На скамейку садятся 10 человек какова вероятность. Задачи на классическое определение вероятности.Примеры решений

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

§ 7. Применение комбинаторики к подсчету вероятности

Если из совокупности объема n производится выборка k элементов с возвращением, то вероятность получения каждой конкретной выборки считается равной .

Если выборка производится без возвращения, то эта вероятность равна .

Пусть наступление события А состоит в появлении выборки с какими-то дополнительными ограничениями и количество таких выборок равно m. Тогда в случае выборки с возвращением имеем:

в случае выборки без возвращения:

Пример 1. Наудачу выбирается трехзначное число, в десятичной записи которого нет нуля. Какова вероятность того, что у выбранного числа ровно две одинаковые цифры?

Решение. Представим себе, что на 9 одинаковых карточках написаны цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и эти карточки помещены в урну. Выбор наудачу трехзначного числа равносилен последовательному извлечению с возвращением из урны 3 карточек и записыванием цифр в порядке их появления. Следовательно, число всех элементарных исходов опыта равно 93 = 729. Количество благоприятных случаев для интересующего нас события А подсчитываем так: 2 различные цифры х и у можно выбрать способами; если х и у выбраны, то из них можно составить https://pandia.ru/text/78/365/images/image007_10.gif" width="115 height=41" height="41">.

Пример 2. Из букв слова «ротор», составленного с помощью разрезной азбуки, наудачу последовательно извлекаются 3 буквы и складываются в ряд. Какова вероятность того, что получится слово «тор»?

Решение. Чтобы отличать одинаковые буквы друг от друга, снабдим их номерами: р1, р2, о1, о2. Тогда общее число элементарных исходов равно: . Слово «тор» получится в 1 × 2 ×2 = 4 случаях (то1р1, то1р2, то2р1, то2р2)..gif" width="24" height="25 src="> и мы предполагаем, что все они имеют равные вероятности .

Пример 3. В партии из N деталей имеется n бракованных. Какова вероятность того, что среди наудачу отобранных k деталей окажется s бракованных?

Решение. Количество всех элементарных исходов равно . Для подсчета числа благоприятных случаев рассуждаем так: из n бракованных можно выбрать s деталей способами, а из N - n небракованных можно выбрать k – s небракованных деталей способами; по правилу произведения число благоприятных случаев равно × . Искомая вероятность равна:

.

Пример 4. В бригаде 4 женщины и 3 мужчин. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчин?

Решение. Применим схему статистического выбора. Из 7 членов бригады 4 человека можно выбрать = 35 способами, следовательно, число всех элементарных исходов испытания равно 35..gif" width="28" height="34">= 3 способами. Тогда число благоприятных случаев будет равно 6 × 3 = 18..gif" width="21" height="41"> . Сколько в урне белых шаров?

150. В урне n белых и m черных шаров. Наудачу извлечены k шаров (k>m). Какова вероятность того, что в урне остались одни белые шары?

151. Из урны, содержащей N шаров, N раз извлекают по одному шару, каждый раз возвращая извлеченный шар. Какова вероятность того, что все шары извлекались по одному разу?

152. Полная колода карт (52 листа) делится наугад на 2 равные части (по 26 карт). Найдите вероятности следующих событий:

А – в каждой части окажется по 2 туза;

В – в одной из частей не будет ни одного туза;

С – в одной из частей будет ровно один туз.

153. В урне a белых, b черных и с красных шаров. Из этой урны один за другим вынимают без возвращения все шары и записывают их цвета. Найдите вероятность того, что в этом списке белый цвет встретится раньше черного.

154. Имеется 2 урны: в первой a белых и b черных шаров; второй с белых и d черных. Из каждой урны вынимается по шару. Найдите вероятность того, что оба шара будут белыми (событие А) и вероятность того, что шары будут разного цвета (событие В).

155. 2n команд разбиты на 2 подгруппы по n команд. Найдите вероятность того, что 2 наиболее сильные команды попадут: а) в разные подгруппы (событие А); б) в одну подгруппу (событие В).

156. Из колоды в 36 карт наудачу извлекаются 3 карты. Определите вероятность того, что сумма очков в этих картах равна 21, если валет составляет 2 очка, дама – 3, король – 4, туз – 11, а остальные карты – соответственно 6, 7, 8, 9, 10 очков.

157. Владелец одной карточки лотереи «Спортлото» (6 из 49) зачеркивает 6 номеров. Какова вероятность того, что им будет угадано:

а) все 6 номеров в очередном тираже;

б) 5 или 6 номеров;

в) по крайней мере 3 номера?

158. Автобусу, в котором 15 пассажиров, предстоит сделать 20 остановок. Предполагая, что всевозможные способы распределения пассажиров по остановкам равновозможны, найдите вероятность того, что никакие 2 пассажира не выйдут на одной остановке.

159. Из чисел 1, 2, …, N выбирают наудачу r различных чисел (r £ N). Найдите вероятность того, что будут выбраны r последовательных чисел.

160. Из полной колоды карт (52 листа) извлекают сразу несколько карт. Сколько карт нужно извлечь для того, чтобы с вероятностью, большей чем 0,5, утверждать, что среди них будут карты одной и той же масти?

161. Имеется n шариков, которые случайным образом разбрасываются по m лункам. Найдите вероятность того, что в первую лунку упадет ровно k1 шариков, во вторую – k2 шариков и т. д., в m-ю – km шариков, если k1+k2+…+km=n.

162. В условиях предыдущей задачи найдите вероятность того, что в одной из лунок (безразлично в какой) будет k1 шариков, а в другой – k2 шариков и т. д., в m-й – km шариков (числа k1,k2,…,km предполагаются различными).

163. Из множества {1, 2,…, N} последовательно без возвращения выбираются числа х1 и х2. Найдите р(x2 > x1).

1рукописей разложены по 30 папкам (одна рукопись занимает 3 папки). Найдите вероятность того, что в случайно выброшенных 6 папках не содержится целиком ни одной рукописи.

165. Какова вероятность того, что в компании из r человек хотя бы у двоих совпадут дни рождения? (Для простоты предполагается, что 29 февраля не является днем рождения).

166. Используя таблицу значений lg n! и условие предыдущей задачи, вычислите вероятности при r = 22, 23, 60.

167.Вы задались целью найти человека, день рождение которого совпадает с Вашим. Сколько незнакомцев Вам придется опросить, чтобы вероятность встречи такого человека была бы не меньше чем 0,5?

168. По Государственному займу ежегодно разыгрывается 6 основных тиражей и один дополнительный, происходящий после основного пятого. Из 100000 серий в каждом основном тираже выигрывают 170 серий, а в каждом дополнительном – 230 серий. Найдите вероятность выигрыша одной облигации за первые 10 лет: а) в основном тираже; б) в дополнительном тираже; в) в каком-либо тираже.