Арифметическая прогрессия ан. Арифметическая и геометрическая прогрессии. Решение задач на арифметическую прогрессию

Понятие теории множеств; пересечение множеств множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. Пересечение множеств А и В обозначают А?В или АВ …

Понятие теории множеств; пересечение множеств множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. Пересечение множеств А и В обозначают А∩В или АВ. * * * ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ … Энциклопедический словарь

Множество, состоящее из всех тех элементов, которые принадлежат одновременно всем данным множествам. П. м. A и B обозначают A∩B или AB; П. м. Ak, взятых в конечном или бесконечном числе, обозначают Ak. П. м. может быть пустым, то есть не… … Большая советская энциклопедия

Понятие теории множеств; П. м. множество, состоящее из всех тех элементов, к рые принадлежат одноврем. всем данным множествам. П. м …

Пересечение A и B Пересечение множеств в теории множеств это множество, состоящее из элементов, которые принадлежат одновременно всем данным множествам. Содержание 1 Определение 2 Замечание … Википедия

Раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек … Большой Энциклопедический словарь

Раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество… … Энциклопедический словарь

Математическая теория, изучающая точными средствами проблему бесконечности. Предмет М. л. свойства множеств (совокупностей, классов, ансамблей), гл. обр. бесконечных. Множество A есть любое собрание определенных и различимых между собой объектов … Словарь терминов логики

Теория множеств раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Содержание 1 Теория… … Википедия

Раздел математики, в к ром изучаются общие свойства множеств, преим. бесконечных. Понятие множества простейшее матем. понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек на прямой… … Естествознание. Энциклопедический словарь

Книги

  • Считаю до 20. Рабочая тетрадь для детей 6 - 7 лет. ФГОС ДО , Шевелев Константин Валерьевич. Рабочая тетрадь предназначена для работы с детьми 6 7 лет. Способствует достижению целей блока Познание путем формирования элементарных математических представлений. Даны методические…

Решение некоторых математических задач заставляет находить пересечение и объединение числовых множеств . Мы уже познакомились с принятыми обозначениями числовых множеств , а в этой статье мы тщательно и на примерах разберемся с нахождением пересечения и объединения числовых множеств. Эти навыки пригодятся, в частности, в процессе решения неравенств с одной переменной и их систем.

Навигация по странице.

Простейшие случаи

Под простейшими случаями мы будем понимать нахождение пересечения и объединения числовых множеств, являющихся набором отдельных чисел. В этих случаях достаточно использовать определения пересечения и объединения множеств .

Напомним, что

Определение.

объединением двух множеств является множество, каждый элемент которого является элементом какого-либо из исходных множеств, а пересечением множеств называется множество, состоящее из всех общих элементов исходных множеств.

Из данных определений несложно получить следующие правила нахождения пересечения и объединения множеств:

  • Для того чтобы составить объединение двух числовых множеств, содержащих конечное число элементов, нужно записать все элементы одного множества и к ним дописать недостающие элементы из второго.
  • Для того чтобы составить пересечение двух числовых множеств, надо последовательно брать элементы первого множества и проверять, принадлежат ли они второму множеству, те из них, которые принадлежат, и будут составлять пересечение.

Действительно, полученное по первому правилу множество будет состоять из всех элементов, принадлежащих хотя бы одному из исходных множеств, поэтому будет объединением этих множеств по определению. А множество, составленное по второму правилу, будет содержать все общие элементы исходных множеств, то есть, будет пересечением исходных множеств.

Рассмотрим на конкретных примерах применение озвученных правил для нахождения пересечения и объединения множеств.

Например, пусть нужно найти объединение числовых множеств A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} . Записываем все элементы, например, множества A , имеем 3 , 5 , 7 , 12 , и к ним добавляем недостающие элементы множества B , то есть, 2 , 8 , 11 и 13 , в результате имеем числовое множество {3, 5, 7, 12, 2, 8, 11, 13} . Не помешает упорядочить элементы полученного множества, в итоге получаем искомое объединение: A∪B={2, 3, 5, 7, 8, 11, 12, 13} .

Теперь найдем пересечение двух числовых множеств из предыдущего примера A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} . Согласно правилу, будем последовательно перебирать элементы первого множества A и проверять, входят ли они во множество B . Берем первый элемент 3 , он не принадлежит множеству B , следовательно, он не будет и элементом искомого пересечения. Берем второй элемент множества A , это число 5 . Оно принадлежит множеству B , поэтому принадлежит и пересечению множеств A и B . Так найден первый элемент искомого пересечения – число 5 . Переходим к третьему элементу множества A , это число 7 . Оно не принадлежит B , значит, не принадлежит и пересечению. Наконец, остался последний элемент множества A – число 12 . Оно принадлежит множеству B , следовательно, оно является и элементом пересечения. Итак, пересечение множеств A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} – это есть множество, состоящее из двух элементов 5 и 12 , то есть, A∩B={5, 12} .

Как Вы заметили, выше мы говорили о нахождении пересечения и объединения двух числовых множеств. Что же касается пересечения и объединения трех и большего числа множеств, то его нахождение можно свести к последовательному нахождению пересечения и объединения двух множеств. Например, чтобы найти пересечение трех множеств A , B и D можно сначала найти пересечение A и B , после чего найти пересечение полученного результата с множеством D . А теперь конкретно: возьмем числовые множества A={3, 9, 4, 3, 5, 21} , B={2, 7, 9, 21} и D={7, 9, 1, 3} и найдем их пересечение. Имеем A∩B={9, 21} , а пересечение полученного множества с множеством D есть {9} . Таким образом, A∩B∩D={9} .

Однако на практике для нахождения пересечения трех, четырех и т.д. простейших числовых множеств, состоящих из конечного числа отдельных чисел, удобно использовать правила, схожие с указанными выше правилами.

Так, чтобы получить объединение трех и большего числа множеств указанного типа, надо к числам первого числового множества добавить недостающие числа второго, к записанным числам добавляем недостающие числа третьего множества и так далее. Чтобы пояснить этот момент возьмем числовые множества A={1, 2} , B={2, 3} и D={1, 3, 4, 5} . К элементам 1 и 2 числового множества A добавляем недостающее число 3 множества B , получаем 1 , 2 , 3 , и к этим числам добавляем недостающие числа 4 и 5 множества D , в итоге получаем нужное нам объединение трех множеств: A∪B∪C={1, 2, 3, 4, 5} .

Что же касается нахождения пересечения трех, четырех и т.д. числовых множеств, состоящих из конечного числа отдельных чисел, нужно последовательно перебрать числа первого множества и проверять, принадлежит ли проверяемое число каждому из остальных множеств. Если да, то это число является элементом пересечения, если нет – то не является. Здесь лишь заметим, что целесообразно в качестве первого брать множество с наименьшим числом элементов. В качестве примера возьмем четыре числовых множества A={3, 1, 7, 12, 5, 2} , B={1, 0, 2, 12} , D={7, 11, 2, 1, 6} , E={1, 7, 15, 8, 2, 6} и найдем их пересечение. Очевидно, множество B содержит меньше всего элементов, поэтому для нахождения пересечения исходных четырех множеств будем брать элементы множестваB и проверять, входят ли они в остальные множества. Итак, берем 1 , это число является элементами и множества A , и D и E , так что это первый элемент искомого пересечения. Берем второй элемент множества B – это нуль. Это число не является элементом множества A , поэтому не будет является и элементом пересечения. Проверяем третий элемент множества B – число 2 . Это число является элементом всех остальных множеств, поэтому, является вторим найденным элементом пересечения. Наконец, остается четвертый элемент множества B . Это число 12 , оно не является элементом множества D , поэтому, не является и элементом искомого пересечения. В итоге имеем A∩B∩D∩E={1, 2} .

Координатная прямая и числовые промежутки как объединение их частей

В нашем примере имеем записи

И

для пересечения и объединения числовых множеств соответственно.

Дальше изображают еще одну координатную прямую, ее удобно расположить под уже имеющимися. На ней будет изображаться искомое пересечение или объединение. На этой координатной прямой отмечают все граничные точки исходных числовых множеств. При этом эти точки сначала отмечают черточками, позже, когда будет выяснен характер точек с этими координатами, черточки будут заменены выколотыми или невыколотыми точками. В нашем случае это точки с координатами −3 и 7 .
Имеем

и

Точки, изображенные на нижней координатной прямой на предыдущем шаге алгоритма, позволяют рассматривать координатную прямую как набор числовых промежутков и точек, о чем мы говорили в . В нашем случае координатную прямую рассматриваем как набор следующих пяти числовых множеств: (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) .

И остается лишь по очереди проверить вхождение каждого из записанных множеств в искомое пересечение или объединение. Все сделанные выводы поэтапно отмечаются на нижней координатной прямой: если промежуток входит в пересечение или объединение, то над ним изображается штриховка, если точка входит в пересечение или объединение, то обозначающий ее штрих заменяем на сплошную точку, если не входит – то делаем ее выколотой. При этом следует придерживаться следующих правил:

  • промежуток включается в пересечение, если он одновременно включен и в множество A , и в множество B (другими словами, если есть штриховка над этим промежутком над обеими верхними координатными прямыми, отвечающими множествам A и B );
  • точка включается в пересечение, если она одновременно входит и в множество A , и в множество B (другими словами, если эта точка является невыколотой или внутренней точкой какого-либо интервала обеих числовых множеств A и B );
  • промежуток входит в объединение, если он входит хотя бы в одно из множеств A или B (иными словами, если есть штриховка над этим промежутком хотя бы над одной из координатных прямых, отвечающих множествам A и B );
  • точка входит в объединение, если она входит хотя бы в одно из множеств A или B (другими словами, если эта точка невыколотая или внутренняя точка какого-либо интервала хотя бы одного из множеств A и B ).

Проще говоря, пересечение числовых множеств A и B представляет собой объединение всех числовых промежутков множеств A и B , над которыми одновременно есть штриховка, и всех отдельных точек, принадлежащих одновременно и A , и B . А объединение двух числовых множеств есть объединение всех числовых промежутков, над которыми есть штриховка хотя бы у одного из множеств A или B , а также всех невыколотых отдельных точек.

Возвращаемся к нашему примеру. Закончим нахождение пересечения множеств. Для этого последовательно будем проверять множества (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) . Начинаем с (−∞, −3) , для наглядности выделим его на чертеже:

Этот промежуток не включаем в искомое пересечение, так как он не включен ни в A , ни в B (над этим промежутком нет штриховки). Так на этом шаге ничего на нашем чертеже не отмечаем и он сохраняет свой начальный вид:

Переходим к следующему множеству {−3} . Число −3 принадлежит множеству B (это невыколотая точка), но очевидно не принадлежит множеству A , поэтому не принадлежит и искомому пересечению. Поэтому на нижней координатной прямой делаем точку с координатой −3 выколотой:

Проверяем следующее множество (−3, 7) .

Оно входит в множество B (над этим интервалом есть штриховка), но не входит в множество A (над этим интервалом нет штриховки), поэтому, не будет входить и в пересечение. Следовательно, на нижней координатной прямой ничего не отмечаем:

Переходим к множеству {7} . Оно включено в множество B (точка с координатой 7 является внутренней точкой промежутка [−3, +∞)) , но не включено в множество A (эта точка выколотая), поэтому оно не будет включено и в искомое пересечение. Отмечаем точку с координатой 7 как выколотую:

Остается проверить промежуток (7, +∞) .

Он входит и в множество A , и в множество B (над этим промежутком есть штриховка), поэтому входит и в пересечение. Ставим штриховку над этим промежутком:

В результате на нижней координатной прямой мы получили изображение искомого пересечения множеств A=(7, +∞) и B=[−3, +∞) . Очевидно, оно представляет собой множество всех действительных чисел, больших семи, то есть, A∩B=(7, +∞) .

Теперь найдем объединение множеств A и B . Начинаем последовательную проверку множеств (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) на предмет их включения в искомое объединение двух числовых множеств A и B .

Первое множество (−∞, −3) не входит ни в A , ни в B (над этим промежутком нет штриховки), поэтому это множество не будет входить и в искомое объединение:

Множество {−3} входит в множество B , поэтому будет входить и в объединение множеств A и B :

Интервал (−3, 7) тоже входит в B (есть штриховка над этим интервалом), следовательно, он будет составной частью искомого объединения:

Множество {7} тоже будет входить в искомое объединение, так как оно входит в числовое множество B :

Наконец, (7, +∞) входит и в множество A , и в множество B , следовательно, будет входить и в искомое объединение:

По полученному изображению объединения множеств A и B заключаем, что A∩B=[−3, +∞) .

Получив некоторый практический опыт, проверку вхождения отдельных промежутков и чисел в состав пересечения или объединения можно будет проводить устно. Благодаря этому, Вы сможете очень быстро записывать результат. Покажем, как будет выглядеть решение примера, если не давать пояснения.

Пример.

Найдите пересечение и объединение множеств A=(−∞, −15)∪{−5}∪∪{12} и B=(−20, −10)∪{−5}∪(2, 3)∪{17} .

Решение.

Изобразим данные числовые множества на координатных прямых, это позволит нам получить изображения их пересечения и объединения:

Ответ:

A∩B=(−20, −15)∪{−5}∪(2, 3) и A∪B=(−∞, −10)∪{−5}∪∪{12, 17} .

Понятно, что при должном понимании озвученный выше алгоритм можно оптимизировать. Например, при нахождении пересечения множеств нет необходимости в проверке всех промежутков и множеств, состоящих их отдельных чисел, на которые разбивают координатную прямую граничные точки исходных множеств. Можно ограничиться проверкой лишь тех промежутков и чисел, которые составляют множество A или B . Остальные промежутки все равно не будут входить в пересечение, так как не принадлежат одному из исходных множеств. Проиллюстрируем сказанное, разобрав решение примера.

Пример.

Каково пересечение числовых множеств A={−2}∪(1, 5) и B=[−4, 3] ?

Решение.

Построим геометрические образы числовых множеств A и B :

Граничные точки заданных множеств разбивают числовую прямую на следующие множества: (−∞, −4) , {−4} , (−4, −2) , {−2} , (−2, 1) , {1} , (1, 3) , {3} , (3, 5) , {5} , (5, +∞) .

Несложно заметить, что числовое множество A можно «собрать» из только что записанных множеств, объединив {−2} , (1, 3) , {3} и (3, 5) . Для нахождения пересечения множеств A и B достаточно проверить, включены ли последние множества в множество B . Те из них, которые включены в B , и будут составлять искомое пересечение. Выполним соответствующую проверку.

Очевидно, {−2} входит в множество B (так как точка с координатой −2 является внутренней точкой отрезка [−4, 3]) . Интервал (1, 3) тоже входит в B (над ним есть штриховка). Множество {3} также входит в B (точка с координатой 3 является граничной и невыколотой множества B ). А интервал (3, 5) не входит в числовое множество B (над ним нет штриховки). Отметив сделанные выводы на чертеже, он примет такой вид

Таким образом, искомое пересечение двух исходных числовых множеств A и B представляет собой объединение следующих множеств {−2} , (1, 3) , {3} , которое можно записать как {−2}∪(1, 3] .

Ответ:

{−2}∪(1, 3] .

Остается лишь обговорить, как находить пересечение и объединение трех и большего количества числовых множеств. Эту задачу можно свести к последовательному нахождению пересечения и объединения двух множеств: сначала первого со вторым, дальше полученного результата с третьим, дальше полученного результата с четвертым и так далее. А можно использовать алгоритм, аналогичный уже озвученному. Единственное его отличие в том, что проверку вхождения промежутков и множеств, состоящих из отдельных чисел, нужно проводить не по двум, а по всем исходным множествам. Рассмотрим пример нахождения пересечения и объединения трех множеств.

Пример.

Найдите пересечение и объединение трех числовых множеств A=(−∞, 12] , B=(−3, 25] , D=(−∞, 25)∪{40} .

Решение.

Сначала, как обычно, изображаем числовые множества на координатных прямых, и ставим слева от них фигурную скобку, обозначающую пересечение, и квадратную скобку для объединения, а снизу изображаем координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Так координатная прямая оказывается представлена числовыми множествами (−∞, −3) , {−3} , (−3, 12) , {12} , (12, 25) , {25} , (25, 40) , {40} , (40, ∞) .

Начинаем поиск пересечения, для этого по очереди смотрим, входят ли записанные множества в каждое из множеств A , B и D . Во все три исходных числовых множества входит интервал (−3, 12) и множество {12} . Они и составляют искомое пересечение множеств A , B и D . Имеем A∩B∩D=(−3, 12] .

В свою очередь искомое объединение будут составлять множества (−∞, −3) (входит в A ), {−3} (входит в A ), (−3, 12) (входит в A ), {12} (входит в A ), (12, 25) (входит в B ), {25} (входит в B ) и {40} (входит в D ). Таким образом, A∪B∪D=(−∞, 25]∪{40} .

Ответ:

A∩B∩D=(−3, 12] , A∪B∪D=(−∞, 25]∪{40} .

В заключение заметим, что пересечение числовых множеств частенько является пустым множеством. Это отвечает случаям, когда исходные множества не имеют элементов, одновременно принадлежащих всем им.

(10, 27) , {27} , (27, +∞) . Ни одно из записанных множеств одновременно не входит в четыре исходных множества, а это означает, что пересечение множеств A , B , D и E есть пустое множеств.

Ответ:

A∩B∩D∩E=∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Инструкция

Арифметическая прогрессия - это последовательность вида a1, a1+d, a1+2d..., a1+(n-1)d. Число d шагом прогрессии .Очевидно, что общая произвольного n-го члена арифметической прогрессии имеет вид: An = A1+(n-1)d. Тогда зная один из членов прогрессии , член прогрессии и шаг прогрессии , можно , то есть номер члена прогресси. Очевидно, он будет определяться по формуле n = (An-A1+d)/d.

Пусть теперь известен m-ый член прогрессии и -то другой член прогрессии - n-ый, но n , как и в предыдущем случае, но известно, что n и m не совпадают.Шаг прогрессии может быть вычислен по формуле: d = (An-Am)/(n-m). Тогда n = (An-Am+md)/d.

Если известна сумма нескольких элементов арифметической прогрессии , а также ее первый и последний , то количество этих элементов тоже можно определить.Сумма арифметической прогрессии будет равна: S = ((A1+An)/2)n. Тогда n = 2S/(A1+An) - чденов прогрессии . Используя тот факт, что An = A1+(n-1)d, эту формулу можно переписать в виде: n = 2S/(2A1+(n-1)d). Из этой можно выразить n, решая квадратное уравнение.

Арифметической последовательностью называют такой упорядоченный набор чисел, каждый член которого, кроме первого, отличается от предыдущего на одну и ту же величину. Эта постоянная величина называется разностью прогрессии или ее шагом и может быть рассчитана по известным членам арифметической прогрессии.

Инструкция

Если из условий задачи известны значения первого и второго или любой другой пары соседних членов , для вычисления разности (d) просто отнимите от последующего члена предыдущий. Получившаяся величина может быть как положительным, так и отрицательным числом - это зависит от того, является ли прогрессия возрастающей . В общей форме решение для произвольно взятой пары (aᵢ и aᵢ₊₁) соседних членов прогрессии запишите так: d = aᵢ₊₁ - aᵢ.

Для пары членов такой прогрессии, один из которых является первым (a₁), а другой - любым другим произвольно выбранным, тоже можно составить формулу нахождения разности (d). Однако в этом случае обязательно должен быть известен порядковый номер (i) произвольного выбранного члена последовательности. Для вычисления разности сложите оба числа, а полученный результат разделите на уменьшенный на единицу порядковый номер произвольного члена. В общем виде эту формулу запишите так: d = (a₁+ aᵢ)/(i-1).

Если кроме произвольного члена арифметической прогрессии с порядковым номером i известен другой ее член с порядковым номером u, измените формулу из предыдущего шага соответствующим образом. В этом случае разностью (d) прогрессии будет сумма этих двух членов, поделенная на разность их порядковых номеров: d = (aᵢ+aᵥ)/(i-v).

Формула вычисления разности (d) несколько усложнится, если в условиях задачи дано значение первого ее члена (a₁) и сумма (Sᵢ) заданного числа (i) первых членов арифметической последовательности. Для получения искомого значения разделите сумму на количество составивших ее членов, отнимите значение первого числа в последовательности, а результат удвойте. Получившуюся величину разделите на уменьшенное на единицу число членов, составивших сумму. В общем виде формулу вычисления дискриминанта запишите так: d = 2*(Sᵢ/i-a₁)/(i-1).

Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.

Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, - папирусе Райнда (XIX век до нашей эры) - содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».

И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».

Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).

Последовательность может быть бесконечной или конечной.

А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.

Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.

Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.

Задается любая арифметическая прогрессия следующей формулой:

an =kn+b, при этом b и k - некоторые числа.

Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:

  1. Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
  2. Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность - арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
    Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.

Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k - числа прогрессии).

В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:

К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177

Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.

Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:

Sn = (a1+an) n/2.

Если известны и 1-ый член, то для вычисления удобна другая формула:

Sn = ((2a1+d(n-1))/2)*n.

Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:

Выбор формул для расчетов зависит от условий задач и исходных данных.

Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.

Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .