одному и тому же вектору, то они параллельны. Плоскость с уравнением Ву + Cz = 0, в таком случае, проходит через ось ОХ (т.е. эта ось лежит на плоскости)

Отсутствие двух переменных в уравнении плоскости означает, что плоскость параллельна соответствующей координатной плоскости, например, уравнение вида Ах + D = 0 определяет плоскость, параллельную плоскости УОZ. Вектор нормали имеет координаты ` N = (А, 0, 0), он коллинеарен вектору i , и,следовательно, плоскость перпендикулярна вектору i , или параллельна плоскости УОZ.

Уравнения координатных плоскостей имеют вид: пл. ХОУ: z = 0, пл. XOZ: y = 0, пл. YOZ: x = 0.

Действительно, плоскость ХОУ проходит через начало координат (D = 0) и вектор k =(0, 0, 1) – ее нормальный вектор. Аналогично плоскости ХОZ и УОZ проходят через начало координат(D = 0) и векторы j =(0, 1, 0) и i = (1,0,0) – их нормали соответственно.

Если D0, то преобразуем общее уравнение так

Ах + Ву z = –D ,
,
.

Обозначив здесь
,
,
, получим уравнение
, (13)

которое называется уравнением плоскости в отрезках на осях . Здесь а , b , c – величины отрезков, отсекаемых плоскостью на осях координат (рис.). Это уравнение удобно использовать для построения плоскости в системе координат. Нетрудно убедиться, что точки (а , 0, 0), (0. b , 0), (0, 0, с ) лежат на плоскости. Прямые, проходящие через эти точки, называются следами плоскости на координатных плоскостях.

Например, построим плоскость

2х – 3у + 4z –12 = 0.

Приведем это уравнение к виду (13), получим

Для построения плоскости в системе координат, отметим на оси ОХ точку (6, 0, 0), на оси ОУ точку (0, -4, 0), на оси ОZ – (0, 0, 3), соединим их отрезками прямы (следы плоскости). Полученный треугольник есть часть искомой плоскости, заключенная между осями координат.

Таким образом, чтобы найти уравнение плоскости , достаточно знать

Либо нормальный вектор этой плоскости и любую ее точку (уравнение (10));

Либо три точки, лежащие на плоскости (уравнение (11)).

Взаимное расположение плоскостей в пространстве удобно изучать с помощью соответствующих им векторов. Если  – плоскость с нормальным вектором N, то

.

Вывод формулы аналогичен тому, как это было проделано для прямой на плоскости. Провести его самостоятельно.

В декартовых координатах каждая плоскость определяется уравнением первой степени относительно неизвестных х, у и z и каждое уравнение первой степени с тремя неизвестными определяет плоскость.

Возьмем произвольный вектор с началом в точке . Выведем уравнение геометрического места точек М(x,y,z), для каждой из которых вектор перпендикулярен вектору . Запишем условие перпендикулярности векторов:

Полученное уравнение линейное относительно x, y, z, следовательно, оно определяет плоскость, проходящую через точку перпендикулярно вектору . Вектор называют нормальным вектором плоскости. Раскрывая скобки в полученном уравнении плоскости и обозначая число
буквой D, представим его в виде:

Ax + By + Cz + D = 0. (13.2)

Это уравнение называют общим уравнением плоскости . А, В, С и D – коэффициенты уравнения, А 2 + В 2 + С 2 0.

1. Неполные уравнения плоскости.

Если в общем уравнении плоскости один, два или три коэффициента равны нулю, то уравнение плоскости называют неполным. Могут представиться следующие случаи:

1) D = 0 – плоскость проходит через начало координат;

2) А = 0 – плоскость параллельна оси Ох;

3) В = 0 – плоскость параллельна оси Оу;

4) С = 0 – плоскость параллельна оси Оz;

5) А = В = 0 – плоскость параллельна плоскости ХОY;

6) А = С = 0 – плоскость параллельна плоскости ХОZ;

7) В = С = 0 – плоскость параллельна плоскости YOZ;

8) А = D = 0 – плоскость проходит через ось Ох;

9) В = D = 0 – плоскость проходит через ось Оу;

10) С = D = 0 – плоскость проходит через ось Оz;

11) А = В = D = 0 – плоскость совпадает с плоскостью XOY;

12) А = С = D = 0 – плоскость совпадает с плоскостью XOZ;

13) С = В = D = 0 – плоскость совпадает с плоскостью YOZ.

2. Уравнение плоскости в отрезках.

Если в общем уравнении плоскости D 0, то его можно преобразовать к виду

, (13.3)

которое называют уравнением плоскости в отрезках. - определяют длины отрезков, отсекаемых плоскостью на координатных осях.

3. Нормальное уравнение плоскости.

Уравнение

где - направляющие косинусы нормального вектора плоскости , называют нормальным уравнением плоскости. Для приведения общего уравнение плоскости к нормальному виду его надо умножить на нормирующий множитель :
,

при этом знак перед корнем выбирают из условия .

Расстояние d от точки до плоскости определяют по формуле: .

4. Уравнение плоскости, проходящей через три точки

Возьмем произвольную точку плоскости М(x,y,z) и соединим точку М 1 с каждой из трех оставшихся. Получим три вектора . Для того, чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы они были компланарны. Условием компланарности трех векторов служит равенство нулю их смешанного произведения, то есть .


Записывая это равенство через координаты точек, получим искомое уравнение:

. (13.5)

5. Угол между плоскостями.

Плоскости могут быть параллельны, совпадать или пересекаться, образуя двугранный угол . Пусть две плоскости заданы общими уравнениями и . Чтобы плоскости совпадали, нужно, чтобы координаты любой точки, удовлетворяющей первому уравнению, удовлетворяли бы и второму уравнению.

Это будет иметь место, если
.

Если , то плоскости параллельны.

Угол , образованный двумя пересекающимися плоскостями, равен углу, образованному их нормальными векторами. Косинус угла между векторами определяется по формуле:

Если , то плоскости перпендикулярны.

Пример 21 . Составить уравнение плоскости, которая проходит через две точки и перпендикулярно к плоскости .

Запишем искомое уравнение в общем виде: . Так как плоскость должна проходить через точки и , то координаты точек должны удовлетворять уравнению плоскости. Подставляя координаты точек и , получаем: и .

Из условия перпендикулярности плоскостей имеем: . Вектор расположен в искомой плоскости и, следовательно, перпендикулярен нормальному вектору: .

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим