Животные которые вырабатывают электричество. Сколько электричества вырабатывает человек. Электрические токи в природе

Животные организмы имеют два вида генераторов электричества: внутренние и наружные. К внутренним относятся мозг и сердце, к наружным пять органов чувств (зрение, слух, вкус, обоняние и осязание).
В головном мозге биотоки вырабатываются в том месте, где располагается ретикуло-эндотелиальная формация. От головного мозга биотоки поступают в спинной мозг, а оттуда по нервным сплетениям направляются ко всем органам и тканям. Далее очень мелкие нервы проникают во все органы грудной и брюшной полости, в кости, мышцы, сосуды, связки туловища и конечностей. Нервные ткани являются специфическими проводниками биотоков. Нервы играют в организме ту же роль, которую играют металлические (алюминиевые, медные) провода с изоляцией в электротехнике. В виде тончайшей сеточки они пронизывают все внутренние органы и мягкие ткани организма. В конце своего пути биотоки покидают нервные окончания и переходят в межклеточное пространство неспецифических проводников электричества внутренних органов, мышц, сосудов, кожи и т. д. Все ткани человеческого тела состоят на 95% из воды с растворенными в ней солями. Поэтому живые ткани являются прекрасными проводниками электричества.
В сердце биотоки генерируются в синусовом узле. От него концентрированный поток электронов проходит по пучку Гисса, нервные ветви которого заканчиваются клетками Пуркинье, диффузно расположенными в миокарде. Клетки Пуркинье передают биоимпульсы к мышечным клеткам сердца. Под действием биоимпульсов происходит сжатие сердечной мышцы - систола. Далее сердечные биотоки покидают пределы сосредоточения и «растекаются» по всему телу. Благодаря этому электрокардиограф фиксирует наличие биотоков на контактных металлических пластинках, которые соприкасаются с кожей грудной клетки, ног и рук.
Диастола (то есть расширение сердца и увеличение объёма полостей желудочков и предсердий) происходит благодаря резиноподобного действия толстых стенок сердечных мышц. Если взять мячик из мягкой резины (или из поролона) и сжать его кистью руки, то его объём можно уменьшить в 5 раз. Для сердца это будет сжатие (систола) от действия электрического импульса на мышечные волокна, который вырабатывается в собственной сердечной «электростанции». После того, как кисть руки кончит сжимать резиновый мячик, разожмётся, моментально мячик увеличивается в размере в 5 раз по причине эластичности (как у резины). Это этап расправления резинового меча, аналогичный сердечной диастоле. Диастола сердца происходит благодаря «резиновой» эластичности миокарда, а не благодаря повторному воздействию электрических импульсов на миокард с целью насильственного увеличения объёма сердца. Инфаркт сердца – это возникновение ограниченного, спазмированного участка сердечной мышцы, который из-за склероза сосудов внутри этого участка, потерял свою эластичность и не увеличил свой объём после прекращения сжатия, не расширился как резинка.
Естественная смерть старых людей происходит по причине прекращения выделения электрической энергии «электростанцией» мозга или «электростанцией» сердца. Исследования электрофизиологов показали, что ретикуло-эндотелиальная формация вырабатывает электричества в ватах в сутки при бодрствовании человека (то есть во время работы в дневное время суток) в 5 – 10 раз больше, чем её генерируется в мозгу спящего человека (то есть ночью). Хорошо известно, что основное количество электрической энергии тратится на работу мышц конечностей и туловища и на интеллектуальную работу мозга. Если измерять электрическую энергию, которую вырабатывает ретикуло-эндотелиальная формация (в ватах за сутки), то на протяжении жизни (например, на протяжении 80 лет) её количество меняется. Самое высокое количество энергии вырабатывает мозг человека в юношеском и молодом возрасте, то есть в возрасте 18 – 27 лет. В это время мышечная и интеллектуальная сила мужчин и женщин самая высокая. Самое низкое количество электроэнергии вырабатывается внутри мозга детей до года и стариков после 70 лет. Вот почему дети и старики ослаблены в физическом отношении и нуждаются в посторонней помощи. Также хорошо известно, что дети и старики ослаблены и в интеллектуальном отношении.
В 89 % случаев смерть старого человека происходит по причине инсульта, инфаркта, раковой опухоли или от наличия другой болезни (пневмонии, диабета, цирроза печени и так далее). Но в 11 % случаев смерть старого человека происходит от старости, то есть – по естественным причинам. Что это за причины? Естественная смерть старых людей происходит по причине прекращения выделения электрической энергии «электростанцией» мозга или «электростанцией» сердца. Нервные клетки электрических генераторов в мозгу и в сердце стареют и перестают функционировать, перестают вырабатывать электрические потенциалы. Возникает или остановка дыхания, или остановка сердцебиения, что неизбежно приводит к гибели всего организма. Естественная смерть старого человека от остановки дыхания происходит в 24 % случаев, а в 76 % случаев смерть происходит от прекращения деятельности электростанции сердца, от остановки сердца. Механизм смерти стариков от остановки дыхания следующий. Из ретикуло-эндотелиальной формации поток биоимпульсов поступает в продолговатый мозг, откуда дыхательный центр направляет электрические импульсы дыхательным мышцам грудной клетки. Происходит увеличение объёма грудной клетки и лёгких, то есть – происходит вдох, и воздух закачивается а в легочное «бронхиальное дерево». Далее следует выдох. Электрические импульсы поступают к мышцам – антагонистам, которые уменьшают объём грудной клетки и лёгких, то есть – происходит выдох, происходит выталкивание воздуха из легочного «бронхиального дерева». У старых людей отмирают клетки ретикуло-эндотелиальной формации мозга, и генерация электрических токов в (количественном отношении, в ватах в сутки) прогрессивно уменьшается. Смерть – это полное прекращение работы ретикуло-эндотелиальной формации мозга. При этом в первую очередь останавливается дыхание, так как оно осуществляется благодаря работе дыхательных мышц грудной клетки. Как только дыхательный центр мозга перестаёт подавать биоимпульсы к дыхательным мышцам, возникает смерть от удушья.
Если у какого-то человека быстрее стареет генератор электричества в сердце (который так же состоит из нескольких тысяч нервных клеток), то смерть происходит от прекращения выработки электричества внутри «электростанции» сердца. Генератор электричества в сердце прекращает «выстреливать» электрические токи, а поэтому происходит остановка сердечной деятельности. Не происходит сердечная систола, возникает остановка сердечных сокращений и организм умирает.
Спортивная медицина доказывает, что ежедневные и не слишком интенсивные занятия любительским спортом поддерживают высокий тонус ретикуло-эндотелиальной формации и сердечная «электростанция» намного дольше (до 100 и более лет) выделяет электрические импульсы. Спортсмен усилием воли заставляет напряженно работать мышцы, а для их работы необходимо большое количество электрической энергии, которые производятся в мозгу и в сердце их генераторами электричества. Тренировки заставляют работать на полную мощность «электростанции», которые расположены внутри мозга и сердца, заставляют и в старости сохранять мощную генерацию электричества. Регулярные мышечные усилия заставляют выделять электричество в «электростанциях» мозга и сердца достаточно долгое время (100 лет и более). Чрезмерное физическое перенапряжение приводит к истощению генераторов электричества в мозгу и сердце, что приближает момент остановки их деятельности, что предрекает быструю гибель организма. Практическая медицина доказывает, что дольше живёт тот человек, который занимается не умственным трудом, а ежедневным, умеренным физическим трудом! Современные люди, особенно городские жители, мало двигаются, редко делают интенсивную физическую работу, а поэтому их «биологические электростанции» быстро дряхлеют. Ежедневный спорт в лесу или на открытом стадионе (где повышенно содержание кислорода) – это залог долгой жизни.

Внутри глаза также имеется специфический генератор биотоков в виде сетчатки. Когда свет попадает на сетчатку глаза, возникает поток электронов, который дальше распространяется по зрительному нерву и передается в кору головного мозга. Благодаря выработке биотоков сетчаткой глаза человек получает возможность видеть окружающий мир. Зрение дает человеку более 80% информации.
Внутреннее ухо является генератором электроимпульсов, которые возникают при воздействии звуковых волн. Чувствительные слуховые клетки кортиева органа расположены на основной мембране внутреннего уха (улитка) и приходят в возбуждение при колебаниях основной мембраны. Из улитки биотоки проходят по слуховому нерву в продолговатый мозг, а дальше в кору головного мозга.
Кожные рецепторы воспринимают прикосновение, давление, болевое раздражение, холодовое и тепловое воздействие. При гистологическом исследовании в коже обнаружено большое количество нервных окончаний в виде кисточек, корзинок, розеток, окруженных капсулой. Тактильную чувствительность воспринимают клетки Меркеля, Фатера-Пачини и тельца Мейснера. Свободные окончания осевых цилиндров в виде заострений и пуговчатых утолщений воспринимают болевую чувствительность. Колбы Краузе, тельца Мейснера и Руффини воспринимают чувство холода и тепла. На 1 квадратном сантиметре кожи находится 200 болевых рецепторов, 20 тактильных, 12 холодовых и 2 тепловых. Воздействие давления, тепла, холода, укола и других видов травмы на эти кожные рецепторы приводит к возникновению биоимпульсов, которые по мелким и крупным нервным стволам передаются в спинной мозг, далее в продолговатый мозг и кору полушарий. Кожные рецепторы относятся к самым мелким генераторам электричества в организме человека.
Обонятельные нервы берут свое начало на так называемых митральных клетках обонятельной луковицы. Воздействие пахучих веществ на эти клетки приводит к возникновению биоимпульсов. Нервные обонятельные клетки заканчиваются в грушевидной извилине коры головного мозга.
Вкусовые рецепторы расположены на языке и представлены микроскопическими «вкусовыми почками», которые объединяются во вкусовые сосочки. При воздействии химических веществ вкусовые сосочки языка вырабатывают биоимпульс, т.е. вкусовые сосочки играют роль генераторов электрического тока. Вкусовые нервы относятся к волокнам лицевого, языкоглоточного и блуждающего нервов. По ним биоимпульсы проходят к таламусу и заканчиваются в опекулярной области коры головного мозга. В этой области возникают электропотенциалы после раздражения вкусовых рецепторов химическими веществами.
Если все электричество, которое вырабатывается перечисленными органами (головным мозгом, сердцем, пяти органами чувств) на протяжении суток принять за 100%, то 50% этого количества вырабатывает сердце, 40% - мозг, и только 10% - органы чувств (сетчатая оболочка глаза – 7%, внутреннее ухо – 2%, и 1% - тактильные, обонятельные и вкусовые рецепторы). Конечно, если человек перенес сильную травму, то тогда болевые рецепторы (тактильные органы чувств) могут выработать до 90% всего количества биоимпульсов, выработанных человеком за сутки.
Из сказанного можно сформулировать второй закон биоэлектрофизики: в организме человека имеется 7 биологических генераторов биотоков. Физиологические исследования нервных тканей давно установили факт существования двух различных по функциональной деятельности нервных клеток: эфферентных и афферентных. В эфферентной электрической цепи биотоки распространяются от центра (мозга) к периферии (кожным покровам), проходя через все внутренние органы и ткани. В афферентных путях биотоки распространяются от внешних генераторов электричества (органов чувств) к центральной нервной системе (сначала к спинному, а потом – к головному мозгу). Это положение относится ко второму закону биоэлектрофизики.

Доминик Стэтхем

Фото ©depositphotos.com/Yourth2007

Electrophorus electricus ) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными , а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными .

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A).

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз . Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia ) и африканской рыбы аба-аба (Gymnarchus ). Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, - указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K +) поступают в клетку, а три иона натрия (Na +) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K +) и натрия (Na +) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

У некоторых рыб есть органы, вырабатывающие электрический ток. О таких рыбах знали еще в глубокой древности. Электрического сома изображали на гробницах в Древнем Египте 6 тыс. лет назад. Вероятно, уже тогда знали о лечебном действии его электрических разрядов. Прикладывать электрическую рыбу к телу больного рекомендовал и знаменитый древнеримский врач Гален.

Электрические органы этого сома, расположенные почти по всей длине тела рыбы, дают разряды напряжением до 360 В. А органы электрических скатов, живущих в тропических и субтропических водах океанов, производят целую серию разрядов, до сотни подряд, "напряжением до 220 В. Самые мощные электрические органы у электрических угрей, обитающих в реках тропической Америки. Их разряды достигают напряжения 650 В и силы около 2 А. Сила этих разрядов постепенно уменьшается до тех пор, пока они не прекращаются совсем. Для их "зарядки" требуется время. Сигналы к генерации электричества поступают в электрические органы по нервам.

Очень сильные разряды электрического ската торпедо защищают его от хищников - акул и осьминогов - и помогают скату охотиться за мелкой рыбой, которую эти разряды парализуют или даже убивают.


Расположение электрических органов у электрического ската

Электрические органы с мощными разрядами построены по принципу вольтова столба и служат для защиты и нападения. Разряды действуют на расстоянии до 6 м, парализуя рыб, моллюсков, ракообразных и других водных животных. Электрической рыбе остается только проглотить жертву.

Другая группа электрических рыб, например африканские мормирусы, испускает серию низковольтных импульсов, создавая вокруг себя электрическое поле. По искажению этого поля при попадании в него любого предмета рыбы находят в мутной воде добычу, особей противоположного пола или обнаруживают преграду.

Электрические органы в большинстве случаев состоят из особых клеток - электроцитов, происшедших в процессе эволюции из мышечных клеток.

Человечеству стоит заранее готовиться к будущему энергетическому голоду. Во-первых, истощаются производящие электричество ресурсы. Во-вторых, мы не можем в тех же темпах его производить дальше, иначе настанет тепловая катастрофа планетарного масштаба. Вероятно, второй момент нас будет все еще очень мало заботить, потому что наш мир на все 100% зависит от энергетики. Отказаться от нее хотя бы на половину будет означать смерть цивилизации. Поэтому мы будем до последнего издыхания искать новые источники электричества.

Через пол века на планете закончится нефть. Еще через пол века не станет газа. И вот только тогда мы перейдем на новый уровень развития, характеризующийся новыми технологиями и возможностями. В принципе, мы могли бы это сделать уже давно, но техническая революция откладывается из-за сугубо меркантильных интересов, о чем речь пойдет немного позже. Что это будут за источники, какова будет их природа и потенциал - со всем этим мы попытаемся разобраться в данной главе.

Начнем с самих себя. Ни для кого не секрет, что в идеале наш организм мог бы дать нам возможность обеспечивать нас же самыми элементарными электрическими ресурсами. Конечно, речь не идет о подогреве чайника или работы лампового телевизора, но значительная часть электроприборов могла бы получать энергию прямо от нашего организма.

Обычно в этом ракурсе понимается наша возможность с помощью физических движений вырабатывать электричество в генераторах. В этом нет ничего удивительного, когда осознаешь насколько человек силен и энергичен в своих действиях. Сила и выносливость его мышц вполне подходит для выработки электроэнергии, что особенно актуально в век приборов, которым нужно все меньше этой самой электроэнергии. В программе «Необъяснимо, но факт» можно было наблюдать изобретателя Мартына Нунупарова, который демонстрировал целый ряд приборов, которые работают от физической силы человека:

Мартын Нунупаров - заведующий лабораторией микроэлектроники института общей физики РАН; изобретатель; обладатель гран-при конкурса русский инноваций 2004 года.

— В приборах может появляться электричество, которое получается при механическом нажатии на специальную клавишу. Это изобретение, которое мы сделали, позволяет делать массу электронных приборов, для которых не нужно ни розетки, ни батарейки, и которые могут служить вечно.

Ученый предлагает использовать целый ряд изобретений, способных генерировать ток практически из любого человеческого действия, будь то даже вдоха, энергия которого равна 1Вт. По его словам, даже энергию ходьбы человека и взмаха руками во время этого процесса достаточно, чтобы питать лампу 60Вт.

Но еще дальше ушли некоторые другие изобретатели, которые, похоже, решили из человека сделать настоящую электрическую станцию. К примеру, группа американских ученых их Georgia Institute of Technology создала действующий прототип наногенератора из оксида цинка, который вживляется в человеческое тело и получает из него ток, используя наши движения. В будущем предлагается оснащать людей множеством таких наноприборов, чтобы мы могли в любой момент получать необходимую энергию.

Все это, по большей части, лишь предложения к массовому использованию. Однако в мире уже создано не мало прецедентов, которые в повседневной жизни используют человека, как источника тока. Например, в одном из вокзалов технологичной Японии стоят вырабатывающие электричество турникеты. Каждый пассажир, а их многие тысячи ежедневно, проходит через такую систему и питает весь терминал дополнительным чистым источником электричества. Конечно, о больших объемах получаемой энергии говорить не приходится. Она едва ли обеспечивает и несколько процентов потребности, но сам прецедент заслуживает не только внимания, но и уважения. Возможно, по такому принципу когда-нибудь будут работать многие предприятия.

Вероятно, за такими составляющими, как Нунупаров и его изобретения, стоит будущее человечества. Однако все это больше относится к тому, что было всегда известно, но просто мало кто понимал, как правильно получать и использовать электричество из физических действий человека. На самом деле, электричество мы можем генерировать напрямую, избегая переходных систем импульс-движение и движение-генератор. Дело в том, что сама природа любого живого организма, а не только человека, это замкнутая электрическая система, в которой есть свои генераторы, линии передач и потребители. Уж не попробовать ли качать ток прямо из нашего нутра?

Такая идея изначально витала только в умах фантастов. Казалось, это просто невозможно. Вспомним культовый фильм «Матрица», где электричество вырабатывали человеческие мозги, подключенные в одну сплошную генераторную станцию. Но мир движется вперед и основная роль его движения заключается в том, чтобы делать невозможное повседневной реальностью. Однако сначала стоит разобраться с причинами того, почему человек может быть использован в качестве источника энергии и откуда она в нем берется.

Дело в том, что у человека есть все необходимые звенья любой полной электрической цепи. Во-первых, это генераторы. Они делятся на внутренние(сердце и мозг) и внешние(органы чувств). В мозгу ток образуется в месте ретикуло-эндотелиальной формации, откуда по нервам распространяется по всему организму в виде биотоков. В сердце биотоки возникают в синатриальном узле, откуда они через посредников передают импульсы сердечной мышце, а затем растворяются в теле. Именно благодаря этому узлу сердце может какое-то время биться даже вне тела.

В глазах ток возникает в виде потока электронов по нервам к мозгу от сетчатки. Во внутреннем ухе формируется электричество под действием звуковых волн. Физическое и температурное воздействие на рецепторы кожи формирует в них биотоки, которые направляются к головному мозгу на обработку. Это самые мелкие генераторы тока в человеческом организме. В носу электричество вырабатывают митральные клетки, воздействие запаха на которых генерирует биоимпульсы. Во роту под воздействием химических веществ ток вырабатывают вкусовые сосочки.

Если суммировать все вырабатываемое нами внутреннее электричество, то окажется, что более половины берет на себя сердце. Десятую часть тока генерируют органы чувств, а все остальное, около 40%, производит головной мозг. Однако при больших болях органы чувств, болевые рецепторы, могут давать абсолютное большинство всего электричества в организме. В общем, все это не удивительно, если понимать, что биотоки являются главным движущим и поддерживающим живое существо фактором.

Некоторые умы упорно решают задачу, как взять хотя бы часть всего внутричеловеческого тока и использовать его для нужд самого человека. Вероятно, это не даст серьезных сдвигов в уровне развития цивилизации, но в чем-то может сыграть свою положительную роль. Так, к примеру, внутреннее электричество могло бы питать вживленные чипы человека будущего или искусственные органы. Но еще дальше уходят идеи искусственной культивации тех же рецепторов боли в промышленных масштабах, чтобы из них вырабатывать ток в больших объемах. Бесспорно, эта идея далекого будущего. Но некоторые современные достижения выглядят не менее фантастично.

Так, в японской лаборатории Matsushita Electric научились получать ток напрямую из крови человека. Дело в том, что она полна электронов от ферментного окисления глюкозы. А тот же Нунупаров предлагает использовать для получения электричества не только наши движения, но и те лишние отложения жировых тканей, что нас так сильно раздражают у зеркала и на фотографиях. По его подсчетам, одного грамма такого жирка хватит на подзарядку аж четырех батареек АА. Без труда можно подсчитать, что брюхо среднего европейского мужчины может питать до 40 тыс. батареек, что представляет из себя внушительный запас электричества. Остается только решить, насколько выгодней производить человеку жир для энергетических целей?

Но все вышеописанное не идет ни в какие сравнения с тем, как собираются решить энергетический вопрос в Лондонском музее науки. Как и полагается настоящим деятелем науки, руководство музея решило найти консенсус между тремя миллионами посетителей в год и огромными счетами за электроэнергию. В отличие от безобидных японских турникетов, которые вырабатывают электричество, когда сквозь них проходят клиенты железнодорожной станции, англичане решили использовать обед посетителей. Впрочем, как и завтрак и ужин. В общем, все, что осталось в кишечнике.

Кто-то мозговитый решил, что слишком большое расточительство выкидывать содержимое унитазов в сточные воды, ведь это содержимое творят три миллиона человек в год. Это ж сколько можно добра сделать! Было подсчитано, если грамотно использовать данные продукты жизнедеятельности, то из счетов за электроэнергию можно будет вычеркнуть около 15000 лампочек, которые смогут «освещать», посетители музейных унитазов.

Нечто подобное придумали сингапурские ученые. Они решили ограничиться небольшим - мочой. Группа Института биотехнологий и нанотехнологий изобрела бумагу, состоящую из вымоченного в дихлориде меди бумажного слоя между полосками магния и меди. Когда на это чудо попадает всего 0,2 мл. мочи, вырабатывается 1,5-вольтовое напряжение с солидной мощностью. Об использовании такой батареи в промышленных генерациях электричество никто пока не говорит. Изначально стояла цель создать медицинские приборы, способные самостоятельно делать анализ мочи без посторонних источников энергии.

В морях и океанах есть существа, обладающие удивительными и поразительными способностями вырабатывать электричество. Одним из таких созданий является электрический скат.

Как скаты вырабатывают электричество?

Все благодаря специальным электрическим органам, находящимся внутри этих существ. Они возникли как у пресноводных, так и у морских рыб. Известно, что такие же органы имели некоторые их ископаемые предки. Современная ихтиология насчитывает более 300 видов разных рыб, имеющих электрические органы. Эти органы представляют собой видоизмененные мышцы. У тех или иных «электрорыб» они отличаются своим местоположением. Например, у скатов они представляют собой почковидные образования.

Если говорить простым языком, то электрические органы скатов – это своеобразные мини-генераторы, вырабатывающие весьма приличный заряд тока. Этого заряда хватит на то, чтобы обездвижить не только рыбу, но и человека! Есть специалисты, которые утверждают, что скаты могут за один раз вырабатывать напряжение в 300 вольт. Электрические органы располагаются в спинной и брюшной частях тела этой «электрорыбы». Их можно сравнить с гальванической или электрической батареей.

Каждый из таких органов состоит из многочисленных электрических пластин, собранных в столбики. Это видоизмененные нервные, мышечные и железистые клетки. Между их мембранами и генерируется разность потенциалов. Электрические органы иннервируются специальными ветвями языкоглоточного, лицевого и блуждающего нервов, которые, в свою очередь, подходят к электроотрицательной стороне вышеупомянутых пластинок.

В каких случаях скаты вырабатывают электричество?

Эти создания используют свои уникальные электрогенные свойства в двух случаях: если им угрожает какая-либо опасность, или во время охоты (поиска добычи). Любопытно, что сами скаты не страдают от выпускаемого ими электрического разряда. Это объясняется специальной «изоляцией», которой наградила их матушка-природа. Кстати, электрогенными свойствами обладают не только электрические скаты, но и некоторые другие их виды, не относящиеся к семейству электрических: органы этих существ расположены только на хвосте.

Те рыбаки, которые имели неосторожность на себе почувствовать всю силу воздействия этой «электрорыбы», оставались крайне недовольными. По их словам, удар током от электрического ската сопровождается продолжительной сонливостью, дрожью в ногах, потерей чувствительности, онемением верхних конечностей.

Любопытно, что такое удивительное электрогенное свойство этих созданий успешно эксплуатировалось еще в Древней Греции. Греки использовали этих чудо-рыб для обезболивания во время какого-либо оперативного вмешательства, либо при деторождении.


Внимание, только СЕГОДНЯ!

Все интересное

С древнейших времен люди наблюдали электрические явления, однако постичь, описать и реализовать их получилось относительно недавно. А началась история открытия электричества и его импульсов с исследованием природного «солнечного камня» -…

Любой человек, не особенно посвященный в область электротехники, наслышан о том, что различают ток постоянный и ток переменный. Специалисты говорят еще о пульсирующем электрическом токе. Где, в каких областях энергетики используют тот и иной ток, и…

Самая крупная река в мире – Амазонка. Она же признана и самой опасной. Причиной тому является обилие различного рода фауны, опасной для жизни человека. Хищники АмазонкиАмазонка – южноамериканская река, имеющая протяженность 6992,06 км. Глубина ее…

Кровля – это часть архитектурного образа здания. По сути, это важнейший защитный элемент конструкции строения. От качества крыши зависит не только долговечность постройки, но и внешний вид дома, а также комфортность проживания в нем. Поэтому выбор…

Далеко не каждый может позволить себе установить в своем доме или квартире настоящий камин. Отличной заменой ему является камин электрический - теплый, яркий, красивый, отличающийся от настоящего лишь тем, что вместо огня в нем «пылает»…