Тема творчества и вдохновения в лирике ахматовой. «Источник вдохновения для лирики Анны Ахматовой. Обращение к эпиграфу урока

1. Напишите, какое значение имеют микроорганизмы в народном хозяйстве. Какие отрасли народного хозяйства используют ферментативную деятельность микроорганизмов?

Микроорганизмы широко используются практически во всех отраслях народного хозяйства и играют большую роль в нашей жизни.

С развитием науки генетики и биотехнологий был получен новых ряд антибиотиков для лечения людей, животных и растений. Получены витамины, аминокислоты и другие ценные вещества.

Важное значение имеет применение микроорганизмов в сельскохозяйственной отрасли(растениеводство и животноводство). Синтезированы белки для откорма домашнего скота. Микроорганизмы насыщают почву азотом, что благотворно влияет на уровень урожайности, они борются с вредителями сельхозкультур, увеличивают сроки хранения продуктов.

2. Объясните, какие методы используются в селекции микроорганизмов. Почему селекция микроорганизмов осуществляется значительно быстрее, чем селекция всех других высших организмов?

Используется хромосомная инженерия.

3. Ответьте на вопросы: 1. Что такое биотехнология? 2. Почему наибольшее число биотехнологических исследований связано с микроорганизмами? 3. Каковы успехи биотехнологии?

1. Биотехнология — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач.

2. Существует ряд приимуществ именно микроорганизмов для биотехнологических исследованиях.

  1. Доступность.
  2. С ними легко работать.
  3. Быстрая скорость размножения.
  4. Быстро выявляются различные мутации или приспособительные изменения.
  5. Большое количество микроорганизмов можно вырастить всего из одной клетки.
  6. Большое видовое разнообразие, благодаря чему можно использовать для исследований различные признаки и их сочетания у разных видов микроорганизмов.
3. Биотехнология делает большие успехи. И в большей степени именно благодаря микроорганизмам. Наибольшее значение, как мне кажется, микроорганизмы имеют в медицине. Ведь именно благодаря им люди успешно могут синтезировать различные вакцины и сыворотки от большого количества заболеваний.

4. Найдите в тексте параграфа информацию об использовании микроорганизмов. На чем основана биотехнология металлов? Предложите методы селекции микроорганизмов, используемых в металлургии.

Широко используются микроорганизмы в металлургии. Обычная технология извлечения металлов из руд не позволяет широко использовать бедные или сложные по составу руды. В результате их переработки образуются огромные скопления отходов, в атмосферу выбрасываются ядовитые газы. Биотехнология металлов основана на способности бактерий окислять минералы и переводить металлы в растворимое соединение. При окислении бактериями сульфидных минералов большинство цветных металлов и редких элементов переходит в раствор. Таким путём во всём мире только меди получают сотни тысяч тонн в год, причём стоимость её в 2-3 раза ниже, чем стоимость меди, добиваемой традиционным путём. С помощью бактерий извлекают из руды уран, золото и серебро, удаляют вредную примесь - мышьяк.

5. Выпишите характеристику способов, применяемых в генной инженерии. Приведите примеры успешного применения этих способов.

В генетической генной инженерии используются следующие способы:
1) слияние соматических (неполовых) клеток или протопластов различных клеток одного или разных видов организмов;
2) перенос из одной клетки в другую ядер клеток, хромосом или их фрагментов;
3) введение в клетку конкретных генов.

6. Охарактеризуйте такие генетические явления, которые могут быть усилены или, наоборот, устранены с помощью переноса генов из микроорганизмов в клетки высших форм.

Вопрос 1. Что такое биотехнология?
Биотехнология - это использование организмов, биологических систем или биологических процессов в промышленном производстве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных, использование микроорганизмов в хлебопечении, виноделии, производстве лекарств и др.

Вопрос 2. Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?
Методы генной инженерии позволяют ввести в генотип одних организмов (например, бактерий) гены других организмов (например, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона роста. Путем создания генетически модифицированных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для генной инженерии является наблюдение и контроль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужеродных генов. Существует также опасность самопроизвольного переноса (миграции) чужеродных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ради собственного блага?

Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?
Существует несколько причин повышения интереса к селекции микроорганизмов:
1). легкость селекции (по сравнению с растениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
2). огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций - от синтеза антибиотиков и витаминов до выделения из руд редких химических элементов);
3). простота генно-инженерных манипуляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает работать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.
4). В результате на сегодняшний день существует огромное число примеров использования новых штаммов бактерий на практике: производство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.

Вопрос 4. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.
С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, - синтез этилового спирта; дрожжи используют в хлебопечении и виноделии. С 1982 г. в промышленных масштабах получают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бактерии. В настоящее время налажен синтез трансгенного гормона роста, который используется для лечения карликовости у детей, интерферон - препарат, повышающий иммунную систему человека.
Микроорганизмы участвуют также в биотехнологических процессах по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоемах, получению лекарственных препаратов, пищевых добавок, средств защиты растений, получению топлива.

Вопрос 5. Какие организмы называют трансгенными?
Трансгенными (генетически модифицированными) называют организмы, содержащие искусственные дополнения в геноме. Примером (помимо упомянутой выше кишечной палочки) могут служить растения, в ДНК которых встроен фрагмент бактериальной хромосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В результате получены сорта кукурузы, риса, картофеля, устойчивые к вредителям и не требующие использования пестицидов. Интересен пример лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быстрее, и вес рыб оказался гораздо больше нормы.
Вопрос 6. В чем преимущество клонирования по сравнению с традиционными методами селекции?
Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции. Клонирование дает возможность работать с отдельными клетками или небольшими зародышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии недифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.
При необходимости можно использовать и клонирование растений. В этом случае селекция происходит в клеточной культуре (на искусственно культивируемых изолированных клетках). И лишь затем из клеток, обладающих необходимыми свойствами, выращивают полноценные растения.
Наиболее известный пример клонирования - пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).

Микроорганизмы - мельчайшие организмы, различимые только под микроскопом. Среди них представители различных царств органического мира, относящихся как к прокариотам (бактерии и сине-зеленые водоросли), так и эукариотам (микроскопические грибы, микроскопические формы водорослей и протистов). Микроорганизмы - одноклеточные организмы. Они характеризуются высокой скоростью роста и размножения, чрезвычайно разнообразны по биохимическим и физиологическим свойствам, их клетки содержат меньше генов, чем клетки многоклеточных, они являются удобными и важными объектами исследований для решения многих проблем биологии. Велико и разнообразно практическое значение микроорганизмов. Они используются в разных отраслях промышленности, сельском хозяйстве. В пищевой промышленности с деятельностью микроорганизмов связано хлебопечение, виноделие, пивоварение, получение молочнокислых продуктов и спирта. Микроорганизмы используются для очистки сточных вод, образования метана, для выделения меди и урана из бедных руд. В сельском хозяйстве они незаменимы при производстве силоса, производстве кормового белка, в качестве азотфиксаторов, для биологической защиты растений. Многие лекарственные препараты - антибиотики, витамины, гормоны, ферменты, аминокислоты - также получают с помощью микроорганизмов. Так, грибы и бактерии синтезируют антибиотики (пенициллин, стрептомицин, эритромицин и др.); сенная палочка - фермент амилазу; кишечная палочка - аминокислоты; пивные дрожжи - витамины группы В.

Природные популяции микроорганизмов низкопродуктивны. Для повышения их продуктивности используются методы селекции: индуцированный мутагенез и искусственный отбор , что позволяет повысить продуктивность природных популяций микроорганизмов в сотни и тысячи раз.

Этапы селекции микроорганизмов:

1) Выделение из дикой природы популяций микроорганизмов способных синтезировать интересующие селекционера соединения.

2) Индуцирование мутаций (мутации вызывают воздействием мутагенных факторов: ультрафиолетовых и рентгеновских лучей, химических мутагенов).

3) Отбор по продуктивности (при размножении отбираются наиболее продуктивные штаммы).

Так, сочетая мутагенез и отбор, селекционерам удалось повысить продуктивность штаммов гриба пеницилла, синтезирующего антибиотик пенициллин, более чем в 100 раз.

Биотехнология - это производство продуктов и материалов, необходимых для человека, с помощью живых организмов.

Термин «биотехнология» получил распространение в середине 70-х годов XX в., хотя отдельные отрасли биотехнологии (хлебопечение, виноделие, пивоварение, сыроварение и др.) используются человеком с древних времен. Достижения генетики создали большие дополнительные возможности для развития биотехнологии. Главные направления биотехнологии:

1) Производство микроорганизмами незаменимых аминокислот, гормонов, ферментов, витаминов, антибиотиков, противовирусного белка - интерферона.

2) Расширение использования микроорганизмов в пищевой промышленности.

3) Использование биологических методов для борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т.д.).

4) Биологическая защита растений от вредителей и болезней (создание трансгенных растений).

5) Промышленный синтез кормовых белков (белок, синтезируемый одноклеточными организмами можно использовать на корм скоту вместо продуктов - зерна, семян бобовых, которые годятся людям).

6) Использование микроорганизмов для добычи ценных металлов из бедных месторождений, где традиционные методы добычи экономически невыгодны.

Для достижения этих целей в биотехнологии используются следующие современные методы генной и клеточной инженерии.

Генная (генетическая) инженерия - это искусственный перенос нужных человеку генов от одного вида живых организмов в клетки другого вида, т.е. создание организмов с новыми свойствами.

Для этого необходимо:

1. выделить ген из какого-либо организма или искусственно синтезировать его;

2. клонировать (размножить) данный ген;

3. создать специальные генетические структуры (векторы), в составе которых намеченные гены будут внедряться в геном другого вида;

4. перенести и включить генетические векторы в геном другого организма.

С помощью генной инженерии созданы штаммы кишечных палочек, в которые встроены гены человеческого инсулина (необходимого для лечения сахарного диабета), интерферона (противовирусного белка), соматотропина (гормона роста).

Генная инженерия используется в основном на прокариотах, хотя в последнее время начала применяться и на высших эукариотах. Так, во многих странах выращиваются трансгенные растения, устойчивые к насекомым-вредителям (например, созданы сорта трансгенного картофеля, содержащего в своих клетках бактериальный ген который, предотвращает поражение растений личинками колорадского жука).

Первоочередной задачей генной инженерии у человека являются поиск путей генотерапии, то есть замены мутантных генов человека нормальными.

Клеточная инженерия - это метод образования клеток новых типов на основе их культивирования вне организма, гибридизации и клеточной реконструкции.

1) Культура тканей. В настоящее время использование культур растительных клеток и тканей позволяет получать необходимые человеку природные вещества в промышленных количествах. Так, как и целое растение, культура клеток женьшеня синтезирует ценные, широко используемые в медицине, лекарственные препараты. В хирургии при лечении обширных ожогов широко используется для трансплантации эпидермис, выращенный вне организма.

2) Гибридизация клеток. При гибридизации искусственно объединяются различные целые клетки (иногда далеких видов) с образованием гибридных клеток. Полученные гибриды лимфоцитов с опухолевыми клетками способны к синтезу специфичных антител и обладают способностью к длительному выращиванию на искусственных средах. Гибридизация клеток широко используется в селекции растений. Получены гибриды картофеля и томата, яблони и вишни, выращенные из клеток, созданных в результате гибридизации.

3) Клеточная реконструкция. При реконструкции создаются жизнеспособные клетки из фрагментов (ядра, цитоплазмы, хромосом и др.) различных клеток. Прежде всего, используется замена отдельных пар хромосом у растений или добавление новых, что позволяет создавать сорта растений, сочетающие в себе признаки разных сортов или даже разных видов.

Биотехнология активно развивается в последние годы и является одним из ведущих направлений современной биологии. Дальнейший прогресс человечества во многом зависит от развития биотехнологии.

Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?

Методы генной инженерии позволяют ввести в генотип одних организмов (например, бактерий) гены других организмов (например, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона роста. Путем создания генетически модифицированных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для генной инженерии является наблюдение и контроль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужеродных генов. Существует также опасность самопроизвольного переноса (миграции) чужеродных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства.

Селекция микроорганизмов

Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?

Существует несколько причин повышения интереса к селекции микроорганизмов:

  • легкость селекции (по сравнению с растениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
  • огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций - от синтеза антибиотиков и витаминов до выделения из руд редких химических элементов);
  • простота генно-инженерных манипуляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает работать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.

В результате на сегодняшний день существует огромное число примеров использования новых штаммов бактерий на практике: производство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.

Биотехнологии

Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.

С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, - синтез этилового спирта; дрожжи используют в хлебопечении и виноделии.

С 1982 г. в промышленных масштабах получают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бактерии. В настоящее время налажен синтез трансгенного гормона роста, который используется для лечения карликовости у детей.

Микроорганизмы участвуют также в биотехнологических процессах по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива.

Трансгенные организмы

Какие организмы называют трансгенными?

Трансгенными (генетически модифицированными) называют организмы, содержащие искусственные дополнения в геноме. Примером могут служить растения, в ДНК которых встроен фрагмент бактериальной хромосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В результате получены сорта кукурузы, риса, картофеля, устойчивые к вредителям и не требующие использования пестицидов. Интересен пример лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быстрее, и вес рыб оказался гораздо больше нормы.

Клонирование

В чем преимущество клонирования по сравнению с традиционными методами селекции?

Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции.

Клонирование дает возможность работать с отдельными клетками или небольшими зародышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии недифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.

При необходимости можно использовать и клонирование растений. В этом случае селекция происходит в клеточной культуре (на искусственно культивируемых изолированных клетках). И лишь затем из клеток, обладающих необходимыми свойствами, выращивают полноценные растения.

Наиболее известный пример клонирования - пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).

Представления о живой природе в Древнем мире

Что было известно о живой природе в Древнем мире?

В эпоху Античности некоторые древнегреческие философы выделяли материальное начало, которое рассматривали как первоисточник всего живого. Фалес Милетский (ок. 625–547 до н. э.) таким первоисточником считал воду. Живший на полвека позже Анаксагор (ок. 500–428 до н. э.) утверждал, что живые организмы произошли из воздуха. Демокрит (ок. 470 или 460 до н. э. - умер в глубокой старости) был уверен, что основой зарождения жизни является ил. Серьезный вклад в развитие представлений о жизни внес Аристотель (384–322 до н. э.), создавший теорию непрерывного и постепенного развития живого из неживого, первую систематику животных, а также «лестницу существ».

Креационизм

Чем можно объяснить господство представлений о неизменности видов в XVIII веке?

В XVIII веке в Европе господствовало мировоззрение, основанное на догматах христианской церкви. Ученые считали, что поскольку все живые организмы созданы Богом, то они совершенны, отвечают цели своего существования и неизменны во времени. Такое метафизическое направление в биологии получило название «креационизм».

Систематика

Что такое систематика?

Систематика - это наука о классификации живых организмов. В древности существовало множество разнообразных систем классификации. Основы современной систематики были заложены в XVIII веке шведским естествоиспытателем Карлом Линнеем (1707–1778).

Принцип классификации организмов К. Линнея

По какому принципу построена классификация организмов К. Линнея?

Основой классификации К. Линнея является принцип иерархичности таксонов (групп организмов), когда несколько более мелких таксонов объединяются в более крупный. Виды объединяются в род, роды - в отряд и т. д. Самой крупной таксономической единицей в системе К. Линнея являлся класс. Для обозначения видов К. Линней использовал бинарную (двойную) номенклатуру: первое слово названия обозначало род, второе - видовую принадлежность. Например, Homo sapiens - человек разумный, Convallaria majalis - ландыш майский, Ursus arctos - медведь бурый.

Ариаднина нить ботаники

Поясните мысль, высказанную К. Линнеем: «Система - это ариаднина нить ботаники, без нее гербарное дело превращается в хаос».

В XVIII веке было уже известно множество видов растений. При отсутствии строгой классификации становилось все сложнее работать с ними, отделять один вид от другого, объединять родственные виды в группы, определять степень их родства. Иными словами, как нить Ариадны вывела героя Тезея из Лабиринта, так и систематика помогла навести порядок в том хаосе знаний, которые накопили ученые до Линнея.

Бактерии, актиномицеты, микоплазмы, простейшие и одноклеточные эукариоты – это микроорганизмы, которые человек сумел применить в промышленном производстве, сельскохозяйственной деятельности, медицине.

Насчитывается примерно 100 тыс. видов микроорганизмов и около сотни из них активно используются людьми. В конце прошлого столетия особенно активно стали заниматься изучением генома микроорганизмов и разработали ряд методов управления биохимическими процессами.

Для эффективного производства необходимы такие качества микроорганизмов как:

  • Быстрый рост;
  • недорогие условия для размножения и жизнедеятельности бактерий;
  • недопустимость заражения людей мутированными микроорганизмами.

Основная задача селекционеров выводить новые штаммы, с точно установленными характеристиками и способствовать их внедрению в производство.

Биотехнология - наука, изучающая применение живых организмов и их биологических свойств, для выработки новых, полезных веществ используемых человеком. Бактерии, простейшие, грибы, клетки растений и животных являются основными объектами изучения биотехнологии.

Чем селекция микроорганизмов отличается от селекции растений и животных?

  • Для работы есть обилие исходного материала - за короткий промежуток времени на питательной среде вырастают миллионы колоний бактерий;
  • мутационные изменения можно увидеть уже в первом поколении, так как набор хромосом клеток простейших одинарный, что делает селекцию эффективней;
  • структура генома бактерий проще, чем у растительных и животных клеток. Поэтому не так трудно отрегулировать действие генов друг на друга.

Учитывая характеристики и особенности селекции микроорганизмов, были разработаны особые методы их исследований. Селекционеры используют такие методы селекции: генетическую инженерию, искусственный мутагенез и отбор.

Методы селекции микроорганизмов

Генетическая инженерия - метод, который дает возможность внедрять необходимый наследственный материал, полученный из клетки одного организма, в геном другого. Образованные таким путем микроорганизмы называются трансформированными.

В генной инженерии чаще всего используется Escherichia coli, бактерия, обитающая в кишечном тракте человека. Благодаря ей продуцируется гормон роста - соматотропин, инсулин, который прежде можно было получить только из клеток поджелудочных желез домашних животных, интерферон, используемый для лечения вирусных заболеваний.

Процесс получения трансформированных микроорганизмов делится на ряд последовательных стадий.


Стадии получения трансформированных микроорганизмов

Поиск нужных генов и вырезание их из генома . Это возможно благодаря действию специфичных ферментов - рестриктаз.

Образование субстрата - особой конструкции, в ее составе необходимая закодированная характеристика будет встроена в геном другой клетки. Для формирования субстрата используют двухцепочечные кольцевые молекулы (плазмиды).

Ген встраивают в плазмиду под действием ферментов, которые осуществляют лигирование – соединение двух молекул. Генетическая конструкция состоит из определенных частей - это промотор, терминатор, ген-оператор и ген-регулятор, которые нужны для контроля генов. В структуре новообразованной конструкции находятся также маркерные гены, которые обеспечивают проявление новых характеристик, отличающих ее от первичных клеток.

Трансформация - введение новой генетической информации в геном микроорганизма.

Скрининг - сортировка бактерий, выбор организмов с успешно внедренными характеристиками.

Дальнейшее размножение полученных бактерий.

Искусственный мутагенез

Для получения желаемых мутаций на микроорганизмы воздействуют рентгеновскими лучами, ультрафиолетом, химическими соединениями, что повышает скорость мутирования и его эффективность.

Искусственный отбор

Проводят отбор штаммов с высокой синтезирующей активностью.

Перед отбором производительных штаммов, селекционер длительное время работает с первоначальным геномом клеток. Используются разные методы перестройки генома: конъюгация, трансдукция, трансформация.

Конъюгация – перенос части генетического материала при непосредственном контакте двух бактериальных клеток, дала возможность создать штамм, который может утилизировать углеводороды нефти.

Амплификация — умножение числа копий необходимого гена. Благодаря амплификации многократно удалось повысить синтез антибиотиков.

Стимуляция мутаций — необходимый этап в селекции. Изменения генома микроорганизмов возникают не так часто как в клетках растений и животных. Но возможность выделения этой мутации у бактерий гораздо выше, чем у других организмов, потому что получить миллиарды колоний микроорганизмов можно легко и быстро.

Отбор по производительности (например, бактерий синтезирующих антибиотики) происходит по степени влияния трансформированного штамма бактерии на рост и размножение болезнетворного микроорганизма. Их селят на питательную среду и определяют активность штамма по диаметру очага, где рост патологических бактерий замедлен или отсутствует. Для дальнейшей работы используют самые продуктивные виды бактерий.

Так традиционные методы селекции микроорганизмов (мутагенез и искусственный отбор) дали возможность при селекции грибов Penicillium, ускорить синтез антибиотика пенициллина в тысячи раз соотносительно с первоначальным штаммом.

Значение и роль в биологии селекции микроорганизмов

Широко применяются в медицинской промышленности для изготовления лекарственных средств – антибиотиков, незаменимых при лечении бактериальных заболеваний. Необходимы для синтеза ферментов, витаминов, аминокислот.

Для производства продуктов питания применяются дрожжевые грибки, с помощью селекции выделяют виды, которые наиболее быстро вызывают брожение теста и повышают качество продукции.

Примером селекции микроорганизмов также служит использование новых штаммов для изготовления молочнокислых продуктов, виноделия.

В сельском хозяйстве для получения силоса или для защиты растений также используют трансформированные микроорганизмы.