Художественный стиль речи языковые средства. Примеры художественного стиля. Художественный текст в деталях. Обязательные предметы гардероба жительницы Парижа

1. Генетический код триплетен. 3 расположенных рядом нуклеотида несут информацию об одной аминокислоте. Таких триплетов может быть 64 (в этом проявляется избыточность генетического кода), но только 61 из них несет информацию о белке (кодоны). 3 триплета называются антикодонами, являются стоп-сигналами, на которых останавливается синтез белка.

2. Генетический код вырожден (аминокислот 20, а кодонов 61), т.е. одну аминокислоту могут кодировать несколько кодонов (от двух до шести). Метионин и триптофан имеют по одному кодону, т.к. с них начинается синтез белка (старт-сигнал).

3. Код однозначен – несет информацию только об одной аминокислоте.

4. Код коллинеарен, т.е. последовательность нуклеотидов в гене соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем и компактен – один и тот же нуклеотид не может входить в состав двух разных кодонов, считывание идет непрерывно, подряд, вплоть до стоп-кодона. В коде отсутствуют «знаки препинания».

6. Генетический код универсален – одинаков для всех живых существ, т.е. один и тот же триплет кодирует одну и ту же аминокислоту. 66.Что такое обратная транскрипция? Каким образом этот процесс связан с развитием вирусов?

ОБРАТНАЯ ТРАНСКРИПЦИЯ - это метод получения копии РНК в виде двунитевой ДНК из вируса. Методика часто используется в ГЕННОЙ ИНЖЕНЕРИИ для получения копий ИНФОРМАЦИОННОЙ РНК в виде ДНК. Достигается путем использования ФЕРМЕНТА ревертаза, который встречается в РЕТРОВИРУСАХ.

Вирусы, использующие обратную транскрипцию, содержат одноцепочечную РНК или двухцепочечную ДНК. РНК-содержащие вирусы, способные к обратной транскрипции (ретровирусы, например, ВИЧ), используют ДНК-копию генома как промежуточную молекулу при репликации РНК, а содержащие ДНК (параретровирусы, например, вирус гепатита B) - РНК. В обоих случаях используется обратная транскриптаза, или РНК-зависимая-ДНК-полимераза.

Ретровирусы встраивают ДНК, образующуюся в процессе обратной транскрипции, в геном хозяина, такое состояние вируса называется провирусом. Вирусы, использующие обратную транскрипцию, восприимчивы к противововирусным препаратам.

67. Опишите строение генов эукариот. Чем гены эукариот отличаются от прокариот?

Ген – участок ДНК, с которого копируется РНК.

Строение генов у эукариот: общепринятая модель строения гена – экзон – интронная структура.

Экзон – последовательность ДНК, которая представлена в зрелой РНК. В состав гена должен входить как минимум один экзон. В среднем в гене содержится 8 экзонов. Факторы инициации и терминации транскрипции входят в состав первого и последнего экзона соответственно.

Интрон – последовательность ДНК, включенная между экзонами, не входит в состав зрелой РНК. Интроны имеют определенные нуклеотидные последовательности, определяющие их границы с экзонами: на 5 конце – GU, на 3 – AG. Могут кодировать регуляторные РНК.

Сигнал полиаденилирования 5 – AATAAA -3 входит в состав последнего экзона. Поли сайты защищают мРНК от деградации.

5 и 3 фланкирующие последовательности – копирование гена происходит в направлении 5 – 3 , на флангах находятся специфические сайты, ограничивающие ген и содержащие регуляторные элементы его транскрипции.

Регуляторные элементы – промотор, энхансеры, сайленсеры, инсуляторы (способствуют образованию петель хромосом, ограничивающих влияние соседних регуляторных элементов).

Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Гены эукариот не группируются в опероны, поэтому каждый из них имеет собственные промотор и терминатор транскрипции.


Похожая информация:

  1. A. Animal and Vegetable Kingdom 6 страница. Если даже элементарные частицы - основа материального мира - проявляют столь противоречивые свойства
Одним из свойств генетического кода является"универсальность".Это означает,что:

1)все живые организмы состоят из нуклеиновых кислот и белков
2)законы кода применимы ко всем группам живых существ
3)одна аминокислота может кодироваться несколькими триплетами
4)один и тот же нуклеотид не может одновременно входить в состав нескольких триплетов

1. Перечислите уровни организации жизни в пределах одного организма.

2. Перечислите уровни организации жизни от организма и выше.
3. Основные методы изучения в биологии?
4. Перечислите элементы первой и второй группы.
5. Перечислите функции, которые выполняет вода в клетке.
6. Запишите пример буферной системы.
7. На какие группы делятся углеводы?
8. Напишите формулы важнейших пентоз.
9. Какие вещества относятся к полисахаридам?
10. Что является мономером гликогена, клетчатки?
11. Какие функции выполняют углеводы?
12. Что представляют из себя жиры?
13. Какие липиды входят в состав мембран?
14. Перечислите жирорастворимые витамины.
15. Перечислите 5 важнейших функций жиров.
16. Запишите общую формулу аминокислоты.
17. Запишите структурную формулу дипептида.
18. Как называется связь между двумя аминокислотами?
19. Какие аминокислоты называются незаменимыми? Сколько их?
20. Какие белки называются полноценными?
21. Чем представлена первичная структура белков?
22. Чем представлена вторичная структура белка?
23. Какими связями удерживается третичная структура белков?
24. Сколько энергии выделяется при расщеплении 1 г белков, углеводов, липидов?
25. Перечислите функции белков.
26. Каковы основные свойства ферментов?
27. Из остатков каких веществ состоит нуклеотид ДНК?
28. Запишите структурную формулу нуклеотида ДНК.
29. Какие азотистые основания входят в состав нуклеотидов ДНК?
30. Какие пуриновые азотистые основания входят в состав молекулы ДНК?
31. Как нуклеотиды ДНК соединены в одну цепь?
32. Сколько водородных связей между комплементарными азотистыми основаниями?
33. Что такое "принцип комплементарности"?
34. Какие функции выполняют ДНК?
35. Запишите структурную формулу нуклеотида РНК.

1)укажите генотип гетерозиготной особи по одному признаку: АА, аА, ААВВ,аавв 2)Может ли потомство белой овцы и белого барана оказаться чёрным: да, нет,мог

ут быть два варианта 3) что означает термин "моногибридное " скрещивание: независимое распределение генов,преобладание одного из признаков,скрещивание родительских пар,различающихся по одному признаку 4) укажите генотип гомозиготной особи по двум домминантым аллеям: АаВВ,Аавв,ААВВ 5)что изучает генетика: основные закономерности наследования, закономерности размножения,основные свойства организма 6) укажите генотип дигетерозиготной особи: Аа,АА,АаВв,ААВв 7)какие особи называют гибритными: организмы.получаемые от скрещивания особей,различающихся многими наследственными задатками. особи,различающиеся между собой 8)какой признак доминирует,если от скрещивания безрогого (гомозиготного) быка с рогатой (гомозиготной)коровой потомство оказалось безрогим:доминирует аллель рогатости, проявляется домининтный аллель,имеет место дигибритное скрещивание 9)какие гены можно назвать аллельными: все гены аллельные. только те гены,которые контролируют развитие одного признака. гены, находящиеся в гомологичных хромосомах и расположенные друг против друга. гены сцепленные. гены расположенные в разных, негомологичных хромосомах 10)что влияет на формирование фенотипа: ничего не влияют. влияют генотип организма. влияют условия среды. влияет взаимодействие генов. 11)в чём заключается значение метода анализирующего скрещивания для генетического анализа в селекции: не имеет значения. играет роль в эволюции. помогает выявить рецесивные аллеи. помогает выявить доминатные аллеи. помогает определить гаметы анализируемой формы

Ранее мы подчёркивали, что нуклеотиды имеют важную для формирования жизни на Земле особенность – при наличии в растворе одной полинуклеотидной цепочки спонтанно происходит процесс образования второй (параллельной) цепочки на основании комплементарного соединения родственных нуклеотидов. Одинаковое число нуклеотидов, в обоих цепочках и их химическое родство, является непременным условием для осуществления такого рода реакций. Однако при синтезе белка, когда информация с иРНК реализуется в структуру белка никакой речи о соблюдении принципа комплементарности идти не может. Это связано с тем, что в иРНК, и в синтезированном белке различно не только число мономеров, но и, что особенно важно, отсутствует структурное сходство между ними (с одной стороны нуклеотиды, с другой аминокислоты). Понятно, что в этом случае возникает необходимость создания нового принципа точного перевода информации с полинуклеотида в структуру полипептида. В эволюции такой принцип был создан и в его основу был заложен генетический код.

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств.

    Триплетность.

    Вырожденность или избыточность.

    Однозначность.

    Полярность.

    Неперекрываемость.

    Компактность.

    Универсальность.

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

а. Триплетность. Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет – наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон – наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет – это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон – характеризует элементарную смысловую единицу генома – три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 4 3 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую либо аминокислоту, их называют смысловые кодоны . Три триплета не кодируют

Таблица 1.

Кодоны информационной РНК и соответствующие им аминокислоты

О с н о в а н и я к о д о н о в

Нонсенс

Нонсенс

Нонсенс

Мет

Вал

аминокислот а являются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три – УАА, УАГ, УГА , их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называютнонсенс-мутация . Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться – синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» - Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции .

б. Вырожденность или избыточность.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Его предпочтение очевидно. Если бы из 64 варианта триплетов в кодировании аминокислот участвовало только 20, то 44 триплета (из 64) оставались бы не кодирующими, т.е. бессмысленными (нонсенс-кодонами). Ранее мы указывали, насколько опасно для жизнедеятельности клетки превращение кодирующего триплета в результате мутации в нонсенс-кодон - это существенно нарушает нормальную работу РНК-полимеразы, приводя в конечном итоге к развитию заболеваний. В настоящее время в нашем геноме три кодона являются бессмысленными, а теперь представьте, что было бы если число нонсенс-кодонов увеличится в примерно в 15 раз. Понятно, что в такой ситуации переход нормальных кодонов в нонсенс-кодоны будет неизмеримо выше.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами - УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин - двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит названиевырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках.

И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент - гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части – глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит гем, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона , который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид – первый, второй или третий. Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка - глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные -цепи и две -цепи. Молекула -цепи содержит 141 аминокислотных остатков, -цепочка - 146, - и -цепи различаются по многим аминокислотным остаткам. Аминокислотная последовательность каждой глобиновой цепи кодируется своим собственным геном. Ген, кодирующий -цепь располагается в коротком плече 16 хромосомы, -ген - в коротком плече 11 хромосомы. Замена в гене, кодирующем -цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” - приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту - тирозин Фенотипически это проявится в тяжёлом заболевании.. Аналогичная замена в 63 положении -цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении -цепи является причиной тяжелейшего заболевания - серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в -цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам - они обе гидрофильны. Валин - гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина - у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту – гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

в. Однозначность.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон – аминокислота генетический код однозначен, в направлении аминокислота – кодон – неоднозначен (вырожденный).

Однозначен

Кодон аминокислота

Вырожденный

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген – несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

г. Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

д. Неперекрываемость.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33,А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся.

Поясним это на рисунке 34. Жирными линиями показаны триплеты кодирующие аминокислоты в случае не перекрывающегося и перекрывающегося кода. Эксперименты однозначно показали, что генетический код является не перекрывающимся. Не вдаваясь в детали эксперимента отметим, что если заменить в последовательности нуклеотидов (см. рис.34) третий нуклеотид У (отмечен звёздочкой) на какой-либо другой то:

1. При неперекрывающемся коде контролируемый этой последовательностью белок имел бы замену одной (первой) аминокислоте (отмечена звёздочками).

2. При перекрывающемся коде в варианте А произошла бы замена в двух (первой и второй) аминокислотах (отмечены звёздочками). При варианте Б замена коснулась бы трёх аминокислот (отмечены звёздочками).

Однако многочисленные опыты показали, что при нарушении одного нуклеотида в ДНК, нарушения в белке всегда касаются только одной аминокислоты, что характерно для неперекрывающегося кода.

ГЦУГЦУГ ГЦУГЦУГ ГЦУГЦУГ

ГЦУ ГЦУ ГЦУ УГЦ ЦУГ ГЦУ ЦУГ УГЦ ГЦУ ЦУГ

*** *** *** *** *** ***

Аланин – Аланин Ала – Цис – Лей Ала – Лей – Лей – Ала – Лей

А Б В

Не перекрывающийся код Перекрывающийся код

Рис. 34. Схема, объясняющая наличие в геноме не перекрывающегося кода (объяснение в тексте).

Неперекрываемость генетического кода связана с ещё одним свойством – считывание информации начинается с определённой точки – сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ.

Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

е. Компактность.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

ж. Универсальность.

Код един для всех организмов живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

МЗ. Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны,

соответствующие аминокислотам в белке. Генетический код имеет несколько свойств.

Какие организмы относят к эукариотам и по какому признаку?

Эукариотами являются одноклеточные и многоклеточные протисты (простейшие, водоросли, гидроподобные), растения, грибы и животные. Все эукариоты имеют в своих клетках четко оформленное ядро.

Какие организмы относятся к прокариотам и по какому признаку?

К прокариотам относятся бактерии и археи, то есть организмы, не обладающие оформленным клеточным ядром и другими мембранными органоидами.

На чем основано деление организмов на про- и эукариоты?

Деление организмов на про- и эукариоты основано, в первую очередь, на наличии или отсутствии оформленного клеточного ядра.

4. Доказательство генетической роли ДНК как … наследственности.

Эксперименты с E.Coli, выращенных на двух средах: радиоактивного изотопа серы, радиоактивного изотопа фосфора. Итог: клетки на сере – имеют ее лишь в белковой оболочке, клетки на фосфоре – имеют ДНК, меченную им. Сделали два вывода:

1. В бактериальную клетку проникает лишь фаговая ДНК, которая размножаясь, дает начало потомству.

2. Наследственным материалом является ДНК, определяющая не только структуру и свойства ДНК потомства, но и свойства фаговых белков.

Особенности реализации наследственной информации у прокариот.

Так как геном прокариот организован в виде кольцевидной молекулы ДНК, располагающейся непосредственно в цитоплазме клетки, этапы релализации наследственной информации не отграничены ни во времени, ни в пространстве. Транскрипция и трансляция протекают практически одновременно. По мере освобождения начала молекулы иРНК от матрицы ДНК к ней крепятся рибосомы, что ведет к началу синтеза пептидных цепей.

Этапы реализации наследственной информации у эукариот.

В процессе реализации наследственной информации у эукариот выделяют следующие этапы:

- Транскрипция - перенос генетической информации с ДНК на РНК.,

- Процессинг (Посттранскрипционные процессы) - превращения первичного транксрипта, направленные на формирование стабилизированной иРНК, способной выполнять матричную функцию,

- Трансляция - процесс сборки пептидной цепи, происходящий по программе иРНК,

- Посттрансляционные процессы.

Модель строения ДНК.

По Уотсону и Крику.

1. Молекула ДНК состоит из двух параллельных цепочек и напоминает собой длинную лестницу.

2. Основы цепочек образованы переплетенными углевод – фосфатными цепями, а основания

(буквы наследственного кода) расположены внутри, между остовами, образуя поперечные "перекладины - ступеньки".

3. Лестница из остовов и перекладин - оснований заключена в спираль.

Особенности строения молекул ДНК и РНК.

Молекула ДНК – биополимер, состоящих из 2х полинуклеотидных цепей, соединенных друг с другом при помощи водородных связей. Каждый нуклеотид включает: азотистые основания (А, Т, Г, Ц), углевод – дезоксирибозу, остаток фосфорной кислоты.

Молекула РНК – полимер, ее мономером являются нуклеотиды, которые имеют азотистые основания: А, У, Г, Ц, сахар – рибозу, три остатка фосфорной кислоты.

Отличие молекул ДНК от молекул РНК.

ДНК (!) в отличие от РНК: двуцепочечная структура, в ДНК входит сахар дезоксирибоза, в состав нуклеотидов входит тимин вместо урацила, состоит из большего числа нуклеотидов, не участвует в процессе трансляции, является генной структурой.

Правило Чаргаффа. Его значение.

Соотношение пуриновых оснований (А, Г) и пиримидиновых (Т, Ц) всегда одно и то же и составляет 1:1 или А+Г=Т+Ц. Сыграло решающую роль в расшифровке структуры ДНК Уотсоном и Криком.

Что кодируют функциональные участки ДНК?

Почему ген называют функциональной единицей ДНК?

Ген отвечает за синтез одной белковой молекулы.

Чему коллинеарны кодоны структурного гена?

Чему коллинеарны кодоны ДНК в структурном гене?

Аминокислотам полипептидных цепей.

Что такое генетический код?

Генетический код – соответствие определенной последовательности нуклеотидов определенной аминокислоте.

Перечислить свойства генетического кода.

Триплетность, вырожденность, неперекрываемость, универсальность, специфичность, однонаправленность, наличие знаков препинания в конце гена и их отсутствие внутри него.

Генетический код разных организмов обладает некоторыми общими свойствами:
1) Триплетность. Для записи любой, в том числе и наследственной информации используется определенный шифр, элементом которого является буква, или символ. Совокупность таких символов составляет алфавит. Отдельные сообщения записываются комбинацией символов, которые называются кодовыми группами, или кодонами. Известен алфавит, состоящий всего из двух символов, - это азбука Морзе. В ДНК 4 буквы – первые буквы названий азотистых оснований (А, Г, Т, Ц), значит, генетический алфавит состоит всего из 4 символов. Что же является кодовой группой, или, словом генетического кода? Известно 20 основных аминокислот, содержание которых должно быть записано генетическим кодом, т. е. 4 буквы должны дать 20 кодовых слов. Допустим, слово состоит из одного символа, тогда мы получим только 4 кодовые группы. Если же слово состоит из двух символов, то таких групп будет только 16, а этого явно мало, чтобы закодировать 20 аминокислот. Следовательно, в кодовом слове должно быть минимум 3 нуклеотида, что даст 64 (43) сочетания. Такого количества триплетных сочетаний вполне достаточно для кодирования всех аминокислот. Таким образом, кодон генетического кода – это триплет нуклеотидов.
2) Вырожденность (избыточность) – свойство генетического кода состоящее с одной стороны, в том, что он содержит избыточные триплеты, т. е. синонимы, а с другой – «бессмысленные» триплеты. Поскольку код включает 64 сочетания, а кодируются только 20 аминокислот, то некоторые аминокислоты кодируются несколькими триплетами (аргинин, серин, лейцин – шестью; валин, пролин, аланин, глицин, треонин – четырьмя; изолейцин – тремя; фенилаланин, тирозин, гистидин, лизин, аспарагин, глутамин, цистеин, аспарагиновая и глутаминовая кислоты – двумя; метионин и триптофан – одним триплетом). Некоторые кодовые группы (УАА, УАГ, УГА) вообще не несут смысловой нагрузки, т. е. являются «бессмысленными» триплетами. «Бессмысленные», или nonsense, кодоны выполняют функцию терминаторов цепей – знаков препинания в генетическом тексте – служат сигналом окончания синтеза белковой цепи. Такая избыточность кода имеет большое значение для повышения надежности передачи генетической информации.
3) Неперекрываемость. Кодовые триплеты никогда не перекрываются, т. е. всегда транслируются вместе. При считывании информации с молекулы ДНК невозможно использование азотистого основания одного триплета в комбинации с основаниями другого триплета.
4) Однозначность. Нет случаев, когда один и тот же триплет соответствовал бы более чем одной кислоте.
5) Отсутствие разделительных знаков внутри гена. Генетический код считывается с определенного места без запятых.
6) Универсальность. У различных видов живых организмов (вирусов, бактерий, растений, грибов и животных) одинаковые триплеты кодируют одни и те же аминокислоты.
7) Видовая специфичность. Количество и последовательность азотистых оснований в цепи ДНК у разных организмов различные.