Все эссе по обществознанию егэ. Готовые эссе по обществознанию. Проанализируем данное эссе

В современной науке различают химические и ядерные реакции, протекающие в результате взаимодействия исходных веществ, которые принято называть реагентами. В результате образуются другие химические вещества, которые называются продуктами. Все взаимодействия происходят при определенных условиях (температура, излучение, присутствие катализаторов и прочее). Ядра атомов реагентов химических реакций не меняются. В ядерных превращениях образуются новые ядра и частицы. Существует несколько различных признаков, по которым определяют типы химических реакций.

За основу классификации можно взять число исходных и образующихся веществ. В этом случае все типы химических реакций делятся на пять групп:

  1. Разложения (несколько новых получается из одного вещества), например, разложение при нагревании на хлористый калий и кислород: KCLO3 → 2KCL + 3O2.
  2. Соединения (два или несколько соединений образуют одно новое), взаимодействуя с водой, окись кальция превращается в гидроокись кальция: H2O + CaO → Ca(OH)2;
  3. Замещения (число продуктов равно числу исходных веществ, в которых замещена одна составляющая часть на другую), железо в сульфате меди, замещая медь, образует сульфат двухвалентного железа: Fe + CuSO4 → FeSO4 +Cu.
  4. Двойного обмена (молекулы двух веществ обмениваются оставляющими их частями), металлы в и обмениваются анионами, образуя выпадающий в осадок йодид серебра и азотнокислый кадий: KI + AgNO3 → AgI↓ + KNO3.
  5. Полиморфного превращения (происходит переход вещества из одной кристаллической формы в другую), йодид цвета при нагревании переходит в йодид ртути желтого цвета: HgI2 (красный) ↔ HgI2 (желтый).

Если химические превращения рассматривать по признаку изменения в реагирующих веществах степени окисления элементов, то тогда типы химических реакций могут делиться на группы:

  1. С изменением степени окисления — реакции окислительно-восстановительные (ОВР). В качестве примера можно рассмотреть взаимодействие железа с соляной кислотой: Fe + HCL → FeCl2 + H2, в результате степень окисления железа (восстановитель, отдающий электроны) изменилась с 0 до -2, а водорода (окислитель, принимающий электроны) с +1 до 0.
  2. Без изменения степени окисления (т. е. не ОВР). Например, реакции кислотно-щелочного взаимодействия бромистого водорода с гидроокисью натрия: HBr + NaOH → NaBr + H2O, в результате таких реакций образуются соль и вода, а степени окисления химических элементов, входящих в исходные вещества, не меняются.

Если рассматривать и скорость протекания в прямом и обратном направлении, то все типы химических реакций могут делиться также на две группы:

  1. Обратимые — те, что одновременно протекают в двух направлениях. Большинство реакций являются обратимыми. В качестве примера можно привести растворение в воде двуокиси углерода с образованием нестойкой угольной кислоты, которая разлагается на исходные вещества: H2O + CO2 ↔ H2CO3.
  2. Необратимые - протекают только в прямом направлении, после полного расходования одного из исходных веществ завершаются, после чего присутствуют только продукты и исходное вещество, взятое в избытке. Обычно один из продуктов является или выпавшим в осадок нерастворимым веществом или выделившимся газом. Например, при взаимодействии серной кислоты и хлористого бария: H2SO4 + BaCl2 + → BaSO4↓ + 2HCl в осадок выпадает нерастворимый

Типы химических реакций в органической химии можно разделить на четыре группы:

  1. Замещение (происходит замена одних атомов или групп атомов на другие), например, при взаимодействии хлорэтана с гидроокисью натрия образуется этанол и хлорид натрия: C2H5Cl + NaOH → C2H5OH + NaCl, то есть атом хлора замещается на атом водорода.
  2. Присоединение (две молекулы реагируют и образовывают одну), например, бром присоединяется в месте разрыва двойной связи в молекуле этилена: Br2 + CH2=CH2 → BrCH2—CH2Br.
  3. Отщепление (молекула разлагается на две и более молекулы), например, при определенных условиях этанол разлагается на этилен и воду: C2H5OH → CH2=CH2 + H2O.
  4. Перегруппировка (изомеризация, когда одна молекула превращается в другую, но качественный и количественный состав атомов в ней не меняется), например, 3-хлорутен-1 (C4H7CL) превращается в 1 хлорбутен-2 (C4H7CL). Здесь атом хлора перешел от третьего углеродного атома в углеводородной цепочке к первому, а двойная связь соединяла первый и второй атомы углерода, а затем стала соединять второй и третьи атомы.

Известны и другие виды химических реакций:

  1. По протекающие с поглощением (эндотермические) или выделением тепла (экзотермические).
  2. По типу взаимодействующих реагентов или образующихся продуктов. Взаимодействие с водой — гидролиз, с водородом — гидрирование, с кислородом — окисление или горение. Отщепление воды — дегидратация, водорода — дегидрирование и так далее.
  3. По условиям взаимодействия: в присутствии катализаторов (каталитические), под действием низкой или высокой температуры, при изменении давления, на свету и прочее.
  4. По механизму протекания реакции: ионные, радикально-цепные или цепные реакции.

Твердые исходные вещества могут вступать в реакцию друг с другом и при пространственном их разделении. В связи с этим в отличие от обычных твердофазных реакций не обязательно использовать исходные вещества в стехиометрических количествах. Конечный продукт независимо от соотношения исходных веществ будет обладать стехиометрическим составом.
Твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.
Твердые исходные вещества могут вступать в реакцию друг с другом и при пространственном их разделении. В связи с этим в отлич. Конечный продукт независимо от соотношения исходных веществ будет обладать стехиометрическим составом.
Реакции между твердыми исходными веществами могут быть ускорены благодаря тому, что твердые вещества связываются друг с другом за счет транспортной реакции. Можно предвидеть, что этот принцип будет перенесен на многочисленные реакции между твердыми веществами. Вместе с тем особенно благоприятно то, что можно подобрать соответствующие транспортные реакции, исходя из простых теоретических представлений.
Гранулометрический состав загружаемых частиц твердого исходного вещества и гидродинамический режим процесса не изменяются.
В химической реакции участвуют только те молекулы твердого исходного вещества AI, которые входят в заполненные веществом AZ адсорбционные центры.
Таким образом, состав расплава при непрерывном поступлении твердых исходных веществ определяется соотношением PiSy / p2sH, и при различных размерах кусков извести и углерода мы получим разный состав расплава.
Для получения водной вытяжки 50 - 80 мг твердого исходного вещества кипятят в течение нескольких минут с 3 мл воды, которая пополняется по каплям по мере упаривания раствора. Водная вытяжка, имеющая нейтральную реакцию (нейтральная водная вытяжка), может содержать мешающие катионы, которые нужно удалить содой так, как это делают в случае, если исследуемый объект - жидкость (см. стр. В результате нейтрализации щелочной (после действия содой) жидкости и отделения осадка получают приготовленный раствор.
Кривые скорости-время для разложения оксалата серебра. Г110 С. точками обозначены результаты опытов без перерывов, кружками - опыт с перерывами в 60 мин. (/ и 30 мин. (/ /. Такие опыты показывают в то же время, что простого смешения твердого исходного вещества с твердым продуктом может быть недостаточно для обнаружения автокаталитического действия последнего.
Химико-технологический процесс, при котором газообразные исходные вещества продувают через отверстия снизу аппарата, а находящиеся в нем твердые исходные вещества при этом как бы кипят, находясь все время во взвешенном состоянии. При этом реакции протекают в самом кипящем слое.
Химика технологический процесс, при котором газообразные исходные вещества продувают через отверстия снизу аппарата, а находящиеся в нем твердые исходные вещества при этом как бы кипят, находясь все время во взвешенном состоянии. При этом реакции протекают в самом кипящем слое.
Типичные кривые а f (т процесса термической диссоциации твердых тел. Объяснения даны в тексте. При описании хода термической диссоциации скорость реакции чаще всего ставится в зависимость от состава твердой фазы, выраженного степенью превращения (распада) а твердого исходного вещества. На рис. VIII-12 представлены наиболее характерные зависимости а от времени реакции.
В табл. 22 сведены данные, которые касаются возможности нахождения анионов в охарактеризованных выше аналитических фракциях, получающихся в результате приготовления раствора из подлежащего анализу твердого исходного вещества.

В исследованной с точки зрения теории Фольмера дегидратации дигидрата окса-лата марганца , для которой рентгенографически было доказано образование аморфного продукта и его последующая кристаллизация, рост ядер твердого, аморфного продукта наблюдался и до образования кристалллического продукта, что доказывает особые каталитические свойства поверхности раздела: твердое исходное вещество / твердый продукт и для рентгенографически аморфного состояния. Кристаллизация аморфного продукта может иметь, однако, значение для объяснения зависимости скорости от упругости пара при разложении кристаллогидратов. В этих случаях образование труднопроницаемого для молекул воды слоя аморфного продукта может вести к снижению скорости реакции.
Фт - поток твердого вещества, поступающего в аппарат, кг / час; Фг (0) - поток газообразного вещества, поступающего в аппарат, кг / час; Фг - поток газообразного вещества, вступающего в химическое взаимодействие, кг / час; Fr - объем, занимаемый газовой фазой в реакционном объеме аппарата, м3; GT - вес твердого исходного вещества в реакционном объеме аппарата, кг; GT - вес газообразного исходного вещества в реакционном объеме аппарата, кг; с кв - эквивалентная концентрация газообразного исходного вещества в реакционном объеме аппарата, кг / м8; а - стехиометрический коэффициент перехода от потока вещества Фт к потоку Фг; & г, / сг - коэффициенты выгрузки твердой и газообразной фазы, l / час; К - константа скорости реакции; F (п) - функция, отражающая порядок реакции; X - выходная координата (температура); Та - постоянная времени тепловой модели реакционного объема аппарата; К7 - коэффициент усиления тепловой модели реакционного объема аппарата.
Смесь 5 1 г циклопентадиенилмарганецтрикарбонила, 13 7 г треххло-ристого фосфора, 4 25 г хлористого алюминия и 15 мл изопентана при интенсивном перемешивании нагрета и выдержана при температуре 45 - 50 С в течение 3 час. До нагревания смесь представляет собой суспензию твердых исходных веществ в растворе желтого цвета.
Важно установить, какие ионы в пробе отсутствуют. Предварительные испытания) в основном проводят с твердыми исходными веществами, растворы выпаривают.
Очень часто скорость растворения исходного материала так незначительна или продукт реакции так мало растворим, что новая фаза плотно осаждается на первоначальной и благодаря этому ее внешняя форма повторяет форму исходного вещества. Такие превращения, которые происходят на поверхности раздела твердого исходного вещества и ведут к получению твердых конечных продуктов, называются топохилшческими реакциями в узком смысле слова. В противоположность реакциям, протекающим в объеме раствора, степень дисперсности продуктов реакции в этом случае подобна дисперсности исходных веществ. Топохимический способ рассмотрения поэтому особен -, но применим при описании катализаторов, электролитическом выделении металлов и в вопросах коррозии.
Если давление пара способствует реакции между твердыми веществами, то надо ожидать подобного и от химических транспортных реакций. Какие же возможности предоставляют транспортные реакции как средство взаимодействия между твердыми исходными веществами.
В твердофазных реакциях превращение может начинаться только в объеме фазы, а затем развиваться на границе раздела между новой и старой фазами. Такие реакции, где зона или фронт превращения проходит по поверхности раздела твердое исходное вещество - твердый продукт, называются топохимическими. Примером таких реакций является выветривание кристаллогидратов. Еще Фа-радей заметил, что хорошо ограненные прозрачные кристаллы Cu2SO4 - 5H2O не теряют воду в сухом воздухе в течение длительного времени. Если же на их поверхность нанести царапину или сделать надлом, то сразу начинается быстрая дегидратация кристалла, которая всегда распространяется от поврежденного места.
То обстоятельство, что многие анионы могут быть обнаружены дробным путем, еще не означает, что обнаружение анионов является более легкой задачей, чем открытие катионов. Даже при том ограниченном числе анионов, которое изучается в данном учебнике, анализ представляет большие трудности, если для исследования дано твердое исходное вещество, нерастворимое в воде. Такое вещество подлежит обработке содой (содовая вытяжка), что связана с рядом осложнений в работе.
При написании реакций между растворами электролитов всякий раз надо представить себе, нет ли какой-нибудь причины, мешающей реальному протеканию той или иной реакции. Например, если раствор электролита взаимодействует с твердым веществам и при этом один из продуктов малорастворим, то реакция может быстро прекратиться за счет того, что на поверхности твердого исходного вещества образуется слой тоже твердого продукта реакции, препятствующего дальнейшему ее протеканию. Именно поэтому для получения углекислого газа действием кислоты на мрамор берут соляную, а не серную кислоту, так как в случае серной кислоты мрамор быстро покрывается слоем гипса (CaSO4 - 2H2O) и реакция практически не идет.
Для взаимодействия висмута с фтором используют реактор с кипящим слоем. Заимствованная из техники методика синтеза в кипящем слое имеет следующие преимущества: быстрое установление теплового равновесия в реакционной смеси, отсутствие спекания твердых продуктов реакции, хороший тепловой обмен со стенками трубки, большая поверхность твердых исходных веществ и поэтому быстрое превращение.
Для системы г - т увеличение поверхности соприкосновения фаз достигается измельчением твердой фазы. Газообразное вещество приводят в соприкосновение с измельченным исходным веществом самыми разнообразными способами, например, твердые частицы вещества располагают на полках реактора, а поток газа движется над полками. В других случаях тонко измельченное твердое исходное вещество распыляют в потоке газообразного исходного вещества в полом объеме; таким образом сжигают пылевидное топливо в топках паровых котлов.
В быстро идущих промышленных процессах реакции в смесях твердых веществ протекают обычно со скоростями в тысячи раз большими, чем это было бы возможно при непосредственном взаимодействии твердых фаз. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
В развитии химии твердофазных реакций часто поднимались дискуссии по вопросу о том, могут ли реагировать между собой твердые вещества без участия жидкости или газа. Этот вопрос сегодня решен в пользу существования чисто твердофазных реакций. Интересно, однако, что можно показать на целом ряде превращений с твердыми исходными веществами, что все-таки какая-либо жидкая или газообразная фаза участвует в качестве посредника реакции. Однако следует избегать обобщений в этой области - напротив того, необходимо экспериментально исследовать состояние системы в каждом отдельном случае. Будников и Гинстлинг особенно детально занимались подобными исследованиями.
Если проблема исходного вещества для нефтегазообразования в целом может считаться решенной, то проблема механизма нефтегазообразования, являющаяся ключевой, в деталях еще требует своего решения. Общность состава органического вещества, осадочных пород и углеводородов (УВ) является важным аргументом в пользу биосферного источника нефти и газа. Очевидна и роль тепловой энергии (прогрева) для получения жидких и газовых УВ из твердого исходного вещества. Эти обстоятельства позволили создать концепцию об очагах генерации УВ и сформулировать представления о главных фазах газо - и нефтеобразования, получивших распространение во всем мире.

Скорость реакций, протекающих без участия газообразных и жидких фаз, столь мала, что они не могут иметь большого практического значения в быстро идущих промышленных процессах. Но на практике реакции в смесях твердых веществ идут обычно со скоростями в тысячи раз большими, чем это было бы возможно при непосредственном взаимодействии твердых веществ. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
Скорость таких реакций, протекающих без участия газообразных и жидких фаз, столь мала, что они не могут иметь большого практического значения в быстро идущих промышленных процессах, осуществляемых, в частности, в производстве солей. Реакции в смесях твердых веществ на практике идут обычно со скоростями в тысячи раз большими, чем это было бы возможно при непосредственном взаимодействии твердых веществ. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
Скорость реакций, протекающих без участия газообразных и жидких фаз, столь мала, что они не могут иметь большого практического значения в быстро идущих промышленных процессах. Но на практике реакции в смесях твердых веществ идут обычно со скоростями в тысячи раз большими, или, чем это было бы возможно при непосредственном взаимодействии твердых веществ. Толщина слоя образующегося продукта практически одинакова по всей поверхности покрываемого им зерна. Это объясняется тем, что реакции, идущие между твердыми исходными веществами, на самом деле протекают с участием газообразных или жидких фаз.
Невероятно, чтобы эти напряжения сжатия, по отношению к которому твердые тела являются более прочными, чем по отношению к растяжению, достигли величины, необходимой для разрушения микроскопических кристаллов. Прямые опыты по исследованию зависимости скорости разложения перманганата калия от величины поверхности, которая обратно пропо. Это показывает, что дробление само по себе не всегда является причиной наблюдаемого ускорения реакции. Объяснение ускорения реакции твердых веществ существованием цепных разветвленных реакций наталкивается также на некоторые трудности. Условия в твердой фазе существенно отличаются от условий в газовой или жидкой фазе своей гетерогенностью. Если цепной механизм и существует, то такая реакция все равно ограничивается поверхностью раздела твердого исходного вещества и продукта реакции. Следовательно, и при наличии цепного механизма возникает вопрос о причинах особых свойств поверхности раздела: исходное твердое вещество / твердый продукт.

Химические свойства веществ выявляются в разнообразных химических реакциях.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.

В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.

Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):

С +О 2 = СО 2 + Q

и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):

N 2 +О 2 = 2NО — Q.

Такие реакции относят к термохимическим .

Рассмотрим более подробно каждый из типов реакций.

Классификация по числу и составу реагентов и конечных веществ

1. Реакции соединения

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o
4HNO 3 = 2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга :

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена :

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена — реакции нейтрализации :

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .

5. Реакции переноса.

При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:

АВ + ВС = А + В 2 С,

А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .

Например:

2AgCl + SnCl 2 = 2Ag + SnCl 4 ,

H 2 O + 2NO 2 = HNO 2 + HNO 3 .

Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции

H 2 + Cl 2 2HCl.

2. Реакции в растворах

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

3. Реакции между твердыми веществами

t o
СаО(тв) +SiO 2 (тв) = СаSiO 3 (тв)

Классификация реакций по числу фаз.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Все многообразие реакций с этой точки зрения можно разделить на два класса:

1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Классификация реакций по типу переносимых частиц

1. Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

2. Окислительно-восстановительные реакции.

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:

Zn + 2H + → Zn 2 + + H 2 ,

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

3. Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,

Fe + 5CO = ,

Al(OH) 3 + NaOH = .

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

4. Реакции атомно-молекулярного обмена.

К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.

Обратимые и необратимые химические реакции

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.

2. Исходные вещества и методы экспериментов

2.1. Исходные вещества и их анализ

Фосфор, фтор и литий вводили в виде дигидрофосфата аммония, высушенного при 100 °С, фторида и карбоната лития, высушенных при 200 °С. Реактивный оксид никеля (серый, нестехиометрический) прокаливали при 900 °C для превращения в зеленый стехиометрический NiO. Реактивный оксид кобальта (+2) использовали в непрокаленном виде (рентгенофазовым анализом проверено, что это действительно CoO, а не Co 3 O 4). Для введения переходных металлов испытаны и другие реагенты: карбонаты кобальта и марганца, ацетат никеля, а также оксалаты марганца и железа (+2), осажденные из водных растворов. Для проведения данной части экспериментов брали растворимые соли: сульфат железа (+2) и хлорид марганца (+2), растворяли их в горячей дистиллированной воде и приливали к ним горячий раствор оксалата аммония. После охлаждения осадки отфильтровывали на воронке Бюхнера, промывали дистиллированной водой до удаления сульфат- или хлорид-ионов и высушивали при комнатной температуре несколько дней.

Нет уверенности в том, что эти карбонаты, оксалаты и ацетат точно соответствуют идеальным формулам: при хранении возможны потеря или приобретение воды, гидролиз, окисление. Поэтому потребовалось провести их анализ. Для этого по три параллельных пробы каждого из исходных веществ прокаливали до постоянной массы и взвешивали в виде оксидов. Температуру прокаливания выбирали на основе литературных данных о стабильности весовых форм: для получения Fe 2 O 3 , NiO – 900 °С, для получения Co 3 O 4 и Mn 2 O 3 - 750 °С .

2.2. Проведение синтезов

При нагревании фторида лития с дигидрофосфатом аммония возможно улетучивание фтороводорода. Поэтому проведение синтеза в одну стадию вряд ли возможно. Сначала нужно получить LiMPO 4 , и лишь после полного удаления воды можно добавлять фторид лития.

Таким образом, можно выделить две стадии.

(1) 2NH 4 H 2 PO 4 +Li 2 CO 3 + 2MO ® 2 LiMPO 4 + 2NH 3 + CO 2 + 2H 2 O.

Здесь MO – это либо оксид (NiO, CoO), либо соединение, разлагающееся до оксида.

(2) LiMPO 4 + LiF ® Li 2 MPO 4 F

Навески веществ смешивали и растирали в яшмовой ступке до полной однородной массы, затем прессовали таблетки, выдерживали при температуре 150-170 °C 2 часа для удаления большей части летучих компонентов (если сразу нагреть до более высоких температур, то происходит оплавление и однородность таблетки нарушается). Затем температуру постепенно повышали, периодически перетирая смесь, до получения практически чистых LiMPO 4 . Обжиги проводили либо в муфельной печи, либо в инертной атмосфере в трубчатой печи.

Ввиду отсутствия инертных газов в баллонах, пришлось получать азот нагреванием водного раствора хлорида аммония и нитрита бария. Колба, в которой происходила основная реакция по получению азота (экзотермическая реакция, небольшое нагревание), соединялась с двумя промывалками с сернокислым раствором бихромата калия для улавливания возможных примесей аммиака и оксида азота, далее шла накаливаемая трубка с пористыми медными гранулами для очистки от кислорода и оксидов азота, потом с силикагелем для грубой осушки и две промывалки с концентрированной серной кислотой для более полного улавливания водяных паров. Эти промывалки соединялись с трубкой, в которой находились смеси веществ в спрессованном виде в никелевых лодочках. Вначале через установку пропускали трехкратный объем азота для удаления воздуха и лишь потом начинали нагревание. После завершения обжига образцы охлаждали в токе азота, дабы не допустить окисления воздухом.

Продукты проверяли рентгенофазовым анализом и переходили ко второй стадии экспериментов, для этого полученные таблетки перетирали с рассчитанной навеской фторида лития и, спрессовав, продолжали обжиг либо в муфельной печи, либо в инертной атмосфере в трубчатой печи по уже рассмотренной технологии. Чтобы обеспечить более полное связывание фосфата, фторид лития вводили в пятипроцентном избытке. Этот избыток составляет лишь 0,7 масс. % смеси и менее существенен, чем примесь не прореагировавшего фосфата.

2.3. Рентгенография

Рентгенофазовый анализ производился на дифрактометре ДРОН – 2.0 в медном Кa - излучении. Данное излучение не очень подходит для соединений, в которых присутствуют железо и особенно кобальт, так как оно сильно поглощается атомами этих элементов и возбуждает их собственное рентгеновское излучение. В результате дифракционные максимумы ослабляются, и резко возрастает фон. Поэтому снижается чувствительность фазового анализа, уменьшается число наблюдаемых отражений и ухудшается точность их измерения из-за сильных флуктуаций интенсивности. Чтобы преодолеть эти затруднения, следовало бы использовать рентгеновскую трубку с другим анодом, например, кобальтовым (но тогда бы возникли те же проблемы с соединениями марганца) или установить монохроматор на дифрагированном пучке. Но у нас не было такой возможности, поэтому для уменьшения статистических ошибок съемку кобальтового соединения приходилось повторять по несколько раз.

При фазовом анализе применялась база порошковых дифракционных данных PDF-2.