Чего зависит преломление света. Явления, связанные с преломлением света. Законы отражения и преломления света фото

1308. Возможно ли, чтобы луч проходил через границу раздела двух различных сред, не преломляясь? Если да, то при каком условии?
Да. При условии вертикального падения на границу раздела двух различных сред.

1309. Какова скорость света:
а) в воде,
б) в стекле,
в) в алмазе?

1310. Вычислите показатель преломления стекла относительно воды при прохождении луча света из воды в стекло.

1311. На рисунке 161 изображен луч, который идет наклонно к грани стеклянной пластинки, а затем выходит в воздух. Начертите ход луча в воздухе.


1312. На рисунке 162 показан луч, который падает из воздуха на грань стеклянной пластинки, проходит ее и выходит в воздух. Начертите ход луча.


1313. Луч из воздуха идет в среду А (рис. 163). Найдите показатель преломления среды А.


1314. Оптическая плотность воздуха увеличивается с приближением к поверхности Земли. Как это повлияет на ход луча, входящего в атмосферу:
а) вертикально,
б) наклонно?
А) для луча входящего в атмосферу вертикально будет уменьшаться скорость
Б) для луча входящего в атмосферу наклонно будет уменьшаться скорость и искривляться траектория.

1315. Когда вы смотрите через толстое стекло, предметы кажутся вам смещенными. Почему?
Потом что проходя через стекло лучи света преломляются. Тем самым меняя свое направление.

1316. Почему планеты на небе светятся ровным светом, а звезды мерцают?

1317. Луна имеет форму шара, но нам с Земли ее поверхность кажется плоской, а не выпуклой. Почему?

1318. Когда мы смотрим сквозь воду вниз, на дно водоема, она кажется ближе, чем есть на самом деле. Почему?
Потому что свет преломляется, проходя через линию раздела вода-воздух. И дно кажется ближе чем оно есть на самом деле.

1319*. Прочтите предыдущую задачу. Определите, во сколько раз действительная глубина больше кажущейся.

1320*. Камень лежит на дне реки на глубине 2 м (рис. 164). Если смотреть на него сверху, то на какой глубине он нам будет казаться?

1321. Прямой стержень опущен в воду (рис. 165). Наблюдатель смотрит сверху. Каким ему представится конец стержня?



Стержень под водой будет казаться ближе, чем он есть на самом деле. Из-за преломления лучей на границе вода-воздух.

1322. В воде находится полая стеклянная призма, заполненная воздухом. Начертите ход луча, падающего на одну из преломляющих граней такой призмы. Можно ли сказать, что такая призма дважды отклоняет к основанию проходящий через нее луч света?
При прохождении луча из воды в воздух, луч отклоняется вверх по горизонтали, т.к. угол преломления в воздухе больше угла падения в воде. Пройдя сквозь призму, луч падает на границу раздела воздух-вода. Затем преломляется отклоняясь еще немного вверх.

1323. Показатель преломления воды 1,33, скипидара 1,51. Найдите показатель преломления скипидара относительно воды.


1325. Определите скорость света в алмазе, показатель преломления которого 2,4.

1326. Начертите ход луча при переходе его из стекла в воздух, если угол падения составляет 45°, а показатель преломления стекла 1,72.

1327. Найдите предельный угол полного внутреннего отражения для каменной соли (n=1.54).

1328. Определите смещения луча при прохождении через плоскопараллельную стеклянную пластинку толщиной d=3 см, если луч падает под углом 60°. Показатель преломления стекла n=1,51.

1329. Найдите положение изображения объекта, расположенного на расстоянии 4 см от передней поверхности плоскопараллельной пластинки толщиной 1 см, посеребренной с задней стороны, считая, что показатель преломления вещества пластинки равен 1,51.

1330. Толстая стеклянная пластинка плашмя целиком погружена в воду. Начертите ход луча, идущего из воздуха через воду и пластинку. (Стекло – среда оптически более плотная, чем вода).

1331. Иногда предметы, наблюдаемые нами через окно, кажутся искривленными. Почему?
Потому что стекло не идеально ровное и гладкое. Это из-за неодонородного распределения оптической плоскости стекла.

1332. На рисунке 166 показан точечный источник света S, расположенный перед трехгранной призмой. Если смотреть на S через призму, то в каком месте нам будет казаться эта точка? Начертите ход лучей.


1333. Световой луч идет перпендикулярно одной из граней стеклянной прямоугольной трехгранной призмы (рис. 167). Начертите ход луча через призму.

Законы преломления света.

Физический смысл показателя преломления. Свет преломляется вследствие изменения скорости его распространения при переходе из одной среды в другую. Показатель преломления второй среды относительно первой численно равен отношению скорости света в первой среде к скорости света во второй среде:

Таким образом, показатель преломления показывает, во сколько раз скорость света в той среде, из которой луч выходит, больше (меньше) скорости света в той среде, в которую он входит.

Поскольку скорость распространения электромагнитных волн в вакууме постоянна, целесообразно определить показатели преломления различных сред относительно вакуума. Отношение скорости с распространения света в вакууме к скорости распространения его в данной среде называется абсолютным показателем преломления данного вещества () и является основной характеристикой его оптических свойств,

,

т.е. показатель преломления второй среды относительно первой равен отношению абсолютных показателей этих сред.

Обычно оптические свойства вещества характеризуются показателем преломления n относительно воздуха, который мало отличается от абсолютного показателя преломления. При этом среда, у которой абсолютный показатель больше, называется оптически более плотной.

Предельный угол преломления. Если свет переходит из среды с меньшим показателем преломления в среду с большим показателем преломления (n 1 < n 2 ), то угол преломления меньше угла падения

r < i (рис.3).

Рис. 3. Преломление света при переходе

из оптически менее плотной среды в среду

оптически более плотную.

При увеличении угла падения до i m = 90° (луч 3, рис.2) свет во второй среде будет распространяться только в пределах угла r пр , называемого предельным углом преломления . В область второй среды в пределах угла, дополнительного к предельному углу преломления (90° - i пр ), свет не проникает (на рис.3 эта область заштрихована).

Предельный угол преломления r пр

Но sin i m = 1, следовательно .

Явление полного внутреннего отражения. Когда свет переходит из среды с большим показателем преломления n 1 > n 2 (рис.4), то угол преломления больше угла падения. Свет преломляется (переходит в вторую среду) только в пределах угла падения i пр , который соответствует углу преломления r m = 90°.

Рис. 4. Преломление света при переходе из оптически более плотной среды в среду

оптически менее плотную.

Свет, падающий под большим углом, полностью отражается от границы сред (рис. 4 луч 3). Это явление называется полным внутренним отражением, а угол падения i пр – предельным углом полного внутреннего отражения.

Предельный угол полного внутреннего отражения i пр определяется согласно условию:

, то sin r m =1, следовательно, .

Если свет идет из какой-либо среды в вакуум или в воздух, то

Вследствие обратимости хода лучей для двух данных сред предельный угол преломления при переходе из первой среды во вторую равен предельному углу полного внутреннего отражения при переходе луча из второй среды в первую.

Предельный угол полного внутреннего отражения для стекла меньше 42°. Поэтому лучи, идущие в стекле и падающие на его поверхность под углом 45°, полностью отражаются. Это свойство стекла используется в поворотных (рис.5а) и оборотных (рис. 4б) призмах, часто применяемых в оптических приборах.


Рис. 5: а – поворотная призма; б – оборотная призма.

Волоконная оптика. Полное внутреннее отражение используется при устройстве гибких световодов . Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль этого волокна (рис.6).

Рис.6. Прохождение света внутри прозрачного волокна, окруженного веществом

с меньшим показателем преломления.

Для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в пучки – световоды . Раздел оптики, в котором рассматривают передачу света и изображения по светопроводам, называют волоконной оптикой. Этим же термином называют и сами волоконно-оптические детали и приборы. В медицине световоды используют для освещения холодным светом внутренних полостей и передачи изображения.

Практическая часть

Приборы для определения показателя преломления веществ называются рефрактометрами (рис.7).


Рис.7. Оптическая схема рефрактометра.

1– зеркало, 2 – измерительная головка, 3 – система призм для устранения дисперсии, 4 – объектив, 5 – поворотная призма (поворот луча на 90 0), 6 – шкала (в некоторых рефрактометрах

имеются две шкалы: шкала показателей преломления и шкала концентрации растворов),

7 – окуляр.

Основной частью рефрактометра является измерительная головка, состоящая из двух призм: осветительной, которая находится в откидной части головки, и измерительной.

На выходе осветительной призмы ее матовая поверхность создает рассеянный пучок света, который проходит через исследуемую жидкость (2-3 капли) между призмами. На поверхность измерительной призмы лучи падают под различными углами, в том числе и под углом в 90 0 . В измерительной призме лучи собираются в области предельного угла преломления, чем и объясняется образование границы света - тени на экране прибора.

Рис.8. Ход луча в измерительной головке:

1 – осветительная призма, 2 – исследуемая жидкость,

3 – измерительная призма, 4 – экран.

ОПРЕДЕЛЕНИЕ ПРОЦЕНТНОГО СОДЕРЖАНИЯ САХАРА В РАСТВОРЕ

Естественный и поляризованный свет. Видимый свет – это электромагнитные волны с частотой колебаний в интервале от 4∙10 14 до 7,5∙10 14 Гц. Электромагнитные волны являются поперечными : векторы Е и Н напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору скорости распространения волны.

В связи с тем, что и химическое, и биологическое действие света связано в основном с электрической составляющей электромагнитной волны, вектор Е напряженности этого поля называют световым вектором, а плоскость колебаний этого вектора – плоскостью колебаний световой волны .

В любом источнике света волны излучаются множеством атомов и молекул, световые векторы этих волн расположены в разнообразных плоскостях, а колебания происходят в различных фазах. Следовательно, плоскость колебаний светового вектора результирующей волны непрерывно изменяет свое положение в пространстве (рис.1). Такой свет называется естественным, или неполяризованным .

Рис. 1. Схематическое изображение луча и естественного света.

Если выбрать две взаимно перпендикулярные плоскости, проходящие через луч естественного света и спроецировать векторы Е на плоскости, то в среднем эти проекции будут одинаковыми. Таким образом, луч естественного света удобно изображать как прямую, на которой расположено одинаковое число тех и других проекций в виде черточек и точек:


При прохождении света через кристаллы можно получить свет, плоскость колебаний волны которого занимает постоянное положение в пространстве. Такой свет называется плоско- или линейно–поляризованным . Вследствие упорядоченного расположения атомов и молекул в пространственной решетке, кристалл пропускает только колебания светового вектора, происходящие в некоторой, характерной для данной решетки, плоскости.

Плоско-поляризованную световую волну удобно изображать следующим образом:

Поляризация света может быть также и частичной. В этом случае амплитуда колебаний светового вектора в какой-либо одной плоскости значительно превышает амплитуды колебаний в остальных плоскостях.

Частично поляризованный свет условно можно изобразить следующим образом: , и т.д. Соотношение числа черточек и точек при этом определяет степень поляризации света.

Во всех способах преобразования естественного света в поляризованный из естественного света полностью или частично отбираются составляющие с вполне определенной ориентацией плоскости поляризации.

Способы получения поляризованного света: а) отражение и преломление света на границе двух диэлектриков; б) пропускание света через оптически анизотропные одноосные кристаллы; в) пропускание света через среды, оптическая анизотропия которых искусственно создана действием электрического или магнитного поля, а также вследствие деформации. Эти способы основаны на явлении анизотропии .

Анизотропия – это зависимость ряда свойств (механических, тепловых, электрических, оптических) от направления. Тела, свойства которых одинаковы по всем направлениям, называются изотропными .

Поляризация наблюдается также при рассеянии света. Степень поляризации тем выше, чем меньше размеры частиц, на которых происходит рассеяние.

Устройства, предназначенные для получения поляризованного света, называются поляризаторами .

Поляризация света при отражении и преломлении на границе раздела двух диэлектриков. При отражении и преломлении естественного света на границе раздела двух изотропных диэлектриков проходит его линейная поляризация. При произвольном угле падения поляризация отраженного света является частичной. В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном -параллельные ей (рис. 2).

Рис. 2. Частичная поляризация естественного света при отражении и преломлении

Если угол падения удовлетворяет условию tg i Б = n 21 , то отраженный свет поляризуется полностью (закон Брюстера), а преломленный луч поляризуется не полностью, но максимально (рис.3). В этом случае отраженный и преломленный лучи взаимно перпендикулярны.

относительный показатель преломления двух сред, i Б – угол Брюстера.

Рис. 3. Полная поляризация отраженного луча при отражении и преломлении

на границе раздела двух изотропных диэлектриков.

Двойное лучепреломление. Существует ряд кристаллов (кальцит, кварц, и т.п.), в которых луч света, преломляясь, расщепляется на два луча с разными свойствами. Кальцит (исландский шпат) представляет собой кристалл с гексагональной решеткой. Ось симметрии шестиугольной призмы, образующей его ячейку, называется оптической осью. Оптическая ось – это не линия, а направление в кристалле. Любая прямая, параллельная этому направлению, также является оптической осью.

Если вырезать из кристалла кальцита пластинку так, чтобы ее грани были перпендикулярны оптической оси, и направить луч света вдоль оптической оси, то никакие изменения в нем не произойдут. Если же направить луч под углом к оптической оси, то он разобьется на два луча (рис. 4), из которых один называется обыкновенным, второй – необыкновенным.

Рис. 4. Двойное лучепреломление при прохождении света через пластинку кальцита.

MN –оптическая ось.

Обыкновенный луч лежит в плоскости падения и имеет обычный для данного вещества показатель преломления. Необыкновенный луч лежит в плоскости, проходящей через падающий луч и оптическую ось кристалла, проведенную в точке падения луча. Эта плоскость называется главной плоскостью кристалла . Показатели преломления для обыкновенного и необыкновенного луча отличаются.

Как обыкновенные, так и необыкновенные лучи поляризованы. Плоскость колебаний обыкновенных лучей перпендикулярна главной плоскости. Колебания необыкновенных лучей происходят в главной плоскости кристалла.

Явление двойного лучепреломления обусловлено анизотропией кристаллов. Вдоль оптической оси скорость световой волны для обыкновенного и необыкновенного лучей одна и та же. В других направлениях скорость необыкновенной волны у кальцита больше, чем обыкновенной. Наибольшая разница между скоростями обеих волн возникает в направлении, перпендикулярном оптической оси.

Согласно принципу Гюйгенса при двойном лучепреломлении в каждой точке поверхности волны, достигающей границы кристалла, возникают (не одна, как в обычных средах!) одновременно две элементарные волны, которые и распространяются в кристалле.

Скорость распространения одной волны по всем направлениям одинакова, т.е. волна имеет сферическую форму и называется обыкновенной . Скорость распространения другой волны по направлению оптической оси кристалла одинакова со скоростью обыкновенной волны, а по направлению перпендикулярному к оптической оси, от неё отличается. Волна имеет эллипсоидную форму и называется необыкновенной (рис.5).

Рис. 5. Распространение обыкновенной (о) и необыкновенной (е) волны в кристалле

при двойном лучепреломлении.

Призма Николя. Для получения поляризованного света пользуются поляризационной призмой Николя. Из кальцита выкалывают призму определенной формы и размеров, затем ее распиливают по диагональной плоскости и склеивают канадским бальзамом. При падении светового луча на верхнюю грань вдоль оси призмы (рис. 6) необыкновенный луч падает на плоскость склейки под меньшим углом и проходит, почти не изменяя направления. Обыкновенный луч падает под углом большим, чем угол полного отражения для канадского бальзама, отражается от плоскости склейки и поглощается зачерненной гранью призмы. Призма Николя дает полностью поляризованный свет, плоскость колебаний которого лежит в главной плоскости призмы.


Рис. 6. Призма Николя. Схема прохождения обыкновенного

и необыкновенного лучей.

Дихроизм. Существуют кристаллы, которые по-разному поглощают обыкновенный и необыкновенный лучи. Так, если на кристалл турмалина направить пучок естественного света перпендикулярно направлению оптической оси, то при толщине пластинки всего лишь в несколько миллиметров обыкновенный луч полностью поглотится, а из кристалла выйдет только необыкновенный луч (рис.7).

Рис. 7. Прохождение света через кристалл турмалина.

Различный характер поглощения обыкновенного и необыкновенного лучей называется анизотропией поглощения, или дихроизмом. Таким образом, кристаллы турмалина также могут быть использованы в качестве поляризаторов.

Поляроиды. В настоящее время в качестве поляризаторов широко применяют поляроиды. Для изготовления поляроида между двумя пластинками стекла или оргстекла заклеивается прозрачная пленка, которая содержит кристаллы поляризующего свет дихроичного вещества (например, сернокислый иодхинон). В процессе изготовления пленки кристаллы ориентируются так, чтобы их оптические оси были параллельны. Вся эта система закрепляется в оправе.

Дешевизна поляроидов и возможность изготовления пластин с большой площадью обеспечили их широкое применение на практике.

Анализ поляризованного света. Для исследования характера и степени поляризации света применяют устройства, называемые анализаторами. В качестве анализаторов используются те же устройства, которые служат для получения линейно-поляризованного света – поляризаторы, но приспособленные для вращения вокруг продольной оси. Анализатор пропускает только колебания, совпадающие с его главной плоскостью. В противном случае через анализатор проходит только составляющая колебаний, совпадающая с этой плоскостью.

Если световая волна, входящая в анализатор, линейно поляризована, то для интенсивности волны, выходящей из анализатора, справедлив закон Малюса:

,

где I 0 – интенсивность входящего света, φ – угол между плоскостями входящего света и света, пропускаемого анализатором.

Прохождение света через систему поляризатор – анализатор показано схематически на рис. 8.

Рис. 8. Схема прохождения света через систему поляризатор-анализатор(П – поляризатор,

А – анализатор, Э – экран):

а) главные плоскости поляризатора и анализатора совпадают;

б) главные плоскости поляризатора и анализатора расположены под некоторым углом;

в) главные плоскости поляризатора и анализатора взаимно перпендикулярны.

Если главные плоскости поляризатора и анализатора совпадают, то свет полностью проходит через анализатор и освещает экран (рис. 7а). Если они расположены под некоторым углом, свет проходит через анализатор, но ослабляется (рис.7б) тем больше, чем ближе этот угол к 90 0 . Если эти плоскости взаимно перпендикулярны, то свет полностью гасится анализатором (рис.7в)

Вращение плоскости колебания поляризованного света. Поляриметрия. Некоторые кристаллы, а также растворы органических веществ обладают свойством вращать плоскость колебаний проходящего через них поляризованного света. Эти вещества называются оптически активными . К ним относятся сахара, кислоты, алкалоиды и др.

Для большинства оптически активных веществ обнаружено существование двух модификаций, осуществляющих вращение плоскости поляризации соответственно по и против часовой стрелки (для наблюдателя, смотрящего навстречу лучу). Первая модификация называется правовращающей, или положительной, вторая – левовращающей, или отрицательной.

Естественная оптическая активность вещества в некристаллическом состоянии обусловлена асимметрией молекул. В кристаллических веществах оптическая активность может быть также обусловлена особенностями расположения молекул в решетке.

В твердых телах угол φ поворота плоскости поляризации прямо пропорционален длине d пути светового луча в теле:

где α – вращательная способность (удельное вращение), зависящая от рода вещества, температуры и длины волны. Для лево- и правовращающих модификаций вращательные способности одинаковы по величине.

Для растворов угол поворота плоскости поляризации

,

где α – удельное вращение, с – концентрация оптически активного вещества в растворе. Величина α зависит от природы оптически активного вещества и растворителя, температуры и длины волны света. Удельное вращение – это увеличенный в 100 раз угол вращения для раствора толщиной 1 дм при концентрации вещества 1 грамм на 100 см 3 раствора при температуре 20 0 С и при длине волны света λ=589 нм. Весьма чувствительный метод определения концентрации с, основанный на этом соотношении, называется поляриметрией (сахариметрией).

Зависимость вращения плоскости поляризации от длины волны света называется вращательной дисперсией. В первом приближении имеет местозакон Био:

где А – коэффициент, зависящий от природы вещества и температуры.

В клинических условиях метод поляриметрии применяется для определения концентрации сахара в моче. Используемый при этом прибор называется сахариметром (рис.9).

Рис. 9. Оптическая схема сахариметра:

И – источник естественного света;

С – светофильтр (монохроматор), обеспечивающий согласование работы прибора

с законом Био;

Л – собирающая линза, дающая на выходе параллельный пучок света;

П – поляризатор;

К – трубка с исследуемым раствором;

А – анализатор, укрепленный на вращающемся диске Д с делениями.

При проведении исследования сначала анализатор устанавливают на максимальное затемнение поля зрения без исследуемого раствора. Затем помещают в прибор трубку с раствором и, вращая анализатор, снова добиваются затемнения поля зрения. Наименьший из двух углов, на который при этом необходимо повернуть анализатор, и является углом вращения для исследуемого вещества. По величине угла вычисляется концентрация сахара в растворе.

Для упрощения расчетов трубку с раствором делают такой длины, чтобы угол поворота анализатора (в градусах) численно равнялся концентрации с раствора (в граммах на 100 см 3). При этом длина трубки для глюкозы составляет 19 см.

Поляризационная микроскопия. Метод основан на анизотропии некоторых компонентов клеток и тканей, появляющейся при наблюдении их в поляризованном свете. Структуры, состоящие из молекул, расположенных параллельно, или дисков, расположенных в виде стопки, при введении в среду с показателем преломления, отличающимся от показателя преломления частиц структуры, обнаруживают способность к двойному лучепреломлению. Это означает, что структура будет пропускать поляризованный свет только в том случае, когда плоскость поляризации параллельна длинным осям частиц. Это остается в силе даже тогда, когда частицы не обладают собственным двойным лучепреломлением. Оптическая анизотропия наблюдается в мышечных, соединительнотканных (коллагеновых) и нервных волокнах.

Само название скелетных мышц «поперечнополосатые» связано с различием оптических свойств отдельных участков мышечного волокна. Оно состоит из чередующихся более темных и более светлых участков вещества ткани. Это придает волокну поперечную исчерченность. Исследование мышечного волокна в поляризованном свете обнаруживает, что более темные участки являются анизотропными и обладают свойствами двойного лучепреломления , тогда как более темные участки являются изотропными . Коллагеновые волокна анизотропны, оптическая ось их расположена вдоль оси волокна. Мицеллы в мякотной оболочке нейрофибрилл также анизотропны, но оптические оси их расположены в радиальных направлениях. Для гистологического исследования этих структур применяется поляризационный микроскоп.

Важнейшим компонентом поляризационного микроскопа служит поляризатор, который располагается между источником света и конденсатором. Кроме того, в микроскопе имеются вращающийся столик или держатель образца, анализатор, находящийся между объективом и окуляром, который можно установить так, чтобы его ось была перпендикулярна оси поляризатора, и компенсатор.

Когда поляризатор и анализатор скрещены, а объект отсутствует или является изотропным, поле выглядит равномерно темным. Если же присутствует объект, обладающий двойным лучепреломлением, и он расположен так, что его ось находится под углом к плоскости поляризации, отличным от 0 0 или от 90 0 , он будет разделять поляризованный свет на два компонента – параллельный и перпендикулярный относительно плоскости анализатора. Следовательно, часть света будет проходить через анализатор, в результате чего появится яркое изображение объекта на темном фоне. При вращении объекта яркость его изображения будет изменяться, достигая максимума при угле 45 0 относительно поляризатора или анализатора.

Поляризационная микроскопия используется при изучении ориентации молекул в биологических структурах (например, мышечных клетках), а также во время наблюдения структур, невидимых при применении других методов (например, митотического веретена при делении клеток), идентификации спиральной структуры.

Поляризованный свет используют в модельных условиях для оценки механических напряжений, возникающих в костных тканях. Этот метод основан на явлении фотоупругости, которое заключается в возникновении оптической анизотропии в первоначально изотропных твердых телах под действием механических нагрузок.

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Интерференция света. Интерференцией света называется явление, возникающее при наложении световых волн и сопровождаемое их усилением или ослаблением. Устойчивая интерференционная картина возникает при наложении когерентных волн. Когерентными волнами называются волны с равными частотами и одинаковыми фазами или имеющими постоянный сдвиг фаз. Усиление световых волн при интерференции (условие максимума) происходит в том случае, Δ укладывается четное число длин полуволн:

где k – порядок максимума, k=0,±1,±2,±,…±n;

λ – длина световой волны.

Ослабление световых волн при интерференции (условие минимума) наблюдается в том случае, если в оптической разности хода Δ укладывается нечетное число длин полуволн:

где k – порядок минимума.

Оптической разностью хода двух лучей называется разность расстояний от источников до точки наблюдения интерференционной картины.


Интерференция в тонких пленках. Интерференцию в тонких пленках можно наблюдать в мыльных пузырях, в пятне керосина на поверхности воды при освещении их солнечным светом.

Пусть на поверхность тонкой пленки падает луч 1 (см рис.2). Луч, преломившись на границе воздух - пленка, проходит через пленку, отражается от её внутренней поверхности, подходит к внешней поверхности пленки, преломляется на границе пленка – воздух и выходит луч . В точку выхода луча направляем луч 2, который проходит параллельно лучу 1. Луч 2 отражается от поверхности пленки , накладывается на луч , и оба луча интерферируют.

При освещении пленки полихроматическим светом получаем радужную картину. Это объясняется тем, что пленка неоднородна по толщине. Следовательно, возникают различные по величине разности хода, которым соответствуют разные длины волн (окрашенные мыльные пленки, переливчатые цвета крыльев некоторых насомых и птиц, пленки нефти или масел на поверхности воды и т.д.).

Интерференция света используется в приборах – интерферометрах. Интерферометрами называются оптические устройства, при помощи которых можно пространственно разделить два луча и создать между ними определенную разность хода. Применяются интерферометры для определения длины волн с высокой степенью точности небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

В санитарно–гигиенических целях интерферометр применяется для определения содержания вредных газов.

Сочетание интерферометра и микроскопа (интерференционный микроскоп) используется в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принцип Гюйгенса – Френеля. Согласно Гюйгенсу, каждая точка среды, до которой доходит первичная волна в данной момент, является источником вторичных волн. Френель уточнил это положение Гюйгенса, добавив, что вторичные волны являются когерентными, т.е. при наложении они будут давать устойчивую интерференционную картину.

Дифракция света. Дифракцией света называются явления отклонения света от прямолинейного распространения.

Дифракция в параллельных лучах от одной щели. Пусть на цель шириной в падает параллельный пучок монохроматического света (см. рис. 3):

На пути лучей установлена линза L , в фокальной плоскости которой находится экран Э . Большинство лучей не дифрагируют, т.е. не меняют своего направления, и они фокусируются линзой L в центре экрана, образуя центральный максимум или максимум нулевого порядка. Лучи, дифрагирующие под равными углами дифракции φ , будут на экране образовывать максимумы 1,2,3,…, n – порядков.

Таким образом, дифракционная картина, полученная от одной щели в параллельных лучах при освещении монохроматическим светом, представляет собой светлую полосу с максимальной освещенностью в центре экрана, затем идет темная полоса (минимум I – го порядка), потом идет светлая полоса (максимум 1 – го порядка), темная полоса (минимум 2 – го порядка), максимум 2 – го порядка и т.д. Дифракционная картина симметрична относительно центрального максимума. При освещении щели белым светом на экране образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света.

Условия max и min дифракции. Если в оптической разности хода Δ укладывается нечетное число отрезков, равных , то наблюдается усиление интенсивности света (max дифракции):

где k – порядок максимума; k =±1,±2,±…,±n;

λ – длина волны.

Если в оптической разности хода Δ укладывается четное число отрезков, равных , то наблюдается ослабление интенсивности света (min дифракции):

где k – порядок минимума.

Дифракционная решетка. Дифракционная решетка представляет собой чередующиеся непрозрачные для прохождения света полосы с прозрачными для света полосами (щелями) равной ширины.


Основной характеристикой дифракционной решетки является её период d . периодом дифракционной решетки называется суммарная ширина прозрачной и непрозрачной полосы:

Дифракционная решетка используется в оптических приборах для усиления разрешающей способности прибора. Разрешающая способность дифракционной решетки зависит от порядка спектра k и от числа штрихов N :

где R – разрешающая способность.

Вывод формулы дифракционной решетки. Направим на дифракционную решетку два параллельных луча: 1 и 2 так, чтобы расстояние между ними было равно периоду решетки d .


В точках А и В лучи 1 и 2 дифрагируют, отклоняясь от прямолинейного направления на угол φ – угол дифракции.

Лучи и фокусируются линзой L на экран, расположенный в фокальной плоскости линзы (рис. 5). Каждую щель решетки можно рассматривать как источник вторичных волн (принцип Гюйгенса – Френеля). На экране в точке Д наблюдаем максимум интерференционной картины.

Из точки А на ход луча опускаем перпендикуляр и получаем точку С. рассмотрим треугольник АВС : треугольник прямоугольный, ÐВАС=Ðφ как углы с взаимно перпендикулярными сторонам. Из Δ АВС:

где АВ=d (по построению),

СВ = Δ – оптическая разность хода.

Так как в точке Д наблюдаем max интерференции, то

где k – порядок максимума,

λ – длина световой волны.

Подставляем значения АВ=d, в формулу для sinφ :

Отсюда получаем:

В общем виде формула дифракционной решетки имеет вид:

Знаки ± показывают, что интерференционная картина на экране симметрична относительно центрального максимума.

Физические основы голографии. Голографией называется метод записи и восстановления волнового поля, который основан на явлениях дифракции и интерференции волн. Если на обычной фотографии фиксируется только интенсивность отраженных от предмета волн, то на голограмме дополнительно фиксируются и фазы волн, что дает дополнительную информацию о предмете и позволяет получить объемное изображение предмета.

  • Углом падения α называется угол между падающим лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (рис. 1).
  • Углом отражения β называется угол между отраженным лучом света и перпендикуляром к отражающей поверхности, восстановленным в точке падения (см. рис. 1).
  • Углом преломления γ называется угол между преломленным лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (см. рис. 1).
  • Лучи, выходящие из одной точки, называют расходящимися , а собирающиеся в одной точке - сходящимися . Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся - совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

При изучении свойств световых лучей были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Преломление света

Измерения показали, что скорость света в веществе υ всегда меньше скорости света в вакууме c .

  • Отношение скорости света в вакууме c к ее скорости в данной среде υ называется абсолютным показателем преломления :

\(n=\frac{c}{\upsilon }.\)

Словосочетание «абсолютный показатель преломления среды » часто заменяют «показатель преломления среды ».

Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред с показателями преломления n 1 и n 2 под некоторым углом α (рис. 2).

  • Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света .

Законы преломления:

  • отношение синуса угла падения α к синусу угла преломления γ есть величина постоянная для двух данных сред

\(\frac{sin \alpha }{sin \gamma }=\frac{n_2}{n_1}.\)

  • лучи, падающий и преломленный, лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред.

Для преломления выполняется принцип обратимости световых лучей :

  • луч света, распространяющийся по пути преломленного луча, преломившись в точке O на границе раздела сред, распространяется дальше по пути падающего луча.

Из закона преломления следует, что если вторая среда оптически более плотная через первая среда,

  • т.е. n 2 > n 1 , то α > γ \(\left(\frac{n_2}{n_1} > 1, \;\;\; \frac{sin \alpha }{sin \gamma } > 1 \right)\) (рис. 3, а);
  • если n 2 < n 1 , то α < γ (рис. 3, б).
Рис. 3

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II веке нашей эры. Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Заметим, что независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Закон преломления света позволяет рассчитывать ход лучей в различных оптических системах.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн. Согласно закону сохранения энергии сумма энергий отраженной W o и преломленной W np волн равна энергии падающей волны W n:

W n = W np + W o .

Полное отражение

Как уже говорилось выше, при переходе света из оптически более плотной среды в оптически менее плотную среду (n 1 > n 2), угол преломления γ становится больше угла падения α (см. рис. 3, б).

По мере увеличения угла падения α (рис. 4), при некотором его значении α 3 , угол преломления станет γ = 90°, т. е. свет не будет попадать во вторую среду. При углах больших α 3 свет будет только отражаться. Энергия преломленной волны W np при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей: W n = W o . Следовательно, начиная с этого угла падения α 3 (в дальнейшем будет обозначать его α 0), вся световая энергия отражается от границы раздела этих сред.

Это явление получило название полное отражение (см. рис. 4).

  • Угол α 0 , при котором начинается полное отражение, называется предельным углом полного отражения .

Значение угла α 0 определяется из закона преломления при условии, что угол преломления γ = 90°:

\(\sin \alpha_{0} = \frac{n_{2}}{n_{1}} \;\;\; \left(n_{2} < n_{1} \right).\)

Литература

Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 91-96.

Проведение опыта

Каждый из вас, наверное, обращал внимание на то, что в стакане с водой торчащая ложка на границе между водой и воздухом, кажется, что имеет какой-то переломанный вид. Точно такую же картину мы наблюдаем на берегу озера или реки, из водоема которой видна растущая трава. Когда мы на нее смотрим, то у нас создается впечатление, что на границе воды и воздуха эта травинка, как бы отклоняется в сторону. Конечно же, мы прекрасно понимаем, что эти предметы остаются такими же, как и были до того как попали в воду. А вот то, что мы наблюдаем и от чего возникает такой зрительный эффект, то это является преломлением света при его распространении.

Из пройденного материала, который вы уже изучали на предыдущих уроках, вы должны помнить то, что чтобы определить, в какую сторону будет отклоняться луч света при его переходе через границу, которая разделяет две среды, нам необходимо знать, в какой из них скорость света меньше, а в какой больше.

Для большей наглядности мы с вами проведем небольшой опыт. Давайте, например, возьмем оптический диск и в его центр поместим стеклянную пластину. А теперь попробуем направить на эту пластину луч света. И что мы с вами видим? А увидели мы то, что в том месте, где проходит граница воздуха со стеклом свет отражается. Но, кроме того, что свет отразился, мы еще видим, как он проник вовнутрь стекла и при этом еще и изменил направление своего распространения.

А теперь посмотрите, как это показано на рисунке:



А теперь давайте попробуем дать определение этому явлению.

Преломлением света называют такое явление, которое изменяет направления движения светового луча в момент перехода из одной среды в другую.

Давайте опять вернемся к нашему рисунку. На нем мы видим, что АО, обозначает падающий луч, ОВ является отраженным лучом, а ОЕ – это преломленный луч. А что бы произошло, если бы мы взяли и направили луч по направлению ЕО? А произошло вот то, что по закону «обратимости световых лучей», этот луч вышел бы из стекла по направлению ОА.

Из этого следует, что те среды, которые способны пропускать свет, как правило, имеют различную оптическую плотность и разную скорость света. И чтобы вы понимали, что от величины плотности зависит скорость света. То есть, чем большую оптическую плотность имеет среда, тем в ней будет меньшая скорость света и при этом она будет сильнее преломлять свет, который попадает извне.

Как же происходит преломление света?

Впервые такому явлению, как преломление света, в XVII в. дал объяснение патер Меньян. Согласно его утверждениям, следует, что при переходе света из одной среды в другую, его луч изменяет свое направление, которое можно сравнить с движением «солдатского фронта», который во время строевой ходьбы изменяет свое направление. Давайте представим луг, по которому идет колонна солдат, а дальше этот луг преграждается пашней, у которой граница проходит в отношении фронта под углом.

Солдаты, которые дошли до пашни, начинают замедлять свое движение, а те солдаты, которые до этой границы пока не дошли, продолжают свой путь с той же скоростью. А дальше происходит то, что у солдат, которые перешли рубеж и идут по пашне, начинают отставать от побратимов, которые все еще идут по лугу и так постепенно колонна войск начинает разворачивается. Для наглядности этого процесса можно посмотреть на рисунок ниже.



Точно такой же процесс мы наблюдаем и с лучом света. Для того чтобы узнать, в какую сторону будет отклоняться луч света, в момент его перехода границ двух сред, необходимо иметь представление, в какой из них скорость света будет больше, а в какой наоборот меньше.

А так как мы уже имеем представление о том, что свет является электромагнитными волнами, то все то, что мы знаем о скорости распространения электромагнитных волн, также относится и к скорости света.

Следует отметить, что в вакууме скорость света максимальна:



В веществе скорость света, в отличие от вакуума, всегда меньше: v



Оптическая плотность среды

Оптическая плотность среды определяется по тому, как распространяется световой луч в среде. Оптически более плотной будет та среда, которая имеет меньшую скорость света.

Среда, у которой скорость света меньше, называется «оптически более плотной»;
Среда, в которой скорость света больше, носит название «оптически менее плотной».

Если для сравнения оптической плотности взять воздух, стекло и воду, то при сравнении воздуха и стекла, оптически более плотной средой обладает стекло. Также в сравнении стекла и воды, оптически более плотной средой будет стекло.


Угол преломления

Из этого опыта мы видим, что при попадании в среду, которая более плотная, луч света отклоняется от того направления, которое он имел вначале и меняет направление в сторону к перпендикуляру, где находится граница раздела двух сред. А после попадания в среду, которая оптически менее плотная, в этом случае луч света отклоняется в обратную сторону.



«α» - угол падения, «β» - угол преломления.

Преломление света в треугольной призме

При помощи закона преломления света, есть возможность расчета хода лучей и для стеклянной треугольной призмы.

На рисунке 87 вы можете более подробно проследить за ходом лучей в данной призме:


Преломление света в глазу

Вы когда-нибудь замечали, что набрав в ванную воду, складывалось впечатление, что там ее меньше, чем на самом деле. В отношении реки, пруда и озера, складывается такая же картина, а вот причиной всего этого как раз и есть такое явление, как преломление света.

Но, как вы понимаете, во всех этих процессах активное участие принимают и наши глаза. Вот, например, чтобы мы смогли увидеть какую-то определенную точку «S» на дне водоема, в первую очередь необходимо, чтобы лучи света прошли через эту точку и попали в глаз того человека, который на нее смотрит.

А дальше пучок света, пройдя период преломления на границе воды с воздухом уже будет восприниматься глазом как свет, который идет от кажущегося изображения «S1», но находящегося выше, чем точка «S» на дне водоема.



Мнимая глубина водоема «h» составляет приблизительно ¾ его истинной глубины Н. Такое явление впервые было описано Евклидом.

Домашнее задание

1. Наведите свои примеры преломления света, которые вам встречались в повседневной жизни.

2. Найдите информацию об опыте Евклида и попробуйте этот опыт повторить.

ПРЕЛОМЛЕНИЕ СВЕТА ПРИ ПЕРЕХОДЕ ИЗ ВОДЫ В ВОЗДУХ

Опущенная в воду палочка, ложечка в стакане чая вследствие преломления света на поверхности воды кажутся нам преломленными.

Поместите на дно непрозрачного сосуда монету так, чтобы она не была видна. А теперь налейте в сосуд воды. Монета окажется видимой. Объяснение этого явления понятно из видео.

Посмотрите на дно водоема и попытайтесь оценить его глубину. Чаще всего сделать это правильно не удается.

Проследим более детально, как и насколько нам кажется уменьшенной глубина водоема, если мы смотрим на него сверху.

Пусть Н (рис. 17) - это истинная глубина водоема, на дне которого лежит небольшой предмет, например камешек. Свет, отраженный им, расходится во все стороны. Некоторый пучок лучей падает на поверхность воды в точке О снизу под углом а 1 , преломляется на поверхности и попадает в глаз. В соответствии с законом преломления можно записать:

но так как n 2 = 1, то n 1 sin a 1 = sin ϒ 1 .

Преломленный луч попадает в глаз в точке В. Заметим, что в глаз попадает не один луч, а пучок лучей, сечение которого ограничено зрачком глаза.

На рисунке 17 пучок показан тонкими линиями. Однако этот пучок узок и мы можем пренебречь его сечением, приняв его за линию АОВ.

Глаз проецирует А в точку А 1 , и глубина водоема нам кажется равной h.

Из рисунка видно, что кажущаяся глубина водоема h зависит от истинной величины Н и от угла наблюдения ϒ 1 .

Выразим эту зависимость математически.

Из треугольников АОС и А 1 ОС имеем:

Исключая из этих уравнений ОС, получим:

Учитывая, что а = ϒ 1 и sin ϒ 1 = n 1 sin a 1 = n sin a, получим:

В этой формуле зависимость кажущейся глубины водоема h от истинной глубины Н и угла наблюдения не Выступает явно. Для более отчетливого представления этой зависимости выразим ее графически.

На графике (рис. 18) по оси абсцисс отложены значения углов наблюдения в градусах, а по оси ординат - соответствующие им кажущиеся глубины h в долях действительной глубины Н. Полученная кривая показывает, что при малых углах наблюдения кажущаяся глубина

составляет около ¾ действительной и уменьшается по мере увеличения угла наблюдения. При угле наблюдения а = 47° наступает полное внутреннее отражение и луч из воды не может выйти наружу.

МИРАЖИ

В неоднородной среде свет распространяется непрямолинейно. Если мы представим себе среду, в которой показатель преломления изменяется снизу вверх, и мысленно разобьем ее на тонкие горизонтальные слои,

то, рассматривая условия преломления света при переходе от слоя к слою, заметим, что в такой среде луч света должен постепенно изменять свое направление (рис. 19, 20).

Такое искривление световой луч претерпевает в атмосфере, в которой по тем или иным причинам, главным образом благодаря неравномерному нагреванию ее, показатель преломления воздуха изменяется с высотой (рис. 21).


Воздух обычно нагревается от почвы, поглощающей энергию солнечных лучей. Поэтому температура воздуха понижается е высотой. Известно также, что с высотой понижается и плотность воздуха. Установлено, что с увеличением высоты показатель преломления уменьшается, поэтому лучи, идущие сквозь атмосферу искривляются, пригибаясь к Земле (рис. 21). Это явление получило название нормальной атмосферной рефракции. Вследствие рефракции небесные светила кажутся нам несколько «приподнятыми» (выше своей истинной высоты) над горизонтом.

Вычислено, что атмосферная рефракция «приподнимает» предметы, находящиеся на высоте 30°, на 1"40", на высоте 15°- на З"ЗО", на высоте 5° - на 9"45". Для тел, находящихся на горизонте, эта величина достигает 35". Эти цифры отклоняются в ту или другую сторону в зависимости от давления и температуры атмосферы. Однако по тем или иным причинам в верхних слоях атмосферы могут оказаться массы воздуха с температурой более высокой по сравнению с нижними слоями. Их могут принести ветры из жарких стран, например, из области горячей пустыни. Если в это время в нижних слоях находится холодный, плотный воздух антициклона, то явление рефракции может значительно усилиться и лучи света, выходящие от земных предметов вверх под некоторым углом к горизонту, могут вернуться обратно на землю (рис. 22).

Однако может случиться так, что у поверхности Земли вследствие сильного ее нагревания, воздух настолько разогревается, что показатель преломления света вблизи почвы станет меньше, чем на некоторой высоте над почвой. Если при этом стоит безветренная погода, то такое состояние может сохраниться довольно долго. Тогда лучи от предметов, падающие под некоторым довольно большим углом к поверхности Земли, могут искривляться настолько, что, описав дугу около поверхности Земли, они пойдут снизу вверх (рис. 23а). Возможен и случай, показанный на рисунке 236.

Описанные выше состояния в атмосфере и объясняют возникновение интересных явлений - атмосферных миражей. Эти явления обычно делят на три класса. К первому классу относят наиболее распространенные и простые по своему происхождению, так называемые озерные (или нижние) миражи, вызывающие столько надежд и разочарований у путников пустынь.


Французский математик Гаспар Монж, участвовавший в египетской кампании 1798 г., так описывает свои впечатления от миражей этого класса:

«Когда поверхность Земли сильно накалена Солнцем и только-только начинает остывать перед началом сумерек, знакомая местность больше не простирается до горизонта, как днем, а переходит, как кажется, примерно в одном лье в сплошное наводнение.

Деревни, расположенные дальше, выглядят словно острова среди обширного озера. Под каждой деревней - ее опрокинутое отражение, только оно не резкое, мелких деталей не видно, как отражение в воде, колеблемой ветром. Если станешь приближаться к деревне, которая кажется окруженной наводнением, берег мнимой воды все удаляется, водный рукав, отделявший нас от деревни, постепенно суживается, пока не исчезнет совсем, а озеро... теперь начинается за этой деревней, отражая в себе деревни, расположенные дальше» (рис. 24).

Объяснение этого явления простое. Нижние слои воздуха, разогретые от почвы, не успели еще подняться вверх; их показатель преломления света меньше, чем верхних. Поэтому лучи света, исходящие от предметов (например, от точки В на пальме, рис. 23а), изгибаясь в воздухе, попадают в глаз снизу. Глаз проецирует луч в точку В 1 . То же происходит с лучами, идущими от других точек предмета. Предмет кажется наблюдателю опрокинутым.

Откуда же вода? Вода - это отражение небосвода.

Чтобы увидеть мираж, нет надобности ехать в Африку. Его можно наблюдать в жаркий тихий летний день и у нас над разогретой поверхностью асфальтового шоссе.

Миражи второго класса называют верхними или миражами дальнего видения. На них больше всего похоже «неслыханное чудо», описанное Н. В. Гоголем. Приведем описания нескольких таких миражей.

С Лазурного берега Франции ранним ясным утром из вод Средиземного моря, из -за горизонта, поднимается темная цепочка гор, в которой жители узнают Корсику. Расстояние до Корсики больше 200 км, так что о прямой видимости не может быть и речи.

На английском побережье, близ Гастингса, можно видеть французский берег. Как сообщает натуралист Нье-диге, «близ Реджо в Калабрии, напротив сицилийского берега и города Мессины, временами видны в воздухе целые незнакомые местности с пасущимися стадами, кипарисовыми рощами и замками. Недолго продержавшись в воздухе, миражи исчезают».

Миражи дальнего видения появляются в том случае, если верхние слои атмосферы окажутся по каким-либо причинам, например при попадании туда нагретого воздуха, особенно разреженными. Тогда лучи, исходящие от земных предметов, искривляются сильнее и достигают земной поверхности, идя под большим углом к горизонту. Глаз же наблюдателя проецирует их в том направлении, по которому они входят в него.


Видимо, в том, что большое количество миражей дальнего видения наблюдается на побережье Средиземного моря, повинна пустыня Сахара. Горячие массы воздуха поднимаются над ней, затем уносятся на север и создают благоприятные условия для возникновения миражей.

Верхние миражи наблюдаются и в северных странах, когда дуют теплые южные ветры. Верхние слои атмосферы оказываются нагретыми, а нижние - охлажденными из-за наличия больших масс тающих льдов и снегов.

Иногда наблюдаются одновременно прямые и обратные изображения предметов. На рисунках 25-27 представлены именно такие явления, наблюдаемые в арктических широтах. Видимо, над Землей имеются перемежающиеся более плотные и более разреженные слои воздуха, искривляющие лучи света примерно так, как показано на рисунке 26.

Миражи третьего класса - сверхдальнего видения - трудно объяснить. Приведем описание нескольких из них.

«Опираясь на свидетельства нескольких лиц, заслуживающих доверия,- пишет К. Фламарион в книге «Атмосфера»,- я могу сообщить про мираж, который видели в городе Вервье (Бельгия) в июне 1815 года. Однажды утром жители города увидели в небе войско, и так ясно, что можно было различить костюмы артиллеристов, пушку со сломанным колесом, которое вот-вот отвалится... Это было утро сражения при Ватерлоо!» Расстояние между Ватерлоо и Вервье по прямой линии - 105 км.

Известны случаи, когда миражи наблюдались на расстоянии 800, 1000 и более километров.

Приведем еще один поразительный случай. В ночь на 27 марта 1898 г. среди Тихого океана экипаж бременского судна «Матадор» был напуган видением. Около полуночи экипаж заметил приблизительно в двух милях (3,2 км) судно, которое боролось с сильным штормом.

Это было тем более удивительно, что кругом стоял штиль. Судно пересекало курс «Матадора», и были мгновения, когда казалось, что столкновение кораблей неизбежно... Экипаж «Матадора» видел, как во время одного сильного удара волны о неизвестное судно в каюте капитана потух свет, который виднелся все время в двух иллюминаторах. Через некоторое время судно исчезло, унося с собою ветер и волны.

Дело разъяснилось позже. Оказалось, что все это происходило с другим судном, которое во время «видения» находилось от «Матадора» на расстоянии 1700 км.

Какими же путями проходит свет в атмосфере так, что сохраняются отчетливые изображения предметов на столь больших расстояниях? Точного ответа на этот вопрос пока нет. Высказывались предположения об образовании в атмосфере гигантских воздушных линз, опоздании вторичного миража, т. е. миража от миража. Возможно, что здесь играет роль ионосфера *, отражающая не только радиоволны, но и световые волны.

Видимо, описанные явления имеют такое же происхождение, как и другие наблюдаемые на морях миражи, носящие название «Летучего голландца» или «Фата Моргана», когда моряки видят призрачные суда, исчезающие затем и наводящие страх на суеверных людей.

РАДУГА

Радуга - это красивое небесное явление - всегда привлекала внимание человека. В прежние времена, когда люди еще очень мало знали об окружающем их мире, радугу считали «небесным знамением». Так, древние греки думали, что радуга - это улыбка богини Ириды.

Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км, иногда ее можно наблюдать на расстоянии 2-3 м на фоне водяных капель, образованных фонтанами или распылителями воды.

Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя, - на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41-42° (рис. 28).


В момент восхода солнца противосолнечная точка (точка М) находится на линии горизонта и радуга имеет вид полуокружности. По мере поднятия Солнца противосолнечная точка опускается под горизонт и размер радуги уменьшается. Она представляет собой лишь часть окружности. Для наблюдателя, находящегося высоко, например на. самолете, радуга видна как полная окружность с тенью наблюдателя в центре.

Часто наблюдается побочная радуга, концентрическая с первой, с угловым радиусом около 52° и обратным расположением цветов.

При высоте Солнца 41° главная радуга перестает быть видимой и над горизонтом выступает лишь часть побочной радуги, а при высоте Солнца больше 52° не видна и побочная радуга. Поэтому в средних и экваториальных широтах в околополуденные часы это явление природы никогда не наблюдается.

У радуги, как и у спектра, различают семь основных цветов, плавно переходящих один в другой. Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают радугу более узкую, с резко выделяющимися цветами, малые - дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Впервые теория радуги была дана в 1637 г. Р. Декартом. Он объяснил радугу как явление, связанное с отражением и преломлением света в дождевых каплях.

Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Пертнером.

Рассмотрим простейший случаи: пусть на каплюу имеющую форму шара, падает пучок параллельных солнечных лучей (рис. 29). Луч, падающий на поверхность капли в точке А, преломляется внутри нее по закону преломления: n 1 sin a = п 2 sin β, где n 1 = 1, n 2 ≈ 1,33- соответственно показатели преломления воздуха и воды, a - угол падения, β - угол преломления света.

Внутри капли луч идет по прямой АВ. В точке В происходит частичное преломление луча и частичное его отражение. Заметим, что, чем меньше угол падения в точке В, а следовательно, и в точке А, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча.

Луч АВ после отражения в точке В проходит под углом β 1 " = β 1 попадает в точку С, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под углом у2, а отраженный может пройти дальше, в точку D и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, вышедший из капли в точке В. Однако наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей. Лучи же, преломленные в точке С, создают в совокупности на фоне темной тучи первичную радугу, а лучи, испытывающие преломление в точке D

дают вторичную радугу, которая, как следует из сказанного, менее интенсивна, чем первичная.

Для случая К=1 получаем Θ = 2 (59°37" - 40°26") + 1 = 137° 30".

Следовательно, угол наблюдения радуги первого порядка равен:

φ 1 =180° - 137°30" = 42°30"

Для луча DE" дающего радугу второго порядка, т. е. в случае К = 2, имеем:

Θ = 2 (59°37" - 40°26") + 2 = 236°38".

Угол наблюдения радуги второго порядка φ 2 = 180° - 234°38" = - 56°38".

Отсюда следует (это видно и из рисунка), что в рассматриваемом случае радуга второго порядка с земли не видна. Для того чтобы она была видна, свет должен входить в каплю снизу (рис. 30, б).

При рассмотрении образования радуги нужно учесть еще одно явление - неодинаковое преломление волн света различной длины, т. е. световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления ϒ и углы отклонения лучей Θ в капле различны для лучей различной окраски. Ход трех лучей - красного, зеленого и фиолетового - схематически показан на рисунке 30, а для дуги первого порядка и на рисунке 30, б для дуги второго порядка.

Из рисунков видно, что последовательность цветов в этих дугах противоположна.

Чаще всего мы наблюдаем одну радугу. Нередки, случаи, когда на небосводе появляются одновременно две радужные полосы, расположенные одна над другой; наблюдают, правда, довольно редко, и еще большее число радужных небесных дуг - три, четыре и даже пять одновременно. Это интересное явление наблюдали ленинградцы 24 сентября 1948 г., когда во второй половине дня среди туч над Невой появились четыре радуги. Оказывается, что радуга может возникать не только от прямых солнечных лучей; нередко она появляется и в отраженных лучах Солнца. Это можно видеть на берегу морских заливов, больших рек и озер. Три-четыре такие радуги - обыкновенные и отраженные - создают подчас красивую картину. Так как отраженные от водной поверхности лучи Солнца идут снизу вверх, то радуга, образующаяся в этих лучах, может выглядеть иногда совершенно необычно.

Не следует думать, что радугу можно наблюдать только днем. Она бывает и ночью, правда, всегда слабая. Увидеть такую радугу можно после ночного дождя, когда из-за туч выглянет Луна.

Некоторое подобие радуги можно получить на следующем опыте. Возьмите колбу с водой, осветите ее солнечным светом или лампой через отверстие в белой доске. Тогда на доске отчетливо станет видна радуга (рис. 31, а), причем угол расхождения лучей по сравнению с начальным направлением составит около 41-42° (рис. 31,6). В естественных условиях экрана нет, изображение возникает на сетчатке глаза, и глаз проецирует это изображение на облака.

Если радуга появляется вечером перед заходом Солнца, то наблюдают красную радугу. В последние пять или десять минут перед закатом солнца все цвета радуги, кроме красного, исчезают, она становится очень яркой и видимой даже спустя десять минут после заката.

Красивое зрелище представляет собой радуга на росе.

Ее можно наблюдать при восходе Солнца на траве, покрытой росой. Эта радуга имеет форму гиперболы.

НИМБЫ

Рассматривая радугу на лугу, вы невольно заметите удивительный неокрашенный световой ореол - нимб, окружающий тень вашей головы. Это не оптическая иллюзия и не явление контраста. Когда тень падает на дорогу, ореол исчезает. Каково же объяснение этого интересного явления? Капли росы определенно играют здесь важную роль, ибо при исчезании росы исчезает явление.

Для выяснения причины явления проделайте следующий опыт. Возьмите сферическую колбу с водой и поставьте ее на солнечный свет. Пусть она изображает каплю. Поместите позади колбы близко к ней лист бумаги, который будет играть роль травы. Посмотрите на колбу под малым углом по отношению к направлению падающих лучей. Вы увидите ее ярко освещенной лучами, отраженными от бумаги. Лучи эти идут почти точно навстречу лучам Солнца, падающим на колбу. Чуть в сторону отведите глаза, и яркого освещения колбы уже не видно.

Здесь мы имеем дело не с рассеянным, а с направленным пучком света, исходящим от яркого пятна на бумаге. Колба действует как линза, направляющая свет на нас.

Пучок параллельных солнечных лучей после преломления в колбе дает на бумаге более или менее фокусированное изображение Солнца в виде яркого пятна. В свою очередь довольно много света, излучаемого пятном, захватывается колбой и после преломления в ней направляется назад в сторону Солнца, в том числе в наши глаза, так как мы стоим спиной к Солнцу. Оптические недостатки нашей линзы - колбы дают некоторый рассеянный световой поток, но все же основной поток света, исходящего от яркого пятна на бумаге, направлен в сторону Солнца. Но почему же свет, отраженный от травинок, не зеленый?


Он в действительности имеет слабый зеленоватый оттенок, но в основном он белый, так же как свет, направленно отраженный от гладких окрашенных поверхностей, как, например, блики от зеленой или желтой классной доски, от цветного стекла.

Но капельки росы не всегда шарообразны. Они могут быть искаженными. Тогда некоторые из них направляют свет в сторону, но он проходит мимо глаз. Другие же капельки, как, например, изображенные на рисунке 33, имеют такую форму, что упавший на них свет после одно-или двукратного отражения направляется обратно в сторону Солнца и попадает в глаза наблюдателя, стоящего к нему спиной.

Наконец следует отметить еще одно остроумное объяснение этого явления: направленно отражают свет только те листья травы, на которые падает прямой свет Солнца, т. е. те, которые со стороны Солнца не заслонены другими листьями. Если учесть, что листья большинства растений всегда поворачиваются своей плоскостью к Солнцу, то очевидно, что таких отражающих листьев окажется довольно много (рис. 33, д). Поэтому нимбы можно также наблюдать и в отсутствие росы, на поверхности гладко скошенного луга или сжатого поля.