Графический способ функции. Функции и способы задания функций. Аналитическое задание функции

Сделаем ряд разъяснительных замечаний по поводу задания функции аналитическим выражением или формулой, которые играют в математическом анализе исключительно важную роль.

1° Прежде всего, какие аналитические операции или действия могут входить в эти формулы? На первом месте здесь разумеются все изученные в элементарной алгебре и тригонометрии операции: арифметические действия, возвышение в степень (и извлечение корня), логарифмирование, переход от углов к их тригонометрическим величинам и обратно [см. ниже 48 - 51]. Однако, и это важно подчеркнуть, к их числу по мере развития наших сведений по анализу будут присоединяться и другие операции, в первую голову - предельный переход, с которым читатель уже знаком из главы I.

Таким образом, полное содержание термина «аналитическое выражение» или «формула» будет раскрываться лишь постепенно.

2° Второе замечание относится к области определения функции аналитическим выражением или формулой.

Каждое аналитическое выражение, содержащее аргумент х, имеет, так сказать, естественную область применения: это множество всех тех значений х, для которых оно сохраняет смысл, т. е. имеет вполне определенное, конечное, вещественное значение. Разъясним это на простейших примерах.

Так, для выражения такой областью будет все множество вещественных чисел. Для выражения эта область сведется к замкнутому промежутку за пределами которого значение его перестает быть вещественным. Напротив, выражению придется в качестве естественной области применения отнести открытый промежуток ибо на концах его знаменатель обращается в 0. Иногда область значений, для которых выражение сохраняет смысл, состоит из разрозненных промежутков: для это будут промежутки для - промежутки и т. д.

В качестве последнего примера рассмотрим сумму бесконечной геометрической прогрессии

Если то, как мы знаем , этот предел существует и имеет значение . При предел либо равен либо вовсе не существует. Таким образом, для приведенного аналитического выражения естественной областью применения будет открытый промежуток

В последующем изложении нам придется рассматривать как более сложные, так и более общие аналитические выражения, и мы не раз будем заниматься исследованием свойств функций, задаваемых подобным выражением во всей области, где оно сохраняет смысл, т. е. изучением самого аналитического аппарата.

Однако возможно и другое положение вещей, на что мы считаем нужным заранее обратить внимание читателя. Представим себе, что какой-либо конкретный вопрос, в котором переменная х по существу дела ограничена областью изменения X, привел к рассмотрению функции допускающей аналитическое выражение. Хотя может случиться, что это выражение имеет смысл и вне области X, выходить за ее пределы, разумеется, все же нельзя. Здесь аналитическое выражение играет подчиненную, вспомогательную роль.

Например, если, исследуя свободное падение тяжелой точки с высоты над поверхностью земли, мы прибегнем к формуле

То нелепо было бы рассматривать отрицательные значения t или значения большие, чем ибо, как легко видеть, при точка уже упадет на землю. И это несмотря на то, что само выражение - сохраняет смысл для всех вещественных .

3° Может случиться, что функция определяется не одной и той же формулой для всех значений аргумента, но для одних - одной формулой, а для других - другой. Примером такой функции в промежутке может служить функция, определяемая следующими тремя формулами:

и, наконец, если .

Упомянем еще о функции Дирихле (P. G. Lejeune-Dinchlet), которая определяется так:

Наконец, вместе с Кронекером (L. Kroneckcf) рассмотрим функцию, которую он назвал «сигнум и обозначил через

Одними из классических определений понятия «функция» считаются определения на базе соответствий. Приведем ряд таких определений.

Определение 1

Зависимость, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называется функцией .

Определение 2

Пусть даны два непустых множества $X$ и $Y$. Соответствие $f$, которое каждому $x\in X$ сопоставляет один и только один $y\in Y$ Называется функцией ($f:X → Y$).

Определение 3

Пусть $M$ и $N$ - два произвольных числовых множества. Говорят, что на $M$ определена функция $f$, принимающая значения из $N$, если каждому элементу $x\in X$ поставлен в соответствие один и только один элемент из $N$.

Следующее определение дается через понятие переменной величины. Переменной величиной называется величина, которая в данном исследовании принимает различные числовые значения.

Определение 4

Пусть $M$ - множество значений переменной величины $x$. Тогда, сели каждому значению $x\in M$ соответствует одно определенное значение другой переменной величины $y$ есть функция величины $x$, определенной на множестве $M$.

Определение 5

Пусть $X$ и $Y$ - некоторые числовые множества. Функцией называется множество $f$ упорядоченных пар чисел $(x,\ y)$ таких, что $x\in X$, $y\in Y$ и каждое $x$ входит в одну и только одну пару этого множества, а каждое $y$ входит, по крайней мере, в одну пару .

Определение 6

Всякое множество $f=\{\left(x,\ y\right)\}$ упорядоченных пар $\left(x,\ y\right)$ таких, что для любых пар $\left(x",\ y"\right)\in f$ и $\left(x"",\ y""\right)\in f$ из условия $y"≠ y""$ следует, что $x"≠x""$ называется функцией или отображением .

Определение 7

Функция $f:X → Y$ - это множество $f$ упорядоченных пар $\left(x,\ y\right)\in X\times Y$, таких, что для любого элемента $x\in X$ существует единственный элемент $y\in Y$ такой, что $\left(x,\ y\right)\in f$, то есть функция -- кортеж объектов $\left(f,\ X,\ Y\right)$.

В этих определениях

$x$ - независимая переменная.

$y$ - зависимая переменная.

Все возможные значения переменной $x$ называется областью определения функции , а все возможные значения переменной $y$ называется областью значения функции.

Аналитический способ задания функции

Для этого способа нам понадобится понятие аналитического выражения.

Определение 8

Аналитическим выражением называется произведение всех возможных математических операций над какими-либо числами и переменными.

Аналитическим способом задания функции и является её задание с помощью аналитического выражения.

Пример 1

$y=x^2+7x-3$, $y=\frac{x+5}{x+2}$, $y=cos5x$.

Плюсы:

  1. С помощью формул мы можем определить значение функции для любого определенного значения переменной $x$;
  2. Функции, заданные таким способом можно изучать с помощью аппарата математического анализа.

Минусы:

  1. Малая наглядность.
  2. Иногда приходится производить очень громоздкие вычисления.

Табличный способ задания функции

Данный способ задания состоит в том, что для нескольких значений независимой переменной выписываются значения зависимой переменной. Все это вносится в таблицу.

Пример 2

Рисунок 1.

Плюс: Для любого значения независимой переменной $x$, которая внесена в таблицу, сразу узнается соответствующее значение функции $y$.

Минусы:

  1. Чаще всего, нет полного задания функции;
  2. Малая наглядность.

>>Математика: Способы задания функции

Способы задания функции

Приводя в предыдущем параграфе различные примеры функций, мы несколько обеднили само понятие функции .

Ведь задать функцию - это значит указать правило, которое позволяет по произвольно выбранному значению х из Б(0 вычислить соответствующее значение у. Чаще всего это правило связано с формулой или с несколькими формулами - такой способ задания функции обычно называют аналитическим. Все функции, рассмотренные в § 7, были заданы аналитически. Между тем есть другие способы задания функции, о них и пойдет речь в настоящем параграфе.

Если функция была задана аналитически и нам удалось построить график функции, то мы фактически перешли от аналитического способа задания функции к графическому. Обратный же переход удается осуществить далеко не всегда. Как правило, это довольно трудная, но интересная задача.

Не всякая линия на координатной плоскости может рассматриваться как график некоторой функции. Например, окружность , заданная уравнением х 2 + у 2 - 9 (рис. 51), не является графиком функции, поскольку любая прямая х = а, где | а | <3, пересекает эту линию в д в у х точках (а для задания функции таких точек должно быть не более одной, т.е. прямая х = а должна пересекать линию F только в одной точке либо вообще не должна ее пересекать).

В то же время если эту окружность разрезать на две части - верхнюю полуокружность (рис. 52) и нижнюю полуокружность (рис. 53), - то каждую из полуокружностей можно считать графиком некоторой функции, причем в обоих случаях несложно от графического способа задания функции перейти к аналитическому.

Из уравнения х 2 + у 2 = 9 находим у 2 = 9 - х 2 и далее Графиком функции является верхняя полуокружность окружности х 2 + у 2 =9 (рис. 52), а графиком функции является нижняя полуокружность окружности х 2 + у 2 = 9 (рис. 53).


Этот пример позволяет обратить внимание на одно существенное обстоятельство. Посмотрите на график функции (рис. 52). Сразу ясно, что D(f) = [-3, 3]. А если бы речь шла об отыскании области определения аналитически заданной функции Тогда пришлось бы, как мы это делали в § 7, тратить время и силы на решение неравенства Потому-то обычно и стараются работать одновременно и с аналитическим, и с графическим способами задания функций. Впрочем, за два года изучения курса алгебры в школе вы к этому уже привыкли.

Кроме аналитического и графического, на практике применяют табличный способ задания функции. При этом способе приводится таблица, в которой указаны значения функции (иногда точные, иногда приближенные) для конечного множества значений аргумента. Примерами табличного задания функции могут служить таблицы квадратов чисел, кубов чисел, квадратных корней и т.д.

Во многих случаях табличное задание функции является удобным. Оно позволяет найти значение функции для имеющихся в таблице значений аргумента без всяких вычислений.

Аналитический, графический, табличный - наитабличный, более простые, а потому наиболее популярные словесный задания функции, для наших нужд этих способов вполне достаточно. На самом деле в математике имеется довольно много различных способов задания функции, но мы познакомим вас еще только с одним способом, который используется в весьма своеобразных ситуациях. Речь идет о словесном способе, когда правило задания функции описывается словами. Приведем примеры.

Пример 1.

Функция у = f(х) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х > 0 ставится в соответствие первый знак после запятой в десятичной записи числа х. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой - цифра 5); если х = 13,002, то f(х) = 0; если то, записав в виде бесконечной десятичной дроби 0,6666..., находим f(х) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000... , и мы видим, что первый десятичный знак после запятой есть 0 (вообще-то верно и равенство 15 = 14,999... , но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).

Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное значение первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. У этой функции
Пример 2.

Функция у = f(х) задана на множестве всех действительных чисел с помощью следующего правила: каждому числу х ставится в соответствие наибольшее из всех целых чисел, которые не превосходят х. Иными словами, функция у = f(х) определяется следующими условиями:

а) f(х) - целое число;
б) f(х) < х (поскольку f(х) не превосходит х);
в) f(х) + 1 > х (поскольку f(х) - наибольшее целое число, не превосходящее х, значит, f(х) + 1 уже больше, чем г). Если, скажем, х = 2,534, то f(х) = 2, поскольку, во-первых, 2 - целое число, во-вторых, 2 < 2,534 и, в-третьих, следующее целое число 3 уже больше, чем 2,534. Если х = 47, то /(х) = 47, поскольку, во-первых, 47 - целое число, во-вторых, 47< 47 (точнее, 47 = 47) и, в-третьих, следующее за числом 47 целое число 48 уже больше, чем 47. А чему равно значение f(-0,(23))? Оно равно -1. Проверяйте: -1 - наибольшее из всех целых чисел, которые не превосходят числа -0,232323....

У этой функции (множество целых чисел).

Функцию, о которой шла речь в примере 2, называют целой частью числа; для целой части числа х используют обозначение [х]. Например, = 2, = 47, [-0,(23)] = -1. Очень своеобразно выглядит график функции у = [х] (рис. 54).


Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Одними из классических определений понятия «функция» считаются определения на базе соответствий. Приведем ряд таких определений.

Определение 1

Зависимость, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называется функцией .

Определение 2

Пусть даны два непустых множества $X$ и $Y$. Соответствие $f$, которое каждому $x\in X$ сопоставляет один и только один $y\in Y$ Называется функцией ($f:X → Y$).

Определение 3

Пусть $M$ и $N$ - два произвольных числовых множества. Говорят, что на $M$ определена функция $f$, принимающая значения из $N$, если каждому элементу $x\in X$ поставлен в соответствие один и только один элемент из $N$.

Следующее определение дается через понятие переменной величины. Переменной величиной называется величина, которая в данном исследовании принимает различные числовые значения.

Определение 4

Пусть $M$ - множество значений переменной величины $x$. Тогда, сели каждому значению $x\in M$ соответствует одно определенное значение другой переменной величины $y$ есть функция величины $x$, определенной на множестве $M$.

Определение 5

Пусть $X$ и $Y$ - некоторые числовые множества. Функцией называется множество $f$ упорядоченных пар чисел $(x,\ y)$ таких, что $x\in X$, $y\in Y$ и каждое $x$ входит в одну и только одну пару этого множества, а каждое $y$ входит, по крайней мере, в одну пару .

Определение 6

Всякое множество $f=\{\left(x,\ y\right)\}$ упорядоченных пар $\left(x,\ y\right)$ таких, что для любых пар $\left(x",\ y"\right)\in f$ и $\left(x"",\ y""\right)\in f$ из условия $y"≠ y""$ следует, что $x"≠x""$ называется функцией или отображением .

Определение 7

Функция $f:X → Y$ - это множество $f$ упорядоченных пар $\left(x,\ y\right)\in X\times Y$, таких, что для любого элемента $x\in X$ существует единственный элемент $y\in Y$ такой, что $\left(x,\ y\right)\in f$, то есть функция -- кортеж объектов $\left(f,\ X,\ Y\right)$.

В этих определениях

$x$ - независимая переменная.

$y$ - зависимая переменная.

Все возможные значения переменной $x$ называется областью определения функции , а все возможные значения переменной $y$ называется областью значения функции.

Аналитический способ задания функции

Для этого способа нам понадобится понятие аналитического выражения.

Определение 8

Аналитическим выражением называется произведение всех возможных математических операций над какими-либо числами и переменными.

Аналитическим способом задания функции и является её задание с помощью аналитического выражения.

Пример 1

$y=x^2+7x-3$, $y=\frac{x+5}{x+2}$, $y=cos5x$.

Плюсы:

  1. С помощью формул мы можем определить значение функции для любого определенного значения переменной $x$;
  2. Функции, заданные таким способом можно изучать с помощью аппарата математического анализа.

Минусы:

  1. Малая наглядность.
  2. Иногда приходится производить очень громоздкие вычисления.

Табличный способ задания функции

Данный способ задания состоит в том, что для нескольких значений независимой переменной выписываются значения зависимой переменной. Все это вносится в таблицу.

Пример 2

Рисунок 1.

Плюс: Для любого значения независимой переменной $x$, которая внесена в таблицу, сразу узнается соответствующее значение функции $y$.

Минусы:

  1. Чаще всего, нет полного задания функции;
  2. Малая наглядность.