Правило дифференцирования суммы. Производная функции. Исчерпывающее руководство (2019). Константа выносится за знак производной

В принципе можно было бы мерить все углы в радианах. На практике широко используется и градусное измерение углов, хотя с чисто математической точки зрения оно неестественно. При этом для малых углов используются специальные единицы: угловая минута и угловая секунда. Угловая минута - это 1/60 часть градуса; угловая секунда - это 1/60 часть угловой минуты. Если, например, величина угла равна 129 градусам, 34 минутам и 16 секундам, то пишут: 129◦ 340 1600 .

Задача 4.1. На какой угол поворачивается за одну секунду:

а) часовая стрелка часов;

б) минутная стрелка часов;

в) секундная стрелка часов?

Решение. Разберем только пункт а). Полный оборот часовая стрелка делает за 12 часов; стало быть, за час она поворачивается на 360/12 = 30◦ . Следовательно, за минуту часовая стрелка повернется на угол, в 60 раз меньший, чем за час, то есть на 300 ;

в свою очередь, за секунду стрелка повернется на угол, в 60 раз меньший, чем за минуту, то есть на 30 00 . Теперь вы видите, на-

сколько мала угловая секунда: ведь даже угол, в тридцать раз больший (поворот часовой стрелки за секунду времени) мы не

в состоянии заметить.

Представление об угловой минуте дает такой факт: «разрешающая способность» человеческого глаза (при стопроцентном зрении и хорошем освещении) равна примерно одной угловой минуте. Это означает, что две точки, которые видны под углом 10 или меньше, на глаз воспринимаются как одна.

Посмотрим, что можно сказать о синусе, косинусе и тангенсе малых углов. Если на рис. 4.2 угол α мал, то высота BC, дуга BD и отрезок BE, перпендикулярный AB, очень близки. Их длины - это sin α, радианная мера α и tg α. Стало быть, для малых углов синус, тангенс и радианная мера приближенно равны друг другу:

Рис. 4.1. Разрешающая способность.

Если α - малый угол, измеренный в радианах, то sin α ≈ α; tg α ≈ α.

Задача 4.2. Запишите приближенные формулы для синуса и тангенса малых углов, считая, что угол измеряется в градусах.

Ответ. sin α◦ ≈ πα/180.

Видно, что формулы сложнее, чем для радианной меры - еще один довод в ее пользу!

Задача 4.3. Под каким углом видно дерево высотой 10 метров с расстояния в 800 метров? Дайте ответ: а) в радианах; б) в угловых минутах.

Задача 4.4. Чему равно расстояние, равное одной минуте дуги земного меридиана? Радиус Земли равен примерно 6370 .

Расстояние, о котором идет речь в этой задаче, примерно равно морской миле (именно так и появилась эта мера длины).

Рис. 4.3. Парсек.

Рис. 4.4. Формула тысячных.

Задача 4.5. В астрономии применяется единица измерения расстояний, называемая парсек. По определению, расстояние в 1 парсек - это расстояние с которого радиус земной орбиты1 виден под углом 100 (рис.4.3 ). Сколько километров в одном парсеке? (Радиус земной орбиты равен примерно 150 миллионам километров.)

Задача 4.6. Военные пользуются единицей измерения углов, называемой «тысячная». По определению, тысячная - это 1/3000 развернутого угла. Такое измерение углов военные применяют в следующей формуле для определения расстояния до удаленных предметов: = (/) · 1000. Здесь - расстояние до предмета, - его высота, - угол, под которым он виден, измеренный в тысячных (рис. 4.4 ). Точна ли эта формула? Почему ей можно пользоваться на практике? Чему равно число π, по мнению военных?

Мы видим, что формулы sin α ≈ α, tg α ≈ α верны с хорошей точностью для малых углов. Посмотрим, что произойдет,

1 Астрономы поправили бы нас: не радиус (орбита Земли - не круг, а эллипс), а большая полуось (половина расстояния между наиболее удаленными друг от друга точками орбиты).

если угол не столь мал. Для угла в 30◦ точное значение синуса равно 0,5, а радианная мера равна π/6 ≈ 0,52. Ошибка (или, как еще говорят, погрешность), которую дает формула sin α ≈ α, равна примерно 0,02, что составляет 4% от значения синуса. Можно сказать, что относительная погрешность при таком вычислении (отношение погрешности к значению синуса) составляет 4%. Для углов, меньших 10◦ , относительная погрешность формулы sin α ≈ α меньше одного процента. Чем меньше угол α, тем меньше относительная погрешность формулы sin α ≈ α.

Существуют и другие формулы, позволяющие вычислять синусы и тангенсы - и не только малых углов - с хорошей точностью. Например, формула sin α ≈ α − α3 /6 (напоминаем, что α измеряется в радианах!) дает относительную погрешность менее 1% уже для всех углов, не превосходящих 50◦ . Позднее мы увидим, как оценить погрешность наших формул.

Задача 4.7. Пусть α - острый угол, измеренный в радианах. Докажите неравенство cos α > 1 − α2 .

Задача 4.8. Для косинусов малых углов в качестве приближенного значения можно брать 1. Докажите, что при величине угла менее 5◦ относительная погрешность этого приближения будет менее 1%.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного — в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная «икса» равна единице, а производная синуса — косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные — в статье «Производная произведения и частного функций» .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u v , в котором u — число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибкамеханическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие «Производная суммы дробей со степенями и корнями».

Если же перед Вами задача вроде , то Вам на занятие «Производные простых тригонометрических функций».

Пошаговые примеры — как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители — суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, «икс» у нас превращается в единицу, а минус 5 — в ноль. Во втором выражении «икс» умножен на 2, так что двойку умножаем на ту же единицу как производную «икса». Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие «Производная суммы дробей со степенями и корнями» .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок «Производные простых тригонометрических функций» .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых — квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого — квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Найти производные самостоятельно, а затем посмотреть решения

Пример 7. Найти производную функции

Пример 8. Найти производную функции

.

Продолжаем искать производные вместе

Пример 9. Найти производную функции

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных — под номером 3), получим

.

Пример 10. Найти производную функции

Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим

Пример 11. Найти производную функции

Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:

Теперь вычислим производные в числителе и перед нами уже требуемый результат:

Пример 12. Найти производную функции

Шаг1. Применяем правило дифференцирования суммы:

Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных — номер 5):

Шаг3. В частном знаменатель — также корень, только не квадратный. Поэтому преобразуем этот корень в степень:

Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:

а производная, требуемая в условии задачи:

Получить в PDF методичку-решебник с 33 примерами решений Найти производную: алгоритм на примере простых элементарных функций, БЕСПЛАТНО

Напоминаем, что чуть более сложные примеры на производную произведения и частного — в статьях «Производная произведения и частного функций» и «Производная суммы дробей со степенями и корнями».

Правила дифференцирования. Производная произведения функций.

Дифференцирование – определение производных и дифференциалов всех порядков от функции одной переменной и частных производных и дифференциалов, кроме того, полных дифференциалов от функций большинства переменных.

Доказательство правила дифференцирования произведения 2-х функций:

Записываем предел отношения приращения произведения функций к приращению аргумента. Учитываем, что:

(приращение функции стремится к 0 при приращении аргумента, который стремится к 0).

Теперь рассмотрим на нескольких примерах вышеуказанное правило.

.

В этом примере . Применим правило производной произведения:

Смотрим таблицу производных основных элементарных функций и находим решение:

Найдем производную функции:

В данном примере . Значит:

Теперь посмотрим на вариант определения производной произведения 3-х функций. По такой системе дифференцируют произведение 4-х, и 5-ти, и 25-ти функций.

Исходим из правила дифференцирования произведения 2-х функций. Функцией f(x) считаем произведение (1+x)sinx , а функцией g(x) возьмем lnx :

Что бы определить снова применяем правило производной произведения:

Воспользуемся правилом производной суммы и таблицей производных:

Подставляем результат, который мы получили:

Из выше описанного видно, иногда нужно применять не только одно правило дифференцирования на одном примере. Тут важно делать все последовательно и внимательно.

Функция является разностью выражений и , значит:

В первом выражении выносим 2-йку за знак производной, а во 2-м выражении используем правило дифференцирования произведения:

Что такое производная?

Производная — одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

— понимать суть несложных заданий с производной;

— успешно решать эти самые несложные задания;

— подготовиться к более серьёзным урокам по производной.

Сначала — приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов — чтобы понять задание, и всего несколько правил — чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование — это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование — действие над функцией.

Производная — результат этого действия.

Так же, как, например, сумма — результат сложения. Или частное — результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y’ или f"(x) или S"(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли.)

Штрих также может обозначать производную конкретной функции, например: (2х+3)’ , (x 3 )’ , (sinx)’ и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего — научиться их решать.) Напомню ещё раз: нахождение производной — это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире — бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе — линейная, квадратичная, гипербола и т.п.

Дифференцирование функций «с нуля», т.е. исходя из определения производной и теории пределов — штука достаточно трудоёмкая. А математики — тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева — элементарная функция, справа — её производная.

Формулы дифференцирования

Таблица производных элементарных функций

Вычисление производной называют дифференцированием .

Обозначают производную $y’$ или $\frac $.

Для нахождения производной функции ее согласно определенным правилам превращают в другую функцию.

Рассмотрим таблицу производных . Обратим внимание на то, что функции после нахождения их производных преобразуются в другие функции.

Исключение составляет лишь $y=e^x$, превращающаяся сама в себя.

Правила дифференцирования

Чаще всего при нахождении производной требуется не просто посмотреть в таблицу производных, а вначале применить правила дифференцирования, и только потом использовать таблицу производных элементарных функций.

1. Постоянная выносится за знак производной

Продифференцировать функцию $y=7x^4$.

Находим $y’=(7x^4)’$. Выносим число $7$ за знак производной, получаем:

используем таблицу и находим значение производной степенной функции:

преобразуем результат к принятому в математике виду:

2. Производная суммы (разницы) равна сумме (разнице) производных:

Продифференцировать функцию $y=7+x-5x^3+4 \sin ⁡x-9\sqrt +\frac -11\cot x$.

отметим, что при дифференцировании все степени и корни необходимо преобразовать к виду $x^>$;

вынесем все постоянные за знак производной:

разобравшись с правилами, некоторые из них (например, как последние два) применяются одновременно во избежание переписывания длинного выражения;

мы получили выражение из элементарных функций, стоящих под знаком производной; воспользуемся таблицей производных:

преобразуем к виду, принятому в математике:

$=1-25x^4+4 \cos ⁡x-\frac >+\frac +\frac $ . Обратим внимание, что при нахождении результата принято слагаемые с дробными степенями преобразовать в корни, а с отрицательными – в дроби.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

3. Формула производной произведения функций:

Продифференцировать функцию $y=x^ \ln⁡x$.

Сначала применим правило вычисления производной произведения функций, а затем используем таблицу производных:

4. Формула производной частного функций:

Продифференцировать функцию $y=\frac $.

по правилам приоритета математических операций сначала выполним деление, а потом сложение и вычитание, поэтому применим сначала правило вычисления производной частного:

применим правила производных суммы и разности, раскроем скобки и упростим выражение:

Продифференцируем функцию $y=\frac $.

Функция y является частным двух функций, поэтому можно применить правило вычисления производной частного, но в таком случае получим громоздкую функцию. Для упрощения данной функции можно почленно разделить числитель на знаменатель:

Применим к упрощенной функции правило дифференцирования суммы и разности функций.