Атом отдавая электроны превращается в. Атомы металлов отдавая внешние электроны превращаются в. Электронные конфигурации атомов химических элементов

Нервная система рыб делится на периферическую и центральную . Центральная нервная система состоит из головного и спинного мозга, а периферическая - из нервных волокон и нервных клеток.

Головной мозг рыб.

Головной мозг рыб состоит из трех основных частей: передний мозг, средний мозг и задний мозг . Передний мозг состоит из конечного мозга (теленцефалона ) и промежуточного мозга - диенцефалона . На переднем конце теленцефалона находятся луковицы, отвечающие за обоняние. Они принимают сигналы от обонятельных рецепторов .

Схему обонятельной цепи у рыб можно описать следующим образом: в обонятельных долях мозга есть нейроны, которые являются частью обонятельного нерва или пары нервов. Нейроны присоединяются к обонятельным участкам теленцефалона, которые также называются обонятельными долями. Обонятельные луковицы особенно выделяются у рыб, которые используют органы чувств, например, акулы, которые выживают за счет нюха.

Диенцефалон состоит из трех частей: эпиталамуса , таламуса и гипоталамуса и выполняет функции регулятора внутренней среды организма рыбы. Эпиталамус содержит шишковидный орган, который, в свою очередь состоит из нейронов и фоторецепторов. Шишковидный орган расположен на конце эпифизы и у многих видов рыб он может быть чувствительным к свету благодаря прозрачности костей черепа. Благодаря этому шишковидный орган может выполнять функцию регулятора циклов активности и их смены.

В среднем мозге рыб находятся зрительные доли и тегментум или покрышка - и то, и другое используются для обработки оптических сигналов. Зрительный нерв рыб очень разветвлен и имеет много волокон, отходящих от зрительных долей. Как и в случае с обонятельными долями, увеличенные зрительные доли можно встретить у рыб, жизнедеятельность которых зависит от зрения.

Тегментум у рыб контролирует внутренние мышцы глаза и тем самым обеспечивают его фокусирование на предмете. Также тегментум может выступать в роли регулятора функций активного контроля - именно здесь расположен локомоторный регион среднего мозга, отвечающий за ритмичные плавательные движения.

Задний мозг рыб состоит из мозжечка , вытянутого мозга и моста . Мозжечок - это непарный орган, выполняющий функцию поддержания равновесия и контроля положения тела рыбы в среде. Продолговатый мозг и мост вместе составляют ствол головного мозга , к которому тянется большое количество черепно-мозговых нервов, несущих сенсорную информацию. Большинство всех нервов связываются с головным мозгом и входят в него через ствол и задний мозг.

Спинной мозг.

Спинной мозг находится внутри нервных дуг позвонков рыбного позвоночника. В позвоночнике имеется сегментация. В каждом сегменте нейроны соединяются со спинным мозгом с помощью дорсальных корешков, а проворные нейроны выходят их через вентральные корешки. Внутри центральной нервной системы также находятся интернейроны, которые обеспечивают сообщение между проворными и сенсорными нейронами.

Головной мозг рыб очень маленький, составляя у акул тысячные доли % от массы тела, у костистый и осетровых сотые доли %. У мелких рыб масса мозга достигает около 1%.

Головной мозг рыб состоит из 5 отделов: переднего, промежуточного, среднего, мозжечка и продолговатого мозга. Развитие отдельных отделов головного мозга зависит от образа жизни рыб и их экологии. Так, у хороших пловцов (в основном пелагические рыбы) хорошо развит мозжечок и зрительные доли. У рыб с хорошо развитым обонянием – увеличен передний мозг. У рыб с хорошо развитым зрением (хищники) – средний мозг. У малоподвижных рыб хорошо развит продолговатый мозг.

Продолговатый мозг является продолжением спинного мозга. Он вместе со средним и промежуточным мозгом образует ствол мозга. В продолговатом мозге по сравнению со спинным мозгом нет четкого распределения серого и белого вещества. Продолговатый мозг выполняет следующие функции: проводниковую и рефлекторную.

Проводниковая функция заключается в проведении нервных импульсов между спинным мозгом и другими отделами головного мозга. Через продолговатый мозг проходят восходящие пути от спинного мозга к головному и нисходящие пути, связывающие головной мозг со спинным.

Рефлекторная функция продолговатого мозга. В продолговатом мозге находятся центры как относительно простых, так и сложных рефлексов. За счет деятельности продолговатого мозга осуществляются следующие рефлекторные реакции:

1) регуляция дыхания;

2) регуляция сердечной деятельности и сосудов;

3) регуляция пищеварения;

4) регуляция работы вкусовых органов;

5) регуляция работы хроматофоров;

6) регуляция работы электрических органов;

7) регуляция центров движения плавников;

8) регуляция работы спинного мозга.

В продолговатом мозге расположены ядра шести пар черепно-мозговых нервов (V‑X).

V пара – тройничный нерв делится на 3 ветви: глазничный нерв инервирует переднюю часть головы, верхнечелюстной иннервирует кожу передней части головы и небо и нижнечелюстной инервирует слизистую оболочку ротовой полости и нижнечелюстную мускулатуру.

VI пара – отворящий нерв иннервирует мышцы глаз.

VII пара – лицевой нерв разделяется на 2 линии: первая инервирует боковую линию головы, вторая – слизистую оболочку неба, подъязычную область, вкусовые сосочки полости рта и мышцы жаберной крышки.

VIII пара – слуховой или чувствительный нерв - инервирует внутреннее ухо и лабиринт.

IX пара – языкоглочный нерв - инервирует слизистую оболочку неба и мышцы первой жаберной дуги.

X пара – блуждающий нерв делится на две ветвящиеся ветви: боковой нерв инервирует органы боковой линии в туловищной части, нерв жаберной крышки, иннервирует жаберный аппарат и другие внутренние органы.

Средний мозг рыб представлен двумя отделами: зрительной крышей (тектум) - расположена горизонтально и тегментумом – расположенным вертикально.

Тектум или зрительная крыша среднего мозга вздута в виде парных зрительных долей, которые хорошо развиты у рыб с высокой степенью развития органов зрения и плохо у слепых глубоководных и пещерных рыб. На внутренней стороне тектума располагается продольный торус. Он связан со зрением. В тегментуме среднего мозга располагается высший зрительный центр рыб. В тектуме оканчиваются волокна II пары зрительных нервов.

Средний мозг выполняет следующие функции:

1) Функцию зрительного анализатора о чём свидетельствуют следующие эксперименты. После удаления текстума с одной стороны глаз рыб, лежащий с противоположной стороны слепнет. При удалении всего тектума наступает полная слепота. В тектуме также располагается центр зрительного хватательного рефлекса, заключающегося в том, что движение глаз, головы и туловища направлены так, чтобы максимально способствовать фиксации объекта питания в области наибольшей остроты зрения, т.е. в центре сетчатки глаза. В тектуме располагаются центры III и IV пар нервов, инервирующих мышцыглаз, а также мышц, меняющих ширину зрачка, т.е. выполняющих аккомодацию, позволяющую ясно видеть разноудаленные предметы за счет перемещения хрусталика.

2) Участвует в регуляции окраски рыб. Так, после удаления тектума, тело рыбы светлеет, в то время как при удалении глаз наблюдается обратное явление – потемнение тела.

3) Кроме того, тектум тесно связан с мозжечком, гипоталамусом, а через них с передним мозгом. Поэтому тектум координирует функции соматосенсорной (равновесие, позы), обонятельной и зрительной систем.

4) Тектум связан с VIII парой нервов, выполняющих акустическую и рецепторную функции и с V парой нервов, т.е. тройничными нервами.

5) К среднему мозгу подходят афферентные волокна от органов боковойлинии, от слухового и тройничного нервов.

6) В тектуме имеются афферентные волокна от обонятельных и вкусовыхрецепторов.

7) В среднем мозге рыб располагаются центры регуляции движения и тонуса мышц.

8) Средний мозг оказывает тормозящее влияние на центры продолговатого и спинного мозга.

Таким образом, средний мозг регулирует ряд вегетативных функций организма. За счет среднего мозга становится многообразной рефлекторная деятельность организма (появляются ориентировочные рефлексы на звуковые и зрительные раздражения).

Промежуточный мозг. Основным образованием промежуточного мозга являются зрительные бугры – таламус. Под зрительными буграми располагается подбугровая область – эпиталамус, а под таламусом находится подбугровая область – гипоталамус. Промежуточный мозг у рыб частично покрыт крышей среднего мозга.

Эпиталамус состоит из эпифиза – рудимента теменного глаза, который функционирует как эндокринная железа. Вторым элементом эпиталамуса является уздечка (габенула), которая расположена между передним мозгом и крышей среднего мозга. Уздечка является связующим звеном между эпифизом и обонятельными волокнами переднего мозга, т.е. участвует в выполнении функции светопринятия и обоняния. Эпиталамус связан со средним мозгом через эфферентные нервы.

Таламус (зрительные бугры) у рыб располагается в центральной части промежуточного мозга. В зрительных буграх, особенно в дорзальной части, обнаружено множество ядерных образований. Ядра получают информацию от рецепторов перерабатывают ее и передают в определенные области головного мозга, где возникают соответствующие ощущения (зрительные, слуховые, обонятельные и т.д.). Таким образом, таламус является органом интеграции и регуляции чувствительности организма, а также принимает участие в осуществлении двигательных реакций организма.

При повреждении зрительных бугров наблюдается снижение чувствительности, слуха, зрения, что вызывает нарушение координации.

Гипоталамус состоит из непарного полого выступа – воронки, которая образует сосудистый мешок. Сосудистый мешок реагирует на изменения давления и хорошо развит у глубоководных пелагических рыб. Сосудистый мешок участвует в регуляции плавучести, а через его связь с мозжечком участвует в регуляции равновесия и тонуса мускулатуры.

Гипоталамус является главным центром, куда поступает информация от переднего мозга. В гипоталамус поступают афферентные волокна от вкусовых окончаний и от акустической системы. Эфферентные нервы от гипоталамуса идут к переднему мозгу, к дорзальному таламусу, тектуму, мозжечку и нейрогипофизу, т.е. регулирует их деятельность и влияет на их работу.

Мозжечок – непарное образование, он располагается в задней части головного мозга и частично прикрывает продолговатый мозг. Различают тело мозжечка (среднюю часть) и ушки мозжечка (т.е. два боковых отдела). Передний конец мозжечка образует заслонку.

У рыб ведущих малоподвижных образ жизни (например, у донных, таких как скорпены, бычки, удильщики) мозжечок недоразвит в сравнении с рыбами, ведущими активный образ жизни (пелагическими, такими как скумбрия, сельдевые или хищниками – судак, тунец, щука).

Функции мозжечка. При полном удалении мозжечка у подвижных рыб наблюдается падение мышечного тонуса (атония) и нарушение координации движений. Это выражалось в круговом плавании рыб. Кроме того, у рыб ослабевает реакция на болевые раздражения, происходят сенсорные нарушения, исчезает тактильная чувствительность. Примерно, через три-четыре недели утраченные функции восстанавливаются за счет регуляторных процессов других отделов головного мозга.

После удаления тела мозжечка у костистых рыб наблюдаются двигательные нарушения в виде качания тела из стороны в сторону. После удаления тела и заслонки мозжечка полностью нарушается двигательная деятельность, развиваются трофические нарушения. Это свидетельствует от том, что мозжечок регулирует также обмен веществ в головном мозге.

Следует отметить, что ушки мозжечка достигают больших размеров у рыб, имеющих хорошо развитую боковую линию. Таким образом, мозжечок является местом замыкания условных рефлексов, поступающих из органов боковой линии.

Таким образом основными функциями мозжечка являются координация движения, нормальное распределение мышечного тонуса и регуляция вегетативных функций. Свое влияние мозжечок реализует через ядерные образования среднего и продолговатого мозга, а также двигательные нейроны спинного мозга.

Передний мозг рыб состоит из двух частей: мантии или плаща и полосатых тел. Мантия, или так называемый плащ, лежит дорзально, т.е. сверху и с боков в виде тонкой эпителиальной пластинки над полосатыми телами. В передней стенке переднего мозга находятся обонятельные доли, которые нередко дифференцируют на основную часть, стебелек и обонятельную луковицу. В мантию поступают вторичные обонятельные волокна от обонятельной луковицы.

Функции переднего мозга. Передний мозг рыб выполняет обонятельную функцию. Об этом, в частности, свидетельствуют следующие опыты. При удалении переднего мозга у рыб наблюдается потеря выработанных условных рефлексов на обонятельные раздражители. Кроме того, удаление переднего мозга рыб приводит к снижению их двигательной активности и к снижению стайных условных рефлексов. Передний мозг играет важную роль и в половом поведении рыб (при его удалении пропадает половое влечение).

Таким образом, передний мозг участвует в защитно-оборонительной реакции, способности к стайному плаванию, способности заботиться о потомстве и т.д. Он оказывает общее стимулирующее влияние на другие отделы головного мозга.

7. Принципы рефлекторной теории И.П. Павлова

Теория Павлова базируется на основных принципах условно-рефлекторной деятельности головного мозга животных, в том числе и рыб:

1. Принцип структурности.

2. Принцип детерминизма.

3. Принцип анализа и синтеза.

Принцип структурности заключается в следующем: каждой морфологической структуре соответствует определенная функция. Принцип детерминизма заключается в том, что рефлекторные реакции имеют строгую причинную обусловленность, т.е. они детерминированы. Для проявления любого рефлекса необходим повод, толчек, воздействие из внешнего мира или внутренней среды организма. Аналитическая и синтетическая деятельность ЦНС осуществляется за счет сложных взаимоотношений процессов возбуждения и торможения.

Согласно теории Павлова в основе деятельности ЦНС лежит рефлекс. Рефлекс – это причинно обусловленная (детерминированная) реакция организма на изменения внешней или внутренней среды, осуществляемая при обязательном участии ЦНС в ответ на раздражение рецепторов. Так происходит возникновение, изменение или прекращение какой-либо деятельности организма.

Павлов все рефлекторные реакции организма разделил на две основных группы: безусловные рефлексы и условные рефлексы. Безусловные рефлексы – врожденные, передающиеся по наследству рефлекторные реакции. Безусловные рефлексы проявляются при наличии раздражителя без особых, специальных условий (глотание, дыхание, слюноотделение). Безусловные рефлексы имеют готовые сформированные рефлекторные дуги. Безусловные рефлексы делят на различные группы по ряду признаков. По биологическому признаку выделяют пищевые (поиск, прием и переработка пищи), оборонительные (защитная реакция),половые (поведение животного), ориентировочные (ориентация в пространстве), позические (принятие характерной позы), локомоторные (двигательные реакции).

В зависимости от расположения раздражаемого рецептора выделяют экстерорецептивные рефлексы, т.е. рефлексы, возникающие при раздражении наружной поверхности тела (кожи, слизистых), интерорецептивные рефлексы, т.е. рефлексы, которые возникают при раздражении внутренних органов, проприорецептивные рефлексы, возникающие при раздражении рецепторов скелетных мышц, суставов, связок.

В зависимости от отдела мозга, который участвует в рефлекторной реакции выделяют следующие рефлексы: спинальные (спинномозговые) – участвуют центры спинного мозга, бульбарные – центры продолговатого мозга, мезенцефальные – центры среднего мозга, диэнцефальные – центры промежуточного мозга.

Кроме того, реакции разделяют по органу, который участвует в ответной реакции: моторные или двигательные (участвует мышца), секреторные (участвует железа внутренней или внешней секреции), сосудодвигательные (участвует сосуд) и т.д.

Безусловные рефлексы – видовые реакции. Они свойственны всем представителям данного вида. Безусловные рефлексы – относительно постоянные рефлекторные реакции, стереотипные, малоизменчивые, инертные. Вследствие этого только за счет безусловных рефлексов невозможно приспособиться к меняющимся условиям существованиям.

Условные рефлексы – временная нервная связь организма с каким-либо раздражителем внешней или внутренней среды организма. Условные рефлексы приобретаются в течении индивидуальной жизни организма. Они неодинаковы у различных представителей данного вида. Условные рефлексы не имеют готовых рефлекторных дуг, они формируются при определенных условиях. Условные рефлексы изменчивы, легко возникают и также легко исчезают в зависимости от условий, в которых находится данных организм. Условные рефлексы формируются на базе безусловных рефлексов при определенных условиях.

Для образования условного рефлекса необходимо сочетание во времени двух раздражителей: индифферентного (безразличного) для данного вида деятельности, который в дальнейшем станет условным сигналом (стук по стеклу) и безусловного раздражителя, вызывающего определенный безусловный рефлекс (корм). Условный сигнал всегда предшествует действию безусловного раздражителя. Подкрепление условного сигнала безусловным раздражителем должно быть неоднократным. Необходимо, чтобы условный и безусловный раздражители отвечали следующим требованиям: безусловный раздражитель должен быть биологически сильным (корм), условный раздражитель должен обладать умеренной оптимальной силой (стук).

8. Поведение рыб

Поведение рыб усложняется в ходе их развития, т.е. онтогенеза. Самой простой реакцией организма рыбы в ответ на раздражитель является кинез. Кинез – это увеличение двигательной активности в ответ на неблагоприятные воздействия. Кинез наблюдается уже на последних стадиях эмбрионального развития рыб, когда происходит снижение содержания кислорода в окружающей среде. Увеличение движения личинок в икринке или в воде в данном случае способствует улучшению газообмена. Кинез способствует перемещению личинок из плохих условий обитания в лучшие. Другим примером кинеза является беспорядочное перемещение стайных рыб (верховка, укля и др.) при появлении хищника. Это сбивает его с толку и мешает сосредоточится на одной рыбешке. Это можно считать оборонительной реакцией стайных рыб.

Более сложной формой поведения рыб является таксис – это направленное движение рыб в ответ на раздражитель. Различают положительный таксис (привлечение) и отрицательный таксис (избегание). Примером может служить фототаксис, т.е. реакция рыб на световой фактор. Так, анчоусовидная и большеглазая кильки обладают положительным фототаксисом, т.е. хорошо привлекаются на свет, образуя скопления, что позволяет использовать это свойство в промысле этих рыб. В противоположность каспийским килькам у кефали наблюдается отрицательный фототаксис. Представители этого вида рыб стремятся выйти из освещенного фона. Это свойство также используется человеком при промысле этой рыбы.

Примером отрицательного фототаксиса может быть поведение личинок лососей. Днем они прячутся среди камней, в гравии, что позволяет им избегать встречи с хищниками. А у личинок карповых рыб наблюдается положительный фототаксис, что позволяет им избегать заморных глубоководных районов, находить больше пищи.

Направления таксисов может претерпевать возрастные изменения. Так, мальки семги на стадии пестрянки являются типичными донными оседлыми рыбами, охраняющими свою территорию от себе подобных. Они избегают света, обитают среди камней, легко меняют окраску под цвет окружающей среды, при испуге способны затаиваться. По мере их роста перед скатом в море они изменяют окраску не серебристую, собираются в стаи, теряют агрессивность. При испуге быстро уплывают, не боятся света, и наоборот держатся у поверхности воды. Как видите, поведение молоди этого вида с возрастом меняется на противоположное.

У рыб, в отличие от высших позвоночных животных, отсутствует кора головного мозга, которая имеет ведущее значение в выработке условных рефлексов. Однако рыбы способны вырабатывать их и без нее, например условный рефлекс на звук (опыт Фролова). После действия звукового раздражителя через несколько секунд включали ток, на что рыба реагировала движением тела. Через некоторое количество повторений рыба, не дожидаясь действия электрического тока, реагировала на звук, т.е. реагировала движением тела. В данном случае условным раздражителем является звук, а безусловным раздражителем – индукционный ток.

В отличие от высших животных у рыб рефлексы вырабатываются хуже, отличаются нестойкостью и трудностью выработки. Рыбы способны слабее, чем высшие животные дифференцировать, т.е. различать условные раздражители или изменения внешней среды. Следует отметить, что у костистых рыб условные рефлексы вырабатываются быстрее и они более стойкие, чем у других.

В литературе встречаются работы, в которых показаны довольно стойкие условные рефлексы, где безусловными раздражителями являются треугольник, круг, квадрат, различные буквы и т.д. Если в водоем поставить кормушку, дающую порцию корма в ответ на нажатие рычага, дерганье бусинки или другие устройства, то рыбы осваивают это устройство достаточно быстро и получают корм.

Кто занимается аквариумным рыбоводством, то они наблюдали, что при подходе к аквариуму рыбы собираются в месте кормления в ожидании корма. Это также условный рефлекс, и в данном случае условным раздражителем являетесь вы, им может служить и стук по стеклу аквариума.

На рыбоводных предприятиях рыб обычно кормят в определенное время суток, поэтому они часто собираются в определенные места ко времени для кормления. Рыбы быстро привыкают также к виду корма, способу раздачи корма и т.д.

Большое практическое значение может иметь выработка условных рефлексов на хищника в условиях рыбоводных заводов и НВХ у молоди промысловых рыб, которая затем выпускается в естественные водоемы. Это связано с тем, что в условиях рыбоводных заводов и НВХ молодь не имеет опыта общения с врагами и на первых этапах становиться добычей хищников, пока не получит индивидуального и зрелищного опыта.

Используя условные рефлексы исследуют различные стороны биологии различных рыб, такие как спектральную чувствительность глаза, способность различать силуэты, действие различных токсикантов, слух рыб по силе и частотам звука, пороги вкусовой чувствительности, роль различных отделов нервной системы.

В естественной среде поведение рыб зависит от образа жизни. Стайные рыбы обладают способностью к согласованным маневрам при питании, при виде хищника и т.д. Так, появление хищника или кормовых организмов у одного края стаи заставляет соответствующим образом реагировать всю стаю, включая особей, которые не видели раздражитель. Реакция может быть самой разнообразной. Так при виде хищника стая мгновенно разбегается. Это вы можете наблюдать в весенний период времени в прибрежной зоне наших водоемов, мальки многих рыб концентрируются в стаи. Это одна из разновидностей подражания. Другим примером подражания является движение за лидером, т.е. за особью, в поведении которой отсутствуют элементы колебания. Лидером чаще всего являются особи, которые имеют большой индивидуальный опыт. Иногда таким лидером может служить даже рыба другого вида. Так, карпы быстрее обучаются брать корм на лету, если к ним подсажена форель или особи карпа, умеющие это делать.

При групповом обитании рыб может возникнуть “социальная” организация с доминирующими и подчиненными рыбами. Так, в стае мозамбийских тиляпий главным является наиболее интенсивно окрашенный самец, следующие в иерархии – более светлые. Самцы по окраске не отличающиеся от самок являются подчиненными и в нересте вообще не участвуют.

Половое поведение рыб очень многообразно, сюда входят и элементы ухаживания и соперничества, строительство гнезд и т.д. Сложное нерестовое и родительское поведение характерно для рыб с низкой индивидуальной плодовитостью. Некоторые рыбы заботятся об икре, личинках и даже мальках (охраняют гнездо, аэрируют воду (судак, корюшка, сом)). Молодь некоторых видов рыб кормится около родителей (например, дискус даже кормит молодь своей слизью). Молодь некоторых видов рыб прячется у родителей в ротовой и жаберной полостях (тиляпия). Таким образом, пластичность поведения рыб очень разнообразна, что видно из вышесказанных материалов.

Вопросы для самоконтроля:

1. Особенности строения и функции нервов и синапсов.

2. Парабиоз как особый вид локализованного возбуждения.

3. Схема строения нервной системы рыб.

4. Строение и функции периферической нервной системы.

5. Особенности строения и функции отделов головного мозга.

6. Принципы и сущность рефлекторной теории.

7. Особенности поведения рыб.

Известно, что все простые вещества условно можно разделить на простые вещества-металлы и простые вещества-неметаллы.

МЕТАЛЛЫ, по определению М. В. Ломоносова - это «светлые тела, которые ковать можно». Обычно это ковкие блестящие материалы, обладающие высокой тепло- и электропроводностью. Эти физические и многие химические свойства металлов связаны со способностью их атомов ОТДАВАТЬ электроны.

НЕМЕТАЛЛЫ, напротив, способны ПРИСОЕДИНЯТЬ электроны в химических процессах. Большинство неметаллов проявляют противоположные металлам свойства: не блестят, не проводят электрический ток, не куются. Являясь противоположными по свойствам, металлы и неметаллы легко реагируют друг с другом.

Эта часть Самоучителя посвящена краткому освещению свойств металлов и неметаллов. Описывая свойства элементов, желательно придерживаться следующей логической схемы:

1. Вначале описать строение атома (указать распределение валентных электронов), сделать вывод о принадлежности данного элемента к металлам или неметаллам, определить его валентные состояния (степени окисления) - см. урок 3;

2. Затем описать свойства простого вещества, составив уравнения реакций

  • с кислородом;
  • с водородом;
  • с металлами (для неметаллов) или с неметаллами (для металлов);
  • с водой;
  • с кислотами или со щелочами (там, где это возможно);
  • с растворами солей;

3. Затем нужно описать свойства важнейших соединений (водородных соединений, оксидов, гидроксидов, солей). При этом вначале следует определить характер (кислотный или основной) данного соединения, а затем, вспомнив свойства соединений этого класса, составить необходимые уравнения реакций;

4. И наконец нужно описать качественные реакции на катионы (анионы), содержащие этот элемент, способы получения простого вещества и важнейших соединений этого химического элемента, указать практическое применение изучаемых веществ этого элемента.

Так, если вы определите, что оксид кислотный, то он будет реагировать с водой, основными оксидами, основаниями (см. урок 2.1) и ему будет соответствовать кислотный гидроксид (кислота). При описании свойств этой кислоты также полезно заглядывать в соответствующий раздел: урок 2.2.

Металлы - это простые вещества, атомы которых могут только отдавать электроны. Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра . Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, - тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы - металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний - неметалл, а свинец - металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

* ЭНЕРГИЯ ИОНИЗАЦИИ равна работе, затрачиваемой на удаление одного внешнего электрона из атома (на ионизацию атома), находящегося в основном энергетическом состоянии.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним. Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью .

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты. Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов - Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала. При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) - СПЛАВЫ.

Сплавы

Металлы легко образуют сплавы - материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов (простых веществ), из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других компонентов. В принципе, чёткую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других химических элементов.

Все перечисленные выше предметы - станки, самолёты, автомобили, сковородки, вилки, ложки, ювелирные изделия - делают из сплавов. Металлы-примеси (легирующие компоненты) очень часто изменяют свойства основного металла в лучшую, с точки зрения человека, сторону. Например, и железо и алюминий - довольно мягкие металлы. Но, соединяясь друг с другом или с другими компонентами, они превращаются в сталь, дуралюмин и другие прочные конструкционные материалы. Рассмотрим свойства самых распространённых сплавов.

Сталь - это сплавы железа с углеродом , содержащие последнего до 2 %. В состав легированных сталей входят и другие химические элементы - хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно перечислить. Малоуглеродистая сталь (менее 0,25 % углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55 %) идет на изготовление режущих инструментов: бритвенные лезвия, сверла и др.

Железо составляет основу чугуна . Чугуном называется сплав железа с 2–4 % углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей и др.

Бронза - сплав меди , обычно с оловом как основным легирующим компонентом, а также с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка. Оловянные бронзы знали и широко использовали ещё в древности. Большинство античных изделий из бронзы содержат 75–90 % меди и 25–10 % олова, что делает их внешне похожими на золотые, однако они более тугоплавкие. Это очень прочный сплав. Из него делали оружие до тех пор, пока не научились получать железные сплавы. С применением бронзы связана целая эпоха в истории человечества: Бронзовый век.

Латунь - это сплавы меди с Zn, Al, Mg . Это цветные сплавы с невысокой температурой плавления, их легко обрабатывать: резать, сваривать и паять.

Мельхиор - является сплавом меди с никелем , иногда с добавками железа и марганца. По внешним характеристикам мельхиор похож на серебро, но обладает большей механической прочностью. Сплав широко применяют для изготовления посуды и недорогих ювелирных изделий. Большинство современных монет серебристого цвета изготавливают из мельхиора (обычно 75 % меди и 25 % никеля с незначительными добавками марганца).

Дюралюминий , или дюраль - это сплав на основе алюминия с добавлением легирующих элементов - медь, марганец, магний и железо. Он характеризуется своей стальной прочностью и устойчивостью к возможным перегрузкам. Это основной конструкционный материал в авиации и космонавтике.

Химические свойства металлов

Металлы легко отдают электроны, т. е. являются восстановителями . Поэтому они легко реагируют с окислителями.

Вопросы

  1. Какие атомы являются окислителями?
  2. Как называются простые вещества, состоящие из атомов, которые способны принимать электроны?

Таким образом, металлы реагируют с неметаллами. В таких реакциях неметаллы, принимая электроны, приобретают обычно НИЗШУЮ степень окисления.

Рассмотрим пример. Пусть алюминий реагирует с серой:

Вопрос. Какой из этих химических элементов способен только отдавать электроны? Сколько электронов?

Алюминий - металл , имеющий на внешнем уровне 3 электрона (III группа!), поэтому он отдаёт 3 электрона:

Поскольку атом алюминия отдает электроны, атом серы принимает их.

Вопрос. Сколько электронов может принять атом серы до завершения внешнего уровня? Почему?

У атома серы на внешнем уровне 6 электронов (VI группа!), следовательно, этот атом принимает 2 электрона:

Таким образом, полученное соединение имеет состав:

В результате получаем уравнение реакции:

Задание 8.5. Составьте, рассуждая аналогично, уравнения реакций:

  • кальций + хлор (Cl 2);
  • магний + азот (N 2).

Составляя уравнения реакций, помните, что атом металла отдаёт все внешние электроны, а атом неметалла принимает столько электронов, сколько их не хватает до восьми.

Названия полученных в таких реакциях соединений всегда содержат суффикс ИД :

Корень слова в названии происходит от латинского названия неметалла (см. урок 2.4).

Металлы реагируют с растворами кислот (см. урок 2.2). При составлении уравнений подобных реакций и при определении возможности такой реакции следует пользоваться рядом напряжений (рядом активности) металлов:

Металлы, стоящие в этом ряду до водорода , способны вытеснять водород из растворов кислот:

Задание 8.6. Составьте уравнения возможных реакций:

  • магний + серная кислота;
  • никель + соляная кислота;
  • ртуть + соляная кислота.

Все эти металлы в полученных соединениях двухвалентны.

Реакция металла с кислотой возможна, если в результате её получается растворимая соль. Например, магний практически не реагирует с фосфорной кислотой, поскольку его поверхность быстро покрывается слоем нерастворимого фосфата:

Металлы, стоящие после водорода, могут реагировать с некоторыми кислотами, но водород в этих реакциях не выделяется :

Задание 8.7. Какой из металлов - Ва, Mg, Fе, Рb, Сu - может реагировать с раствором серной кислоты? Почему? Составьте уравнения возможных реакций.

Металлы реагируют с водой , если они активнее железа (железо также может реагировать с водой). При этом очень активные металлы (Li – Al ) реагируют с водой при нормальных условиях или при небольшом нагревании по схеме:

где х - валентность металла.

Задание 8.8. Составьте уравнения реакций по этой схеме для К, Nа, Са . Какие ещё металлы могут реагировать с водой подобным образом?

Возникает вопрос: почему алюминий практически не реагирует с водой? Действительно, мы кипятим воду в алюминиевой посуде, - и… ничего! Дело, в том, что поверхность алюминия защищена оксидной пленкой (условно - Al 2 O 3). Если её разрушить, то начнётся реакция алюминия с водой, причём довольно активная. Полезно знать, что эту плёнку разрушают ионы хлора Cl – . А поскольку ионы алюминия небезопасны для здоровья, следует выполнять правило: в алюминиевой посуде нельзя хранить сильно солёные продукты!

Вопрос. Можно ли хранить в алюминиевой посуде кислые щи, компот?

Менее активные металлы, которые стоят в ряду напряжений после алюминия, реагируют с водой в сильно измельчённом состоянии и при сильном нагревании (выше 100 °C) по схеме:

Металлы, менее активные, чем железо, с водой не реагируют!

Металлы реагируют с растворами солей . При этом более активные металлы вытесняют менее активный металл из раствора его соли:

Задание 8.9. Какие из следующих реакций возможны и почему:

  1. серебро + нитрат меди II;
  2. никель + нитрат свинца II;
  3. медь + нитрат ртути II;
  4. цинк + нитрат никеля II.

Составьте уравнения возможных реакций. Для невозможных поясните, почему они невозможны.

Следует отметить (!), что очень активные металлы , которые при нормальных условиях реагируют с водой , не вытесняют другие металлы из растворов их солей, поскольку они реагируют с водой, а не с солью:

А затем полученная щёлочь реагирует с солью:

Поэтому реакция между сульфатом железа и натрием НЕ сопровождается вытеснением менее активного металла:

Коррозия металлов

Коррозия - самопроизвольный процесс окисления металла под действием факторов окружающей среды.

В природе практически не встречается металлов в свободном виде. Исключение составляют только «благородные», самые неактивные металлы, например золото, платина. Все остальные активно окисляются под действием кислорода, воды, кислот и др. Например, ржавчина образуется на любом незащищённом железном изделии именно в присутствии кислорода или воды. При этом окисляется железо:

а восстанавливаются компоненты атмосферной влаги:

В результате образуется гидроксид железа (II ), который, окисляясь, превращается в ржавчину:

Подвергаться коррозии могут и другие металлы, правда, ржавчина на их поверхности не образуется. Так, нет на Земле металла алюминия - самого распространённого металла на планете. Но зато основу многих горных пород и почвы составляет глинозём Al 2 O 3 . Дело в том, что алюминий мгновенно окисляется на воздухе. Коррозия металлов наносит колоссальный ущерб, разрушая различные металлические конструкции.

Чтобы уменьшить потери от коррозии, следует устранить причины, которые её вызывают. В первую очередь, металлические предметы следует изолировать от влаги. Это можно сделать разными способами, например, хранить изделие в сухом месте, что далеко не всегда возможно. Кроме того, можно поверхность предмета покрасить, смазать водоотталкивающим составом, создать искусственную оксидную плёнку. В последнем случае в состав сплава вводят хром, который «любезно» распространяет собственную оксидную плёнку на поверхность всего металла. Сталь становится нержавеющей.

Изделия из нержавеющей стали дороги. Поэтому для защиты от коррозии используют тот факт, что менее активный металл не изменяется, т. е. не участвует в процессе . Поэтому если к сохраняемому изделию приварить более активный металл, то, пока он не разрушится, изделие корродировать не будет. Этот способ защиты называется протекторной защитой.

Выводы

Металлы - это простые вещества, которые всегда являются восстановителями. Восстановительная активность металла убывает в ряду напряжений от лития к золоту. По положению металла в ряду напряжений можно определить, как металл реагирует с растворами кислот, с водой, с растворами солей.

Электронные конфигурации атомов химических элементов

Электронная конфигурация атома – показывает распределение ē по энерг. уровням и подуровням.

1s 1 ←число ē с данной формой облака

↖ форма электронного облака

энерг.уровня

Графические электронные формулы (изображения электронной структуры атома) –

показывает распределение ē по энерг. уровням, подуровням и орбиталям.

I период: +1 Н

Где - ē, ↓ - ē с антипараллельными спинами, орбиталь.

При записи графической электронной формулы следует помнить правило Паули и правило Хундда « Если в пределах одного подуровня имеется несколько свободных орбиталей, то ē размещаются каждый на отдельной орбитали и лишь при отсутствии свободных орбиталей объединяются в пары».

(Работа с электронными и графическими электронными формулами).

Напр., H +1 1s 1 ; He +2 1s 2 ; Li +3 1s 2 2s 1 ; Na +11 1s 2 2s 2 2p 6 3s 1 ; Ar +18 1s 2 2s 2 2p 6 3s 2 3p 6 ;

I период: водород и гелий – s-элементы , у них заполняется электронами s-орбиталь.

II период: Li и Be – s-элементы

B, С, N, O, F, Ne – р-элементы

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы делят на 4 электронных семейства или блока:

1) s-элементы у них заполняется ē-ми s-подуровень внешнего слоя атома; к ним относятся водород, гелий и эл-ты гл.п/гр. I и IIгрупп.

2) р-элементы – у них заполняется электронамир-подуровень внешнего уровня атома; к ним относят элементы гл.п/гр. III - VIIIгрупп.

3) d-элементы – у них заполняется электронами d-подуровень предвнешнего уровня атома; к ним относятся эл-ты побоч.п/гр. . I- VIII групп,т.е. эл-ты вставных декад больших периодов, распложенные между s- и р-элементами, их также называют переходными элементами.

4) f-элементы - у них заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды (4f-элементы) и актиноиды (5f-элементы).

У атомов меди и хрома происходит «провал» ē с 4s- на 3d-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций 3d 5 и 3d 10:

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5

Экспериментально доказано, что состояния атомов, при которых p-, d-, f-орбитали заполнены наполовину (p 3 , d 5 , f 7), целиком (p 6 , d 10 , f 14) или свободны, обладают повышенной устойчивостью. Этим объясняются переходы – «провалы» - электронов между близкорасположенными орбиталями. Те же отклонения наблюдаются у аналога хрома – молибдена, а также у элементов подгруппы меди – серебра и золота. Уникален в этом отношении палладий, у атома которого 5s-электронывообще отсутствуют и который имеет след. Конфигурацию: 46 Pd 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4р 6 5s 0 4d 10 .

Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения.

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической частицы или кристалла как целого. Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами: катионами и анионами, ядрами и электронами. При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами. На некотором расстоянии эти силы уравновешивают друг друга, и образуется устойчивая химическая частица.

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами. В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

Взаимодействие ионов:

Если атом теряет один или несколько электронов, то он превращается в положительный ион - катион (в переводе с греческого - "идущий вниз). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу. При этом возникает химическая связь, и образуются химические соединения. Такой тип химической связи называется ионной связью:

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона – катиона натрия Na + .

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона – аниона хлора Cl - .

Между образовавшимися ионами Na + и Cl - , имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение – хлорид натрия с ионным типом химической связи.

Ионная связь – это химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев.

Часть I

1. Атомы металлов, отдавая внешние электроны, превращаются в положительные ионы:

где n - число электронов внешнего слоя атома, соответствующее номеру группы химического элемента.

2. Атомы неметаллов, принимая электроны, недостающие до завершения внешнего электронного слоя , превращаются в отрицательные ионы:

3. Между разноимённо заряженными ионами возникает связь, которая называется ионной.

4. Дополните таблицу «Ионная связь».


Часть II

1. Дополните схемы образования положительно заряженных ионов. Из букв, соответствующих правильным ответам, вы составите название одного из древнейших природных красителей: индиго.

2. Поиграйте в «крестики-нолики». Покажите выигрышный путь, который составляют формулы веществ с ионной химической связью.


3. Верны ли следующие утверждения?

3) верно только Б

4. Подчеркните пары химических элементов, между которыми образуется ионная химическая связь.
1) калий и кислород
3) алюминий и фтор
Составьте схемы образования химической связи между выбранными элементами.

5. Придумайте рисунок в стиле комиксов, отражающий процесс образования ионной химической связи.

6. Составьте схему образования двух химических соединений с ионной связью по условной записи:

Выберите химические элементы «А» и «Б» из следующего списка:
кальций, хлор, калий, кислород, азот, алюминий, магний, углерод, бром.
Подходят для данной схемы кальций и хлор, магний и хлор, кальций и бром, магний и бром.

7. Напишите небольшое литературное произведение (эссе, новеллу или стихотворение) об одном из веществ с ионной связью, которое человек применяет в быту или на производстве. Для выполнения задания используйте возможности Интернета.
Хлорид натрия – вещество с ионной связью, без него нет жизни, хотя, когда его много – это тоже нехорошо. Даже есть такая народная сказка, где рассказывается о том, что принцесса любила своего отца короля так сильно, как соль, за что была изгнана из королевства. Но, когда король однажды попробовал еду без соли и понял, что есть невозможно, он тогда понял, что дочь его очень сильно любила. Значит, соль – есть жизнь, но её потребление должно быть в
меру. Потому что чрезмерное потребление соли сильно вредит здоровью. Избыток соли в организме приводит к заболеванию почек, меняет цвет кожи, задерживает излишнюю жидкость в организме, что приводит к отёкам и нагрузке на сердце. Поэтому, надо контролировать потребление соли. 0,9% раствор хлорида натрия – это физиологический раствор, используется для вливания лекарств в организм. Поэтому, очень трудно ответить на вопрос: полезна или вредна соль? Она нам нужна в меру.