Зависимость между величинами. Величины и их взаимосвязь. Предварительная подготовка. Вопросы и задания

>>Информатика: Представление зависимостей между величинами

Представление зависимостей между величинами

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других.

Примеры зависимостей :

1) время падения тела на землю зависит от первоначальной высоты;

2) давление зависит от температуры газа в баллоне;

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают физические законы и представляются в виде формул:


Это примеры зависимостей, представленных в функции пильной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую - линейной (давление прямо пропорционально температуре).

В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости величин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.

Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического.

Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом; бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы составили таблицу и нарисовали график.

"
Рис. 2.11. Табличное и графическое представление зависимости времени падения тела от высоты

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то она превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то данная модель будет меньше соответствовать формуле, а если надувной шарик, то совсем не будет соответствовать - как вы думаете, почему?)

В этом примере мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Почему? Потому что формула универсальна. Она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 2.11.

Кроме того, таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов.

Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами - законами природы. Знания физических законов позволяют производить точные расчеты, они лежит в основе современной техники.

Коротко о главном

Величина - некоторая количественная характеристика объекта.

Зависимости между величинами могут быть представлены в виде математической модели, в табличной и графической формах.

Зависимость, представленная в виде формулы, является математической моделью.

Вопросы и задания

1. а) Какие вам известны формы представления зависимостей между величинами?

б) Что такое математическая модель?

в) Может ли математическая модель включать в себя только константы?

2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками некоторой системы.

3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.

Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11

Отослано читателями из интернет-сайтов

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Регрессионного анализа

Обработка результатов эксперимента методом

При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.

В математическом анализе зависимость, например, между двумя величинами выражается понятием функции

где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной .

Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической , или вероятностной . При этом величину изменения случайного фактора Y , соответствующую изменению величины Х , можно разбить на два компонента. Первый связан с зависимостью Y от X , а второй с влиянием "собственных" случайных составляющих величин Y и X . Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X .

Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.

где – математические ожидания случайных величин X и Y .

– средние квадратические отклонения случайных величин X и Y .


Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,

y=b 0 +b 1 x 1 ,

то коэффициент корреляции будет равен ; причем знак соответствует знаку коэффициента b 1 .Если величины X и Y связаны произвольной стохастической зависимостью, то коэффициент корреляции будет изменяться в пределах

Следует подчеркнуть, что для независимых случайных величин коэффициент корреляции равен нулю. Однако коэффициент корреляции как показатель зависимости между случайными величинами обладает серьезными недостатками. Во-первых, из равенства r = 0 не следует независимость случайных величин X и Y (за исключением случайных величин, подчиненных нормальному закону распределения, для которых r = 0 означает одновременно и отсутствие всякой зависимости). Во- вторых, крайние значения также не очень полезны, так как соответствуют не всякой функциональной зависимости, а только строго линейной.



Полное описание зависимости Y от X , и притом выраженное в точных функциональных соотношениях, можно получить, зная условную функцию распределения .

Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y , мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y . Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X , которое имело место на самом деле.

Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y , так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y .

Таким образом, мы приходим к необходимости отыскания только двух функций:

(3.2)

Зависимость условной дисперсии D от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.

Зависимость условного математического ожидания M от X носит название регрессии , она дает истинную зависимость величин Х и У , лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.

Величинами являются количественные значения предметов, длин отрезков, времени, углов и т.д.

Определение. Величина - результат измерения, представленный числом и наименованием единицы измерения.

Например: 1 км; 5 ч. 60 км/ч; 15 кг; 180 °.

Величины могут быть независимыми или зависимыми одна от другой. Связь величин может быть жестко установлена (как. например, 1 дм = 10 см) или может отражать зависимость между величинами, выраженную формулой для определения конкретного численного значения (так, например, путь зависит от скорости и продолжительности движения; площадь квадрата — от длины его стороны и т. д.).

Основа метрической системы мер длины - метр - была введена в России в начале XIX века, а до этого для измерения длин использовались: аршин (= 71 см), верста (= 1067 м), косая сажень (= 2 м 13 см), маховая сажень (= 1 м 76 см), простая сажень (= 1 м 52 см), четверть (= 18 см), локоть (приблизительно от 35 см до 46 см), пядь (от 18 см до 23 см).

Как видим, было много величин для измерения длины. С вводом метрической системы мер жестко закреплена зависимость величин длины:

  • 1 км = 1 000 м; 1 м = 100 см;
  • 1 дм = 10 см; 1 см = 10 мм.

В метрической системе мер определены единицы измерения времени, длины, массы, объема, площади и скорости.

Между двумя и более величинами или системами мер тоже можно устанавливать зависимость, она зафиксирована в формулах, а формулы выведены опытным путем.

Определение. Две взаимно зависимые величины называются пропорциональными , если отношение их значений остается неизменным.

Неизменное отношение двух величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой величины. Если коэффициенты равны. То и отношения равны.

Расстояние есть произведение скорости и времени движения: отсюда вывели основную формулу движении:

где S - путь; V - скорость; t - время.

Основная формула движения — это зависимость расстояния от скорости и времени движения. Такая зависимость называется пряно пропорциональной .

Определение. Две переменные величины прямо пропорциональны, если с увеличением (или уменьшением) в несколько раз одной величины другая величина увеличивается (или уменьшается) во столько же раз; т.е. отношение соответствующих значений таких величин является величиной постоянной.

При неизменном расстоянии скорость и время связаны другой зависимостью, которая называется обратно пропорциональной .

Правило. Две переменные величины обратно пропорциональны, если с увеличением (или уменьшением) одной величины в несколько раз другая величина уменьшается (или увеличивается) во столько же раз; т.е. произведение соответствующих значений таких величин является величиной постоянной.

Из формулы движения можно вывести еще два соотношения, выражающих прямую и обратную зависимости входящих в них величин:

t = S: V - время движения прямо пропорционально пройденному пути и обратно пропорционально скорости движении (для одинаковых отрезков пути чем больше скорость, тем меньше времени требуется для преодоления расстояния).

V = S: t - скорость движения прямо пропорциональна пройденному пути и обратно пропорциональна времени движения (для одинаковых отрезков пути чем больше
времени движется предмет, тем меньшая скорость требуется для преодоления расстояний).

Все три формулы движения равносильны и используются для решения задач.

Информатика и ИКТ 10-11 класс Семакин, Информатика 10-11 класс Семакин, Моделирование зависимостей между величинами, Величины и зависимости между ними, Различные методы представления зависимостей, Математические модели, Табличные и графические модели

Величины и зависимости между ними
Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:
1) время падения тела на землю зависит от его первоначальной высоты;
2) давление газа в баллоне зависит от его температуры;
3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.
Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Рассмотрим различные методы представления зависимостей.
Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.
С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связаны три основных свойства: имя, значение, тип.
Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора π = 3,14259... . Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.
А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.
1) t (с) — время падения; Н (м) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой.
2) Р (н/м 2) — давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °С — температура газа. Давление при нуле градусов Ро будем считать константой для данного газа.
3) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) — С (мг/м 3). Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города — Р (бол./тыс.).
Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разным, поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.
Математические модели
Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.
Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню высоты), вторую — линейной.
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.
В еще более сложных задачах (пример 3 — одна из них) зависимости тоже можно представить в математической форме, но не функциональной, а иной.
Табличные и графические модели
Рассмотрим примеры двух других, не формульных, способов представления зависимостей между величинами: табличного и графического. Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?)
В этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 6.1. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично.
Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежат в основе современной техники.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В примере 1 приведена именно такая модель. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т. д.
Система основных понятий

Моделирование зависимостей между величинами

Величина -

количественная характеристика исследуемого объекта

Характеристики величины

Значение

отражает смысл величины

определяет возможные значения величины

константа

Виды зависимостей:

Функциональные

Способы отображения зависимостей

Математическая

Табличная модель

Графическая

Описание развития систем во времени - динамическая модель

Предмет: математика
Класс: 4
Тема урока: Зависимости между скоростью, длиной пройденного пути и временем
движения.
Цель: выявить и обосновать зависимости между величинами: скорость, время,
расстояние;
Задачи: способствовать развитию нестандартного мышления, умение делать выводы,
рассуждать; содействовать воспитанию познавательной активности.
Оборудование: индивидуальные карточки разных цветов, критерии оценивания,
карточка для рефлексии, круги двух цветов.
Ход урока.
1. Орг.момент.
Карточка двух цветов: желтая и синяя. Показать с помощью карточки свое настроение
в начале и конце урока.
Заполнение карточки на начало урока (Приложение 1.)
№ Утверждение
Конец урока
Начало урока
Да
Нет
Не знаю Да
Нет Не
знаю
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
2. Повторение.
­ Как найти скорость? Время? Расстояние?
­ Назовите единицы измерения величины скорости, расстояние, время.
3. Сообщение темы урока.
­ Чему будем учиться на уроке?
4. Работа в группе.
­ Соединить объекты движения (Приложение 2)
Пешеход 70км/ч
Лыжник 5км/ч

Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Проверка работ.
5. Математическая головоломка(самостоятельная работа)
­ Во сколько скорость велосипедиста меньше скорости поезда?
­ На сколько км скорость лыжника больше скорости пешехода?
­ Во сколько раз скорость автомобиля меньше скорости реактивного самолета?
­ Найди общую скорость самого скоростного движущегося средства и самого
медленного.
­ Найди общую скорость поезда велосипедиста и лыжника.
6. Самопроверка работ по критериям.
7. Физминутка.
Красный цвет квадрата­ стоим
Зеленый – идем
Желтый – хлопаем 1 раз в ладоши
8. Работа в группе. (Карточка желтого цвета) (метод Джегсо)
Задача.
Две бабы­яги поспорили, что быстроходнее ступа или помело? Одну и ту же
дистанцию в 228км баба­яга в ступе пролетела за 4ч, а баба­яга на помеле за 3ч. Что
больше, скорость ступы или помела?
9. Работа в паре «Эксперимент».
Придумать задачу на движение, используя величины: 18км/ч, 4ч, 24 км, 3ч.
Проверка работ.
10. Тест.
1.Записать формулу нахождения скорости.
2. Записать формулу нахождения времени.
3. Как найти расстояние? Запиши формулу.
4. Запиши 8 км/мин в км/ч
5. Найди время, за которое пройдет пешеход 42 км, двигаясь со скоростью 5км/ч.
6. Какое расстояние пройдет пешеход, двигаясь со скоростью 5км/ч в течение 6 часов?
11. Итог урока.
Заполнить таблицу, с какими результатами мы пришли к концу урока.
Показать карточку, которая соответствует вашему настроению.

Начало урока
Да
Нет
Приложение 1.
Конец урока
Не знаю Да
№ Утверждение
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
Соединить объекты движения.
Пешеход 70км/ч
Лыжник 5км/ч
Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Нет Не
знаю
Приложение 2.