Валентность химических элементов определение валентности по формулам. Валентность. Определение валентности. Определение валентности в бинарном соединении

Инструкция

Для примера можно использовать два вещества – HCl и H2O. Это хорошо известные всем и вода. В первом веществе содержится один атом водорода (H) и один атом хлора (Cl). Это говорит о том, в данном соединении они образуют одну , то есть удерживают возле себя один атом. Следовательно, валентность и одного, и другого равна 1. Так же просто определить валентность элементов, составляющих молекулу воды. Она содержит два водорода и один атом кислорода. Следовательно, атом кислорода образовал две связи для присоединения двух водородов, а они, в свою очередь, по одной связи. Значит, валентность кислорода равна 2, а водорода – 1.

Но иногда приходится сталкиваться с вещества ми более сложными по и свойствам составляющих их атомов. Существует два типа элементов: с постоянной ( , водород и др.) и непостоянной валентность ю. У атомов второго типа это число зависит от соединения, в состав которого они входят. В качестве примера можно привести (S). Она может иметь валентности 2, 4, 6 и иногда даже 8. Определить способность таких элементов, как сера, удерживать вокруг себя другие атомы, немного сложнее. Для этого необходимо знать других составляющих вещества .

Запомните правило: произведение количества атомов на валентность одного элемента в соединении должна совпадать с таким же произведением для другого элемента. Это можно проверить вновь обратившись к молекуле воды (H2O):
2 (количество водорода) * 1 (его валентность ) = 2
1 (количество кислорода) * 2 (его валентность ) = 2
2 = 2 – значит все определено верно.

Теперь проверьте этот алгоритм на более сложном веществе, например, N2O5 – оксиде . Ранее указывалось, что кислород имеет постоянную валентность 2, поэтому можно составить :
2 (валентность кислорода) * 5 (его количество) = Х (неизвестная валентность азота) * 2 (его количество)
Путем несложных арифметических вычислений можно определить, что валентность азота в данного соединения равна 5.

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.

Инструкция

Примите к сведению, что валентность атомов одних элементов постоянна, а других - переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну . Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера - элемент с переменной валентностью.

Заметьте, что в молекулах водородных соединений вычислить валентность очень просто. Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.

Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.

Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V - это валентность атомов элементов, а К - количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.

Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.

Видео по теме

Валентность – один из основных терминов, употребляемых в теории химического строения. Это понятие определяет способность атома образовывать химические связи и количественно представляет собой число связей, в которых он участвует.

Инструкция

Валентность (от лат. valentia – «сила») – показатель способности атома присоединять к себе другие атомы, образуя с ними химические связи внутри молекулы. Общее число связей, в которых может участвовать атом, равняется числу его неспаренных электронов. Такие связи называются ковалентными.

Неспаренные электроны – это свободные электроны внешней оболочки атома, которые соединяются в пары с внешними электронами другого атома. При этом каждая такая пара называется электронной, а такие электроны – валентными. Исходя из этого, валентности может звучать так: это число электронных пар, по которым данный атом связан с другими атомами.

Максимальный показатель валентности химических элементов одной группы периодической системы, как правило, равен порядковому номеру группы. В различных атомы одного элемента могут иметь разную валентность. Полярность образующихся не учитывается, поэтому валентность не имеет знака. Она не может быть ни нулевой, ни отрицательной величиной.

Количественной любого химического элемента принято считать число одновалентных атомов водорода или двухвалентных атомов кислорода. Однако при определении валентности можно использовать и другие элементы, валентность которых точно известна.

Иногда понятие валентности отождествляют с понятием «степень окисления», однако это неверно, хотя в некоторых случаях эти показатели совпадают. Степень окисления – формальный термин, означающий возможный заряд, который получил бы атом, если бы его электроны в электронных перешли к более электроотрицательным атомам. При этом степень окисления выражается в единицах заряда и может иметь знак, в отличие от валентности. Этот термин получил распространение в неорганической , поскольку в неорганических соединениях судить о валентности. Валентность же используется в органической химии, поскольку большинство органических соединений имеет молекулярное строение.

Видео по теме

Это способность атома вступать во взаимодействие с другими атомами, образуя с ними химические связи. В создание теории валентности внесли большой вклад многие ученые, прежде всего, немец Кекуле и наш соотечественник Бутлеров. Электроны , которые принимают участие в образовании химической связи, называют валентными.

Вам понадобится

  • Таблица Менделеева.

Инструкция

Вспомните атома. Он нашей Солнечной системе: в центре располагается массивное ядро («звезда»), а вокруг него вращаются электроны (« »). Размеры ядра, хотя в нем сосредоточена практически вся масса атома, ничтожно малы по сравнению с расстояние до электронных орбит. Какие из электронов атома легче всего вступят во взаимодействия с электронами других атомов? Нетрудно понять, что те, которые находятся дальше всего от ядра, на внешней электронной оболочке.

Уровень знаний о строении атомов и молекул в XIX веке не позволял объяснить причину, по которой атомы образуют определенное число связей с другими частицами. Но идеи ученых опередили свое время, а валентность до сих пор изучается как один из основных принципов химии.

Из истории возникновения понятия «валентность химических элементов»

Выдающийся английский химик XIX века Эдвард Франкленд ввел термин «связь» в научный обиход для описания процесса взаимодействия атомов друг с другом. Ученый заметил, что некоторые химические элементы образуют соединения с одним и тем же количеством других атомов. Например, азот присоединяет три атома водорода в молекуле аммиака.

В мае 1852 года Франкленд выдвинул гипотезу о том, что существует конкретное число химических связей, которые атом может образовывать с другими мельчайшими частицами вещества. Франкленд использовал фразу «соединительная сила» для описания того, что позже будет названо валентностью. Британский химик установил, сколько химических связей формируют атомы отдельных элементов, известных в середине XIX столетия. Работа Франкленда стала важным вкладом в современную структурную химию.

Развитие взглядов

Немецкий химик Ф.А. Кекуле доказал в 1857 году, что углерод является четырехосновным. В его простейшем соединении — метане — возникают связи с 4 атомами водорода. Термин «основность» ученый применял для обозначения свойства элементов присоединять строго определенное количество других частиц. В России данные о систематизировал А. М. Бутлеров (1861). Дальнейшее развитие теория химической связи получила благодаря учению о периодическом изменении свойств элементов. Его автор — другой выдающийся Д. И. Менделеев. Он доказал, что валентность химических элементов в соединениях и другие свойства обусловлены тем положением, которое они занимают в периодической системе.

Графическое изображение валентности и химической связи

Возможность наглядного изображения молекул — одно из несомненных достоинств теории валентности. Первые модели появились в 1860-х, а с 1864 года используются представляющие собой окружности с химическим знаком внутри. Между символами атомов черточкой обозначается а количество этих линий равно значению валентности. В те же годы были изготовлены первые шаростержневые модели (см. фото слева). В 1866 году Кекуле предложил стереохимический рисунок атома углерода в форме тетраэдра, который он и включил в свой учебник «Органическая химия».

Валентность химических элементов и возникновение связей изучал Г. Льюис, опубликовавший свои труды в 1923 году после Так называются отрицательно заряженные мельчайшие частицы, которые входят в состав оболочек атомов. В своей книге Льюис применил точки вокруг четырех сторон символа химического элемента для отображения валентных электронов.

Валентность по водороду и кислороду

До создания периодической системы валентность химических элементов в соединениях принято было сравнивать с теми атомами, для которых она известна. В качестве эталонов были выбраны водород и кислород. Другой химический элемент притягивал либо замещал определенное количество атомов H и O.

Таким способом определяли свойства в соединениях с одновалентным водородом (валентность второго элемента обозначена римской цифрой):

  • HCl — хлор (I):
  • H 2 O — кислород (II);
  • NH 3 — азот (III);
  • CH 4 — углерод (IV).

В оксидах K 2 O, CO, N 2 O 3 , SiO 2 , SO 3 определяли валентность по кислороду металлов и неметаллов, удвоив число присоединяемых атомов O. Получали следующие значения: K (I), C (II), N (III), Si (IV), S (VI).

Как определять валентность химических элементов

Существуют закономерности образования химической связи с участием общих электронных пар:

  • Типичная валентность водорода — I.
  • Обычная валентность кислорода — II.
  • Для элементов-неметаллов низшую валентность можно определить по формуле 8 - № группы, в которой они находятся в периодической системе. Высшая, если она возможна, определяется по номеру группы.
  • Для элементов побочных подгрупп максимально возможная валентность такая же, как номер их группы в периодической таблице.

Определение валентности химических элементов по формуле соединения проводится с использованием следующего алгоритма:

  1. Запишите сверху над химическим знаком известное значение для одного из элементов. Например, в Mn 2 O 7 валентность кислорода равна II.
  2. Вычислите суммарную величину, для чего необходимо умножить валентность на количество атомов того же химического элемента в молекуле: 2*7 = 14.
  3. Определите валентность второго элемента, для которого она неизвестна. Разделите полученную в п. 2 величину на количество атомов Mn в молекуле.
  4. 14: 2 = 7. в его высшем оксиде — VII.

Постоянная и переменная валентность

Значения валентности по водороду и кислороду различаются. Например, сера в соединении H 2 S двухвалентна, а в формуле SO 3 - шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO 2 . В первом соединении валентность C равна II, а во втором — IV. Такое же значение в метане CH 4 .

Большинство элементов проявляет не постоянную, а переменную валентность, например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.

Современные представления о валентности

Все атомы состоят из положительного ядра, окруженного отрицательно заряженными электронами. Наружная оболочка, которую они образуют, бывает недостроенной. Завершенная структура наиболее устойчива, она содержит 8 электронов (октет). Возникновение химической связи благодаря общим электронным парам приводит к энергетически выгодному состоянию атомов.

Правилом для формирования соединений является завершение оболочки путем приема электронов либо отдачи неспаренных - в зависимости от того, какой процесс легче проходит. Если атом предоставляет для образования химической связи отрицательные частицы, не имеющие пары, то связей он образует столько, сколько у него неспаренных электронов. По современным представлениям, валентность атомов химических элементов — это способность к образованию определенного числа ковалентных связей. Например, в молекуле сероводорода H 2 S сера приобретает валентность II (-), поскольку каждый атом принимает участие в образовании двух электронных пар. Знак «-» указывает на притяжение электронной пары к более электроотрицательному элементу. У менее электроотрицательного к значению валентности дописывают «+».

При донорно-акцепторном механизме в процессе принимают участие электронные пары одного элемента и свободные валентные орбитали другого.

Зависимость валентности от строения атома

Рассмотрим на примере углерода и кислорода, как зависит от строения вещества валентность химических элементов. Таблица Менделеева дает представление об основных характеристиках атома углерода:

  • химический знак — C;
  • номер элемента — 6;
  • заряд ядра — +6;
  • протонов в ядре — 6;
  • электронов — 6, в том числе 4 внешних, из которых 2 образуют пару, 2 — неспаренных.

Если атом углерода в моноооксиде CO образует две связи, то в его пользование поступает только 6 отрицательных частиц. Для приобретения октета необходимо, чтобы пары образовали 4 внешние отрицательные частицы. Углерод имеет валентность IV (+) в диоксиде и IV (-) в метане.

Порядковый номер кислорода — 8, валентная оболочка состоит из шести электронов, 2 из них не образуют пары и принимают участие в химической связи и взаимодействии с другими атомами. Типичная валентность кислорода — II (-).

Валентность и степень окисления

В очень многих случаях удобнее использовать понятие «степень окисления». Так называют заряд атома, который он приобрел бы, если бы все связывающие электроны перешли к элементу, который имеет выше значение электрооотрицательности (ЭО). Окислительное число в простом веществе равно нулю. К степени окисления более ЭО элемента добавляется знак «-», менее электроотрицательного — «+». Например, для металлов главных подгрупп типичны степени окисления и заряды ионов, равные номеру группы со знаком «+». В большинстве случаев валентность и степень окисления атомов в одном и том же соединении численно совпадают. Только при взаимодействии с более электроотрицательными атомами степень окисления положительная, с элементами, у которых ЭО ниже, — отрицательная. Понятие «валентность» зачастую применяется только к веществам молекулярного строения.

Из материалов урока вы узнаете, что постоянство состава вещества объясняется наличием у атомов химических элементов определенных валентных возможностей; познакомитесь с понятием «валентность атомов химических элементов»; научитесь определять валентность элемента по формуле вещества, если известна валентность другого элемента.

Тема: Первоначальные химические представления

Урок: Валентность химических элементов

Состав большинства веществ постоянен. Например, молекула воды всегда содержит 2 атома водорода и 1 атом кислорода – Н 2 О. Возникает вопрос: почему вещества имеют постоянный состав?

Проанализируем состав предложенных веществ: Н 2 О, NaH, NH 3 , CH 4 , HCl. Все они состоят из атомов двух химических элементов, один из которых водород. На один атом химического элемента может приходиться 1,2,3,4 атома водорода. Но ни в одном веществе не будет на один атом водорода приходиться несколько атомов другого химического элемента. Таким образом, атом водорода может присоединять к себе минимальное количество атомов другого элемента, а точнее, только один.

Свойство атомов химического элемента присоединять к себе определенное число атомов других элементов называется валентностью.

Некоторые химические элементы имеют постоянные значения валентности (например, водород(I) и кислород(II)), другие могут проявлять несколько значений валентности (например, железо(II,III), сера(II,IV,VI), углерод(II,IV)), их называют элементами с переменной валентностью . Значения валентности некоторых химических элементов приведены в учебнике.

Зная валентности химических элементов, можно объяснить, почему вещество имеет именно такую химическую формулу. Например, формула воды H 2 O. Обозначим валентные возможности химического элемента с помощью черточек. Водород имеет валентность I, а кислород – II: Н- и -О-. Каждый атом может полностью использовать свои валентные возможности, если на один атом кислорода будет приходиться два атома водорода. Последовательность соединения атомов в молекуле воды можно представить в виде формулы: Н-О-Н.

Формула, в которой показана последовательность соединения атомов в молекуле, называется графической (или структурной ).

Рис. 1. Графическая формула воды

Зная формулу вещества, состоящего из атомов двух химических элементов, и валентность одного из них, можно определить валентность другого элемента.

Пример 1. Определим валентность углерода в веществе СН 4 . Зная, что валентность водорода всегда равна I, а углерод присоединил к себе 4 атома водорода, можно утверждать, что валентность углерода равна IV. Валентность атомов обозначается римской цифрой над знаком элемента: .

Пример 2. Определим валентность фосфорав соединении Р 2 О 5 . Для этого необходимо выполнить следующие действия:

1. над знаком кислорода записать значение его валентности – II (кислород имеет постоянное значение валентности);

2. умножив валентность кислорода на число атомов кислорода в молекуле, найти общее число единиц валентности – 2·5=10;

3. разделить полученное общее число единиц валентностей на число атомов фосфора в молекуле – 10:2=5.

Таким образом, валентность фосфора в данном соединении равна V – .

1. Емельянова Е.О., Иодко А.Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть I. – М.: Школьная Пресса, 2002. (с.33)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 36-38)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§16)

4. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§§11,12)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.84 № 2 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 37-38 №№ 2,4,5,6 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

ВАЛЕНТНОСТЬ (лат. valentia – сила) способность атома присоединять или замещать определенное число других атомов или групп атомов .

В течение многих десятилетий понятие валентности относилось к основным, фундаментальным понятиям в химии. С этим понятием обязательно сталкивались все изучающие химию. Вначале оно казалось им достаточно простым и однозначным: водород одновалентен, кислород двухвалентен и т.д. В одном из пособий для абитуриентов так и сказано: «Валентность – количество химических связей, образованных атомом в соединении». Но какова тогда, в соответствии с этим определением, валентность углерода в карбиде железа Fe 3 C, в карбониле железа Fe 2 (CO) 9 , в давно известных солях K 3 Fe(CN) 6 и K 4 Fe(CN) 6 ? И даже в хлориде натрия каждый атом в кристалле NaCl связан с шестью другими атомами! Так что многие определения, даже напечатанные в учебниках, нужно применять очень осмотрительно.

В современных изданиях можно встретить разные, часто не согласующимися друг с другом определения. Например, такое: «Валентность – это способность атомов образовывать определенное число ковалентных связей». Это определение четкое, однозначное, но оно применимо только для соединений с ковалентными связями. Определяют валентность атома и общим числом электронов, участвующих в образовании химической связи; и числом электронных пар, которыми данный атом связан с другими атомами; и числом его неспаренных электронов, участвующих в образовании общих электронных пар. Вызывает затруднения и другое часто встречавшееся определение валентности как числа химических связей, которыми данный атом соединен с другими атомами, так как не всегда можно четко определить, что такое химическая связь. Ведь далеко не во всех соединениях химические связи образованы парами электронов. Простейшим примером могут служить ионные кристаллы, например, хлорид натрия; в нем каждый атом натрия образует связь (ионную) с шестью атомами хлора, и наоборот. А надо ли считать химическими связями водородные связи (например, в молекулах воды)?

Встает вопрос, чему может быть равна валентность атома азота в соответствии с разными ее определениями. Если валентность определять общим числом электронов, участвующих в образовании химических связей с другими атомами, то максимальную валентность атома азота следует считать равной пяти, так как атом азота может использовать при образовании химических связей все свои пять внешних электронов – два s-электрона и три p-электронов. Если валентность определять числом электронных пар, которыми данный атом связан с другими, то в таком случае максимальная валентность атома азота равна четырем. При этом три p-электрона образуют с другими атомами три ковалентные связи и еще одна связь образуется за счет двух 2s-электронов азота. Примером может случить реакция аммиака с кислотами с образованием катиона аммония.Наконец, если определять валентность только числом неспаренных электронов в атоме, то валентность азота не может быть больше трех, так как в атоме N не может быть больше трех неспаренных электронов (возбуждение 2s-электрона может происходить только на уровень с n = 3, что энергетически крайне невыгодно). Так, в галогенидах азот образует только три ковалентные связи, и не существует таких соединений как NF 5 , NCl 5 или NBr 5 (в отличие от вполне стабильных PF 3 , PCl 3 и PBr 3). Но если атом азота передаст один из своих 2s-электронов другому атому, то в образовавшемся катионе N + останется четыре неспаренных электрона, и валентность этого катиона будет равна четырем. Так происходит, например, в молекуле азотной кислоты. Таким образом, разные определения валентности приводят к разным результатам даже в случае простых молекул.

Какое же из этих определений «правильное» и можно ли вообще дать для валентности однозначное определение. Чтобы ответить на эти вопросы, полезно сделать экскурс в прошлое и рассмотреть, как с развитием химии изменялось понятие «валентность».

Впервые идея валентности элементов (не получившая, впрочем, в то время признания) была высказана в середине 19 в. английским химиком Э.Франкландом: он говорил об определенной «емкости насыщения» металлов и кислорода. Впоследствии под валентностью стали понимать способность атома присоединять или замещать определенное число других атомов (или групп атомов) с образованием химической связи. Один из создателей теории химического строения Фридрих Август Кекуле писал: «Валентность – фундаментальное свойство атома, свойство такое же постоянное и неизменяемое, как и самый атомный вес». Кекуле считал валентность элемента постоянной величиной. К концу 1850-х большинство химиков считали, что валентность (тогда говорили «атомность») углерода равна 4, валентности кислорода и серы равны 2, а галогенов – 1. В 1868 немецкий химик К.Г.Вихельхауз вместо «атомность» предложил использовать термин «валентность» (на латыни valentia – сила). Однако в течение длительного времени он почти не употреблялся, во всяком случае, в России (вместо него говорили, например, о «единицах сродства», «числе эквивалентов», «числе паев» и т.п.). Показательно, что в Энциклопедическом словаре Брокгауза и Ефрона (практически все статьи по химии в этой энциклопедии просматривал, правил, а часто и писал Д.И.Менделеев) статьи «валентность» вообще нет. Нет его и в классическом труде Менделеева Основы химии (он лишь изредка упоминает понятие «атомность», не останавливаясь на нем детально и не давая ему однозначного определения).

Чтобы наглядно показать трудности, с самого начала сопровождавшие понятие «валентность», уместно процитировать популярный в начале 20 в. многих странах, ввиду большого педагогического таланта автора, учебник американского химика Александра Смита, изданный им в 1917 (в русском переводе – в 1911, 1916 и 1931): «Ни одно понятие в химии не получало такого количества неясных и неточных определений, как понятие валентности». И далее в разделе Некоторые странности во взглядах на валентность автор пишет:

«Когда впервые было построено понятие валентности, тогда считали – совершенно ошибочно, – что каждый элемент имеет одну валентность. Поэтому, рассматривая такие пары соединений, как CuCl и CuCl 2 , или... FeCl 2 и FeCl 3 , исходили из допущения, что медь всегда двухвалентна, а железо трехвалентно, и на этом основании искажали формулы так, чтобы подогнать их к этому допущению. Таким образом, формулу однохлористой меди писали (да и часто пишут и посейчас) так: Cu 2 Cl 2 . В таком случае формулы двух хлористых соединений меди в графическом изображении получают вид: Cl–Cu–Cu–Cl и Cl–Cu–Cl. В обоих случаях каждый атом меди удерживает (на бумаге) две единицы, а потому является двухвалентным (на бумаге). Подобным образом... удвоение формулы FeCl 2 дало Cl 2 >Fe–Fe 2, что позволило считать... железо трехвалентным.» И далее Смит делает очень важный и актуальный во все времена вывод: «Вполне противно научному методу – изобретать или искажать факты в целях поддержки представления, которое, не будучи основано на опыте, является результатом простого предположения. Однако история науки показывает, что подобные ошибки наблюдаются часто».

Обзор представлений начала века о валентности дал в 1912 русский химик Л.А.Чугаев, получивший мировое признание за работы по химии комплексных соединений. Чугаев четко показал трудности, связанные с определением и применением понятия валентность:

«Валентность – термин, употребляемый в химии в том же смысле, как «атомность», для обозначения максимального числа атомов водорода (или иных одноатомных атомов или одноатомных радикалов), с которыми атом данного элемента может находиться в непосредственной связи (или которые он способен замещать). Слово валентность часто также употребляется в смысле единицы валентности, или единицы сродства. Так, говорят, что кислород обладает двумя, азот тремя валентностями и т.д. Слова валентность и «атомность» прежде употреблялись без всякого различия, но по мере того, как самое понятия, выражаемые ими, теряло первоначальную простоту и осложнялось, для целого ряда случаев осталось в употреблении только слово валентность… Осложнение понятия о валентности началось с признания, что валентность есть величина переменная... причем по смыслу дела она выражается всегда целым числом».

Химикам было известно, что многие металлы имеют переменную валентность, и следовало говорить, например, о двухвалентном, трехвалентном и шестивалентном хроме. Чугаев говорил, что даже в случае углерода пришлось признать возможность того, что его валентность может быть отлична от 4, причем СО – не единственное исключение: «Двухвалентный углерод, весьма вероятно, содержится в карбиламинах СН 3 –N=C, в гремучей кислоте и ее солях C=NOH, C=NOMe и пр. Мы знаем, что существует также углерод трехатомный...» Обсуждая теорию немецкого химика И.Тиле о «парциальных» или частичных валентностях, Чугаев говорил о ней, как «одной из первых попыток расширить классическое понятие о валентности и распространить его на случаи, к объяснению которых оно, как таковое, является неприложимым. Если Тиле пришел к необходимости... допустить «дробление» единиц валентности, то существует целый ряд фактов, заставляющих еще и в ином смысле вывести понятие о валентности из тех узких рамок, в которых оно было первоначально заключено. Мы видели, что изучение простейших (по большей части бинарных...) соединений, образуемых химическими элементами, для каждого из этих последних заставляет допустить определенные, всегда небольшие и, конечно, целые значения их валентности. Таких значений, вообще говоря, очень немного (элементы, проявляющие более трех различных валентностей, редки)... Опыт показывает, однако, что когда уже все вышеупомянутые единицы валентности следует признать насыщенными, способность образующихся при этом молекул к дальнейшему присоединению вовсе еще не достигает предела. Так, соли металлов присоединяют воду, аммиак, амины.., образуя разнообразные гидраты, аммиакаты... и т.п. сложные соединения, которые... мы ныне относим к числу комплексных. Существование таких соединений, не укладывающихся в рамки простейшего представления о валентности, естественно потребовало его расширения и введения дополнительных гипотез. Одна из таких гипотез, предложенная А.Вернером, заключается в том, что наряду с главными, или основными, единицами валентности существуют еще другие, побочные. Последние обыкновенно обозначаются пунктиром.»

Действительно, какую валентность, например, следовало приписать атому кобальта в его хлориде, присоединившем шесть молекул аммиака с образованием соединения CoCl 3 ·6NH 3 (или, что то же, Co(NH 3) 6 Cl 3)? В нем атом кобальта соединен одновременно с девятью атомами хлора и азота! Д.И.Менделеев писал по этому поводу о малоисследованных «силах остаточного сродства». А швейцарский химик А.Вернер, создавший теорию комплексных соединений, ввел понятия главной (первичной) валентности и побочной (вторичной) валентности (в современной химии этим понятиям отвечают степень окисления и координационное число). Обе валентности могут быть переменными, причем различить их в ряде случаев очень трудно или даже невозможно.

Далее Чугаев затрагивает теорию Р.Абегга об электровалентности, которая может быть положительной (в высших кислородных соединениях) или отрицательной (в соединениях с водородом). При этом сумма высших валентностей элементов по кислороду и водороду для групп с IV по VII равна 8. На этой теории до сих пор основано изложение во многих учебниках химии. В заключение Чугаев упоминает химические соединения, для которых понятие валентности практически неприменимо – интерметаллические соединения, состав которых «часто выражается весьма своеобразными формулами, очень мало напоминающие обычные значения валентности. Таковы, например, следующие соединения: NaCd 5 , NaZn 12 , FeZn 7 и др.»

На некоторые трудности определения валентности указывал другой известный русский химик И.А.Каблуков в своем учебнике Основные начала неорганической химии , изданном в 1929. Что же касается координационного числа, процитируем (в русском переводе) изданный в Берлине в 1933 учебник одного из создателей современной теории растворов датского химика Нильса Бьеррума:

«Обычные числа валентностей не дают никакого представления о характерных свойствах, проявляемых многими атомами в многочисленных комплексных соединениях. Чтобы объяснить способность атомов или ионов образовывать комплексные соединения, ввели для атомов и ионов новый особый ряд чисел, отличающихся от обычных чисел валентностей. В комплексных ионах серебра... непосредственно с центральным атомом металла связаны большей частью два атома или две группы атомов, например, Ag(NH 3) 2 + , Ag(CN) 2 – , Ag(S 2 O 3) 2 – ... Для описания этой связи ввели понятие координационного числа и приписывают ионам Ag + координационное число 2. Как видно из приведенных примеров, группы, связанные с центральным атомом , могут быть и нейтральными молекулами (NH 3) и ионами (CN – , S 2 O 3 –). Двухвалентный ион меди Cu ++ и трехвалентный ион золота Au +++ имеют в большинстве случаев координационное число 4. Координационное число атома, конечно, еще не указывает, какого рода связь существует между центральным атомом и связанными с ним другими атомами или группами атомов; но оно оказалось превосходным средством для систематики комплексных соединений».

Очень наглядные примеры «особых свойств» комплексных соединений приводит в своем учебнике А.Смит:

«Рассмотрим следующие „молекулярные“ соединения платины: PtCl 4 ·2NH 3 , PtCl 4 ·4NH 3 , PtCl 4 ·6NH 3 и PtCl 4 ·2KCl. Ближайшее изучение этих соединений показывает ряд замечательных особенностей. Первое соединение в растворе практически не распадается на ионы; электропроводность растворов его чрезвычайно мала; азотнокислое серебро не дает с ним осадка AgCl. Вернер принял, что атомы хлора связаны с атомом платины обычными валентностями; их Вернер назвал главными, а молекулы аммиака связаны с атомом платины дополнительными, побочными валентностями. Это соединение, по Вернеру, имеет такое строение:

Большие скобки указывают на целостность группы атомов, на комплекс, не распадающийся при растворении соединения.

Второе соединение обладает отличными от первого свойствами; это – электролит, электропроводность его растворов того же порядка, что и электропроводность растворов солей, распадающихся на три иона (K 2 SO 4 , BaCl 2 , MgCl 2); азотнокислое серебро осаждает два атома из четырех. По Вернеру это соединение следующего строения: 2– + 2Cl – . Здесь мы имеем комплексный ион атомы хлора в нем не осаждаются азотнокислым серебром, и этот комплекс образует вокруг ядра – атома Pt – внутреннюю сферу атомов в соединении, отщепляющиеся же в виде ионов атомы хлора образуют внешнюю сферу атомов, почему мы и пишем их вне больших скобок. Если мы будем считать, что Pt имеет четыре главные валентности, то в этом комплексе использованы только две, две же другие удерживают два внешних атома хлора. В первом соединении в самом комплексе использованы все четыре валентности платины, вследствие чего это соединение не электролит.

В третьем соединении все четыре атома хлора осаждаются азотнокислым серебром; большая электропроводность этой соли показывает, что она дает пять ионов; очевидно, что ее строение следующее: 4– + 4Cl – ... В комплексном ионе все молекулы аммиака связаны с Pt побочными валентностями; соответственно четырем главным валентностям платины во внешней сфере есть четыре атома хлора.

В четвертом соединении азотнокислое серебро не осаждает вовсе хлора, электропроводность его растворов указывает на распадение на три иона, обменные реакции обнаруживают ионы калия. Этому соединению мы приписываем следующее строение 2– + 2K + . В комплексном ионе четыре главные валентности Pt использованы, но так как не использованы главные валентности двух атомов хлора, то во внешней сфере могут быть удержаны два положительных одновалентных иона (2K + , 2NH 4 + и т.д.).»

Приведенные примеры разительного отличия свойств внешне похожих комплексов платины дают представление о сложностях, с которыми сталкивались химики при попытках однозначного определения валентности.

После создания электронных представлений о строении атомов и молекул стали широко пользоваться понятием «электровалентность». Поскольку атомы могут как отдавать, так и принимать электроны, электровалентность могла быть как положительной, так и отрицательной (сейчас вместо электровалентности используют понятие степень окисления). Насколько новые электронные представления о валентности согласовывались с прежними? Н.Бьеррум в уже цитированном учебнике пишет по этому поводу: «Между обычными числами валентностей и введенными новыми числами – электровалентностью и координационным числом – имеется некоторая зависимость, но они ни в коем случае не идентичны. Старое понятие валентности распалось на два новых понятия». По этому поводу Бьеррум сделал важное примечание: «Координационное число углерода в большинстве случаев равно 4, а его электровалентность или +4 или –4. Так как для атома углерода оба числа обычно совпадают, то соединения углерода непригодны для того, чтобы изучать на них различие между этими двумя понятиями».

В рамках электронной теории химической связи, развитой в работах американского физикохимика Г.Льюиса и немецкого физика В.Косселя, появились такие понятия, такие как донорно-акцепторная (координационная) связь и ковалентность. В соответствии с этой теорией, валентность атома определяли числом его электронов, участвующих в образовании общих электронных пар с другими атомами. При этом максимальную валентность элемента считали равной числу электронов во внешней электронной оболочке атома (оно совпадает с номером группы периодической таблицы, которой принадлежит данный элемент). Согласно другим представлениям, основанным на квантово-химических законах (их развивали немецкие физики В.Гайтлер и Ф.Лондон), считать надо не все внешние электроны, а только неспаренные (в основном или возбужденном состоянии атома); именно это определение приведено в ряде химических энциклопедий.

Однако известны факты, не укладывающиеся в эту простую схему. Так, в ряде соединений (например, в озоне) пара электронов может удерживать не два, а три ядра; в других молекулах химическая связь может осуществляться единственным электроном. Описать подобные связи без привлечения аппарата квантовой химии невозможно. Как, например, определить валентность атомов в таких соединениях как пентаборан В 5 Н 9 и другие бораны с «мостиковыми» связями, в которых атом водорода связан сразу с двумя атомами бора; ферроцен Fe(C 5 H 5) 2 (атом железа со степенью окисления +2 связан сразу с 10 атомами углерода); пентакарбонил железа Fе(СО) 5 (атом железа в нулевой степени окисления связан с пятью атомами углерода); пентакарбонилхромат натрия Na 2 Cr(CO) 5 (степень окисления хрома-2)? Такие «неклассические» случаи вовсе не являются чем-то исключительным. Подобных «нарушителей валентности», соединений с различными «экзотическими валентностями» по мере развития химии становилось все больше.

Чтобы обойти некоторые трудности, было дано определение, согласно которому при определении валентности атома надо учитывать суммарное число неспаренных электронов, неподеленных электронных пар и вакантных орбиталей, участвующих в образовании химических связей. Вакантные орбитали принимают непосредственное участие в образовании донорно-акцепторных связей в разнообразных комплексных соединениях.

Один из выводов заключается в том, что развитие теории и получение новых экспериментальных данных привело к тому, что попытки добиться ясного понимания природы валентности разделили это понятие на ряд новых представлений, таких как главная и побочная валентность, ионная валентность и ковалентность, координационное число и степень окисления и т.д. То есть понятие «валентность» «расщепилось» на ряд самостоятельных понятий, каждое из которых действует в определенной области». По-видимому, традиционное понятие валентности имеет четкий и однозначный смысл только для соединений, в которых все химические связи являются двухцентровыми (т.е. соединяющими только два атома) и каждая связь осуществляется парой электронов, расположенной между двумя соседними атомами, проще говоря – для ковалентных соединений типа HCl, CO 2 , C 5 H 12 и т.п.

Второй вывод не совсем обычен: термин «валентность», хотя и употребляется в современной химии, имеет весьма ограниченное применение, попытки дать ему однозначное определение «на все случаи жизни» мало продуктивны и вряд ли нужны. Недаром авторы многих учебников, особенно выходящих за рубежом, обходятся вовсе без этого понятия или же ограничиваются указанием на то, что понятие «валентность» имеет в основном историческое значение, тогда как сейчас химики пользуются в основном более распространенным, хотя и несколько искусственным понятием «степень окисления».

Илья Леенсон

Валентность – это способность атомов присоединять к себе определенное число других атомов.

С одним атомом одновалентного элемента соединяется один атом другого одновалентного элемента (HСl ). С атомом двухвалентного элемента соединяются два атома одновалентного (H 2 O) или один атом двухвалентного (CaO). Значит, валентность элемента можно представить как число, которое показывает, со сколькими атомами одновалентного элемента может соединяться атом данного элемента. Валентность элемента – это число связей, которое образует атом:

Na – одновалентен (одна связь)

H – одновалентен (одна связь)

O – двухвалентен (две связи у каждого атома)

S – шестивалентна (образует шесть связей с соседними атомами)

Правила определения валентности
элементов в соединениях

1. Валентность водорода принимают за I (единицу). Тогда в соответствии с формулой воды Н 2 О к одному атому кислорода присоединено два атома водорода.

2. Кислород в своих соединениях всегда проявляет валентность II . Поэтому углерод в соединении СО 2 (углекислый газ) имеет валентность IV.

3. Высшая валентность равна номеру группы .

4. Низшая валентность равна разности между числом 8 (количество групп в таблице) и номером группы, в которой находится данный элемент, т.е. 8 - N группы .

5. У металлов, находящихся в «А» подгруппах, валентность равна номеру группы.

6. У неметаллов в основном проявляются две валентности: высшая и низшая.

Например: сера имеет высшую валентность VI и низшую (8 – 6), равную II; фосфор проявляет валентности V и III.

7. Валентность может быть постоянной или переменной.

Валентность элементов необходимо знать, чтобы составлять химические формулы соединений.

Алгоритм составления формулы соединения оксида фосфора

Последовательность действий

Составление формулы оксида фосфора

1. Написать символы элементов

Р О

2. Определить валентности элементов

V II
P O

3. Найти наименьшее общее кратное численных значений валентностей

5 2 = 10

4. Найти соотношения между атомами элементов путем деления найденного наименьшего кратного на соответствующие валентности элементов

10: 5 = 2, 10: 2 = 5;

P: О = 2: 5

5. Записать индексы при символах элементов

Р 2 О 5

6. Формула соединения (оксида)

Р 2 О 5


Запомните!

Особенности составления химических формул соединений.

1) Низшую валентность проявляет тот элемент, который находится в таблице Д.И.Менделеева правее и выше, а высшую валентность – элемент, расположенный левее и ниже.

Например, в соединении с кислородом сера проявляет высшую валентность VI, а кислород – низшую II. Таким образом, формула оксида серы будет SO 3.

В соединении кремния с углеродом первый проявляет высшую валентность IV, а второй – низшую IV. Значит, формула – SiC. Это карбид кремния, основа огнеупорных и абразивных материалов.

2) Атом металла стоит в формуле на первом месте.

2) В формулах соединений атом неметалла, проявляющий низшую валентность, всегда стоит на втором месте, а название такого соединения оканчивается на «ид».

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.