Мы были дети 1812 года говорили. О бедных гусарах. Война не для всех

Числовой интервал

Промежуток , открытый промежуток , интервал - множество точек числовой прямой, заключённых между двумя данными числами a и b , то есть множество чисел x , удовлетворяющих условию: a < x < b . Промежуток не включает концов и обозначается (a ,b ) (иногда ]a ,b [ ), в отличие от отрезка [a ,b ] (замкнутого промежутка), включающего концы, то есть состоящего из точек .

В записи (a ,b ) , числа a и b называют концами промежутка. Промежуток включает все вещественные числа , промежуток - все числа меньшие a и промежуток - все числа большие a .

Термин промежуток используется в составе сложных терминов:

Кстати, в английском языке словом interval называется отрезок . А для обозначения понятия интервала используется термин open interval .

Литература

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Числовой интервал" в других словарях:

    От лат. intervallum промежуток, расстояние: В музыке: Интервал отношение высот двух тонов; отношение звуковых частот этих тонов. В математике: Интервал (геометрия) множество точек прямой, заключённых между точками А и В,… … Википедия

    < x < b. Промежуток не включает концов и обозначается (a,b)… … Википедия

    Промежуток, открытый промежуток, интервал множество точек числовой прямой, заключённых между двумя данными числами a и b, то есть множество чисел x, удовлетворяющих условию: a < x < b. Промежуток не включает концов и обозначается (a,b)… … Википедия

    Промежуток, или более точно, промежуток числовой прямой множество вещественных чисел, обладающее тем свойством, что вместе с любыми двумя числами содержит любое, лежащее между ними. С использованием логических символов, это определение… … Википедия

    Напомним определения некоторых основных подмножеств действительных чисел. Если, то множество называется отрезком расширенной числовой прямой R и обозначается через, то есть В случае отрезок … Википедия

    Последовательность Числовая последовательность это последовательность элементов числового пространства. Числовые пос … Википедия

    МИКРОСКОП - (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

    ГОСТ Р 53187-2008: Акустика. Шумовой мониторинг городских территорий - Терминология ГОСТ Р 53187 2008: Акустика. Шумовой мониторинг городских территорий оригинал документа: 1 Дневной оценочный уровень звука. 2 Вечерний оценочный максимальный уровень звука. 3 Ночной оценочный уровень звукового давления … Словарь-справочник терминов нормативно-технической документации

    Отрезком может называться одно из двух близких понятий в геометрии и математическом анализе. Отрезок множество точек, к … Википедия

    Коэффициент корреляции - (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

Среди множеств чисел имеются множества, где объектами выступают числовые промежутки. При указывании множества проще определить по промежутку. Поэтому записываем множества решений, используя числовые промежутки.

Данная статья дает ответы на вопросы о числовых промежутках, названиях, обозначениях, изображениях промежутков на координатной прямой, соответствии неравенств. В заключение будет рассмотрена таблица промежутков.

Определение 1

Каждый числовой промежуток характеризуется:

  • названием;
  • наличием обычного или двойного неравенства;
  • обозначением;
  • геометрическим изображением на координатой прямой.

Числовой промежуток задается при помощи любых 3 способов из выше приведенного списка. То есть при использовании неравенства, обозначения, изображения на координатной прямой. Данный способ наиболее применимый.

Произведем описание числовых промежутков с выше указанными сторонами:

Определение 2

  • Открытый числовой луч. Название связано с тем, что его опускают, оставляя открытым.

Этот промежуток имеет соответствующие неравенства x < a или x > a , где a является некоторым действительным числом. То есть на такое луче имеются все действительные числа, которые меньше a - (x < a) или больше a - (x > a) .

Множество чисел, которые будут удовлетворять неравенству вида x < a обозначается виде промежутка (− ∞ , a) , а для x > a , как (a , + ∞) .

Геометрический смыл отрытого луча рассматривает наличие числового промежутка. Между точками координатной прямой и ее числами имеется соответствие, благодаря которому прямую называем координатной. Если необходимо сравнить числа, то на координатной прямой большее число находится правее. Тогда неравенство вида x < a включает в себя точки, которые расположены левее, а для x > a – точки, которые правее. Само число не подходит для решения, поэтому на чертеже обозначают выколотой точкой. Промежуток, который необходим, выделяют при помощи штриховки. Рассмотрим рисунк, приведенный ниже.

Из вышеприведенного рисунка видно, что числовые промежутки соответствуют части прямой, то есть лучам с началом в a . Иначе говоря, называется лучами без начала. Поэтому он и получил название открытый числовой луч.

Рассмотрим несколько примеров.

Пример 1

При заданном строгом неравенстве x > − 3 задается открытый луч. Эту запись можно представить в виде координат (− 3 , ∞) . То есть это все точки, лежащие правее, чем - 3 .

Пример 2

Если имеем неравенство вида x < 2 , 3 , то запись (− ∞ , 2 , 3) является аналогичной при задании открытого числового луча.

Определение 3

  • Числовой луч. Геометрический смысл в том, что начало не отбрасывается, иначе говоря, луч оставляет за собой свою полноценность.

Его задание идет с помощью нестрогих неравенств вида x ≤ a или x ≥ a . Для такого вида приняты специальные обозначения вида (− ∞ , a ] и [ a , + ∞) , причем наличие квадратной скобки имеет значение того, что точка включена в решение или в множество. Рассмотрим рисунок, приведеный ниже.

Для наглядного примера зададим числовой луч.

Пример 3

Неравенство вида x ≥ 5 соответствует записи [ 5 , + ∞) , тогда получаем луч такого вида:

Определение 4

  • Интервал. Задавание при помощи интервалов записывается при помощи двойных неравенств a < x < b , где а и b являются некоторыми действительными числами, где a меньше b , а x является переменной. На таком интервале имеется множество точек и чисел, которые больше a , но меньше b . Обозначение такого интервала принято записывать в виде (a , b) . Наличие круглых скобок говорит о том, что число a и b не включены в это множество. Координатная прямая при изображении получает 2 выколотые точки.

Рассмотрим рисунок, приведенный ниже.

Пример 4

Пример интервала − 1 < x < 3 , 5 говорит о том, что его можно записать в виде интервала (− 1 , 3 , 5) . Изобразим на координатной прямой и рассмотрим.

Определение 5

  • Числовой отрезок. Данный промежуток отличается тем, что он включает в себя граничные точки, тогда имеет запись вида a ≤ x ≤ b . Такое нестрогое неравенство говорит о том, что при записи в виде числового отрезка применяют квадратные скобки [ a , b ] , значит, что точки включаются во множество и изображаются закрашенными.

Пример 5

Рассмотрев отрезок, получим, что его задание возможно при помощи двойного неравенства 2 ≤ x ≤ 3 , которое изображаем в виде 2 , 3 . На координатной прямой данный точки будут включены в решение и закрашены.

Определение 6 Пример 6

Если имеется полуинтервал (1 , 3 ] , тогда его обозначение можно в виде двойного неравенства 1 < x ≤ 3 , при чем на координатной прямой изобразится с точками 1 и 3 , где 1 будет исключена, то есть выколота на прямой.

Определение 7

Промежутки могут быть изображены в виде:

  • открытого числового луча;
  • числового луча;
  • интервала;
  • числового отрезка;
  • полуинтервала.

Чтобы упростить процесс вычисления, необходимо пользоваться специальной таблицей, где имеются обозначения всех видов числовых промежутков прямой.

Название Неравнство Обозначение Изображение
Открытый числовой луч x < a - ∞ , a
x > a a , + ∞
Числовой луч x ≤ a (- ∞ , a ]
x ≥ a [ a , + ∞)
Интервал a < x < b a , b
Числовой отрезок a ≤ x ≤ b a , b

Полуинтервал

Ответ - Множество (-∞;+∞) называется числовой прямой, а любое число - точкой этой прямой. Пусть a - произвольная точка числовой прямой и δ

Положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а.

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным. Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Числовым промежутком называется связанное множество действительных чисел, то есть такое, что если 2 числа принадлежат этому множеству, то все числа заключенные между ними также принадлежат этому множеству. Существует несколько в некотором смысле различных типов непустых числовых промежутков: Прямая, открытый луч, замкнутый луч, отрезок, полуинтервал, интервал

Числовая прямая

Множество всех действительных чиселназывают ещё числовой прямой. Пишут.

На практике нет необходимости различать понятие координатной или числовой прямойв геометрическом смысле и понятие числовой прямой, введённое настоящим определением. Поэтому эти разные понятия обозначаются одним и тем же термином.

Открытый луч

Множество чисел таких, чтоилиназывают открытым числовым лучом. Пишутили соответственно:.

Замкнутый луч

Множество чисел таких, чтоилиназывают замкнутым числовым лучом. Пишутили соответственно:.

Множество чисел таких, чтоназывают числовым отрезком.

Замечание. В определении не оговаривается, что . Предполагается, что случайвозможен. Тогда числовой промежуток превращается в точку.

Интервал

Множество чисел , таких чтоназывают числовым интервалом.

Замечание. Совпадение обозначений открытого луча, прямой и интервала не случайно. Открытый луч можно понимать как интервал, один из концов которого удалён в бесконечность, а числовую прямую - как интервал, оба конца которого удалены в бесконечность.

Полуинтервал

Множество чисел , таких чтоилиназывают числовым полуинтервалом.

Пишут или, соответственно,

3.Функция.График функции. Способы задания функции.

Ответ - Если даны две переменные х и y, то говорят, что переменная y является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого значения ходнозначно определить значение у.

Запись F = у(х) означает, что рассматривается функция, позволяющая для любого значения независимой переменной х (из числа тех, которые аргумент х вообще может принимать) находить соответствующее значение зависимой переменной у.

Способы задания функции.

Функция может быть задана формулой, например:

у = 3х2 – 2.

Функция может быть задана графиком. С помощью графика можно установить, какое значение функции соответствует указанному значению аргумента. Обычно это приближённое значение функции.

4.Основные характеристики функции: монотонность, четность, периодичность.

Ответ - Периодичность Определение. Функция f называется периодичной, если существует такое число
, что f(x+
)=f(x), для всех xD(f). Естественно, что таких чисел существует бесчисленное множество. Наименьшее положительное число ^ Т называется периодом функции. Примеры. А. у = соs х, Т = 2. В. у = tg х, Т =. С. у = {х}, Т = 1. D. у =, эта функция не является периодической. Четность Определение. Функция f называется четной, если для всех х из D(f) выполняется свойство f(-х) = f(х). Если f(-х) = -f(х), то функция называется нечетной. Если ни одно из указанных соотношений не выполняется, то функция называется функцией общего вида. Примеры. А. у = соs (х) - четная; В. у = tg (х) - нечетная; С. у = {х}; y=sin(x+1) – функции общего вида. Монотонность Определение. Функция f: X -> R называется возрастающей (убывающей), если для любых
выполняется условие:
Определение. Функция Х ->R называется монотонной на X, если она на X возрастающая или убывающая. Если f монотонна на некоторых подмножествах из X, то она называется кусочно-монотонной. Пример. у = cos х - кусочно-монотонная функция.