Правила отрицательных. Записи с меткой "сложение отрицательных чисел". Основное правило сложения натуральных чисел

Кривые второго порядка. Алгебраической кривой второго порядка называется кривая Г, уравнение которой в декартовой системе координат имеет вид:

Если кривая Г невырожденная, то для неё найдется такая декартова прямоугольная система координат, в которой уравнение этой кривой примет один из следующих трех видов (каноническое уравнение):

Гипербола,

px - парабола.

Эллипс - геометрическое множество точек плоскости, сумма расстояний от которых до двух точек и, называемых фокусами, есть величина постоянная 2a, большая, чем расстояние между фокусами 2c:

Эллипс, заданный каноническим уравнением: симметричен относительно осей координат. Параметры а и b называются полуосями эллипса (большой и малой соответственно), точки, называются его вершинами. Если а>b, то фокусы находятся на оси ОХ на расстоянии от центра эллипса О.

называется эксцентриситетом эллипса и является мерой его "сплюснутости" (при эллипс является окружностью, а при он вырождается в отрезок длиною). Если а

Гипербола - геометрическое множество точек плоскости, модуль разности расстояний от которых до двух точек и, называемых фокусами, есть величина постоянная 2a, меньшая, чем расстояние между фокусами 2c:

симметрична относительно осей координат. Она пересекает ось ОХ в точках и - вершинах гиперболы, и не пересекает оси ОY. Параметр а называется вещественной полуосью, b - мнимой полуосью. Число

называется эксцентриситетом гиперболы. Прямые

называются асимптотами гиперболы.

Гипербола, заданная каноническим уравнением:

называется сопряжённой (имеет те же асимптоты). Её фокусы расположены на оси OY.

Она пересекает ось ОY в точках и - вершинах гиперболы, и не пересекает оси ОX.В этом случае параметр b называется вещественной полуосью, a - мнимой полуосью. Эксцентриситет вычисляется по формуле:

Парабола - множество точек плоскости, равноудаленных от данной точки F, называемой фокусом, и данной прямой, называемой директрисой: .

Парабола, заданная указанным каноническим уравнением, симметрична относительно оси ОХ.

Уравнение

задает параболу, симметричную относительно оси ОY. Парабола

имеет фокус и директрису

Парабола

имеет фокус и директрису

Если р>0, то в обоих случаях ветви параболы обращены в положительную сторону соответствующей оси, а если р<0 - в отрицательную сторону.

Примеры решения задач.

1 .Написать каноническое уравнение гиперболы, зная что:

а ) расстояние между фокусами 2c=30, а между вершинами 2a=20;б ) вещественная полуось равна 5, эксцентриситет.Решение:

а ) по условию; ; ; ; из соотношений. Ответ: .

б ) по условию; , .

2 . Написать уравнение параболы, зная, что:

а ) парабола проходит через точки (0,0); (3,6) и симметрична относительно оси ОХ,

б ) парабола проходит через точки (0,0); (4,2) и симметрична относительно оси ОY.

Решение: а )

Точка (3,6) лежит на параболе, поэтому, - уравнение директрисы. - уравнение параболы

б ) Точка (4,2) лежит на параболе, поэтому - уравнение директрисы,

Уравнение параболы.

Приведение к каноническому виду общего уравнения кривой второго порядка

Рассмотрим в декартовой прямоугольной системе координат Oxy уравнение второго порядка общего вида:

Аx 2 + 2Вxy + Сy 2 + 2Dx + 2Еy + F = 0,

где не все коэффициенты А, В и С равны одновременно нулю.

Оно задаёт кривую второго порядка. Наша цель: поменять систему координат так, чтобы максимально упростить данное уравнение. Для этого сначала (если B0) повернём искодный базис (координатные оси Ox и Oy) на угол б против часовой стрелки таким образом, чтобы новые оси Ox" и Oy" стали параллельны осям кривой, при этом исчезнет слагаемое 2Вxy:

Матрица линейного преобразования: поворот на угол б против часовой стрелки.

Или, наоборот,

A(x"cosб - y"sinб) 2 + 2B(x"cosб - y"sinб)(x"sinб + y"cosб)+C(x"sinб + y"cosб) 2 + 2D(x"cosб - y"sinб) + 2E(x"sinб + y"cosб) + F = 0

Выберем угол б так, чтобы коэффициент при произведении x"y" обратился в ноль, т.е. чтобы выполнялось равенство:

2Acosбsinб + 2B(cos 2 б - sin 2 б) + 2Csinбcosб = 0

В новой системе координат Ox"y" (после поворота на угол б), учитывая, что

уравнение будет иметь вид

А"x" 2 + С"y" 2 + 2D"x" + 2Е"y" + F" = 0,

где коэффициенты А" и С" не равны одновременно нулю.

Следующий этап упрощения заключается в параллельном переносе осей Ox" и Oy" до совпадения их с осями кривой, при этом начало координат совпадёт с центром (или вершиной, в случае параболы) кривой. Техника преобразований на данном этапе заключается в выделении полного квадрата.

Таким образом, мы получим канонические уравнения кривых второго порядка. Всего возможны 9 качественно различных случаев (включая случаи вырождения и распадения):

1. (эллипс),

  • 2. (гипербола),
  • 3. px (парабола),
  • 4. (мнимый эллипс),
  • 5. (пара мнимых параллельных прямых),
  • 6. (пара параллельных прямых),
  • 7. (пара совпавших прямых),
  • 8. (точка (пара мнимых пересекающихся прямых)),
  • 9. (пара пересекающихся прямых).

Кривые 2-го порядка со смещенными центрами (вершинами).

Если в общем уравнении кривой 2-го порядка

в частности, В = 0, то есть отсутствует член с произведением переменных, то это означает, что оси кривой параллельны координатным. Рассмотрим уравнение:

  • (A и C одновременно). Можно показать, что при этом:1) Если АС > 0 (коэффициенты при квадратах переменных одного знака), то уравнение определяет эллипс;
  • 2) Если АС
  • 3) Если АС = 0 (один из членов с квадратом переменных отсутствует), то этим уравнением определяется парабола.

В каждом из случаев 1), 2), 3) могут встретиться вырожденные кривые, которыми мы заниматься не будем.

Для того, чтобы понять, как именно расположена кривая относительно системы координат и каковы ее параметры, уравнение можно преобразовать способом выделения полных квадратов. После этого уравнение примет вид одного из невырожденных уравнений кривой 2-го порядка со смещенным центром:

  • - это уравнение эллипса с центром и осями, параллельными осям и;

эти уравнения определяют гиперболы с центром и осями, параллельными координатным;

это параболы с вершиной и осью, параллельной одной из координатных.

Эллипс, гипербола и парабола как конические сечения. Теорема. Сечением любого круглого конуса плоскостью (не проходящей через его вершину) определяется кривая, которая может быть лишь эллипсом, гиперболой или параболой.

При этом, если плоскость пересекает только одну полость конуса и по замкнутой кривой, то эта кривая есть эллипс; если секущая плоскость пересекает только одну полость конуса и по незамкнутой кривой, то эта кривая - парабола; если плоскость пересекает обе полости конуса, то в сечении образуется гипербола.

Справедливость этой теоремы можно установить, исходя из того общего положения, что пересечение поверхности второго порядка плоскостью есть линия второго порядка.

Из рисунка видно, что, поворачивая секущую плоскость вокруг прямой PQ, мы меняем кривую сечения. Будучи, например, первоначально эллипсом, она на одно мгновение становится параболой, а затем превращается в гиперболу. Параболой эта кривая будет тогда, когда секущая плоскость параллельна касательной плоскости конуса.

Таким образом, эллипсы, гиперболы и параболы называются коническими сечениями .

Гипербола – это множество точек плоскости, разница расстояний которых от двух заданных точек, фокусов, есть постоянная величина и равна .

Аналогично эллипсу фокусы размещаем в точках , (см. рис. 1).

Рис. 1

Видно из рисунка, что могут быть случаи и title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> , тогда согласно определению

Известно, что в треугольнике разница двух сторон меньше третьей стороны, поэтому, например, с у нас получается:

Поднесём к квадрату обе части и после дальнейших преобразований найдём:

где . Уравнение гиперболы (1) – это каноническое уравнение гиперболы.

Гипербола симметрична относительно координатных осей, поэтому, как и для эллипса, достаточно построить её график в первой четверти, где:

Область значения для первой четверти .

При у нас есть одна из вершин гиперболы . Вторая вершина . Если , тогда из (1) – действительных корней нет. Говорят, что и – мнимые вершины гиперболы. Из соотношением получается, что при достаточно больших значениях есть место ближайшего равенства title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> . Поэтому прямая есть линией, расстояние между которой и соответствующей точкой гиперболы направляется к нулю при .

Форма и характеристики гиперболы

Исследуем уравнение (1) форму и расположение гиперболы.

  1. Переменные и входят в уравнение (1) в парных степенях. Поэтому, если точка принадлежит гиперболе, тогда и точки также принадлежат гиперболе. Значит, фигура симметрична относительно осей и , и точки , которая называется центром гиперболы.
  2. Найдём точки пересечения с осями координат. Подставив в уравнение (1) получим, что гипербола пересекает ось в точках . Положив получим уравнение , у которого нет решений. Значит, гипербола не пересекает ось . Точки называются вершинами гиперболы. Отрезок = и называется действительной осью гиперболы, а отрезок – мнимой осью гиперболы. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Прямоугольник, созданный осями и называется главным прямоугольником гиперболы.
  3. С уравнения (1) получается, что , то есть . Это означает, что все точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и левая от прямой (левая ветвь гиперболы).
  4. Возьмём на гиперболе точку в первой четверти, то есть , а поэтому . Так как 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> , при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция монотонно возрастает при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> . Аналогично, так как при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция выпуклая вверх при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> .

Асимптоты гиперболы

Есть две асимптоты гиперболы. Найдём асимптоту к ветви гиперболы в первой четверти, а потом воспользуемся симметрией. Рассмотрим точку в первой четверти, то есть . В этом случае , , тогда асимптота имеет вид: , где

Значит, прямая – это асимптота функции . Поэтому в силу симметрии асимптотами гиперболы есть прямые .

За установленными характеристиками построим ветвь гиперболы, которая находится в первой четверти и воспользуемся симметрией:

Рис. 2

В случае, когда , то есть гипербола описывается уравнением . В этой гиперболе асимптоты, которые и есть биссектрисами координатных углов .

Примеры задач на построение гиперболы

Пример 1

Задача

Найти оси, вершины, фокусы, ексцентриситет и уравнения асимптот гиперболы. Построить гиперболу и её асимптоты.

Решение

Сведём уравнение гиперболы к каноническому виду:

Сравнивая данное уравнение с каноническим (1) находим , , . Вершины , фокусы и . Ексцентриситет ; асмптоты ; Строим параболу. (см. рис. 3)

Написать уравнение гиперболы:

Решение

Записав уравнение асимптоты в виде находим отношение полуосей гиперболы . По условию задачи следует, что . Поэтому Задачу свели к решению системы уравнений:

Подставляя во второе уравнение системы, у нас получится:

откуда . Теперь находим .

Следовательно, у гиперболы получается такое уравнение:

Ответ

.

Гипербола и её каноническое уравнение обновлено: Июнь 17, 2017 автором: Научные Статьи.Ру


В этой статье мы разберем, как выполняется вычитание отрицательных чисел из произвольных чисел. Здесь мы дадим правило вычитания отрицательных чисел, и рассмотрим примеры применения этого правила.

Навигация по странице.

Правило вычитания отрицательных чисел

Имеет место следующее правило вычитания отрицательных чисел : чтобы из числа a вычесть отрицательное число b , нужно к уменьшаемому a прибавить число −b , противоположное вычитаемому b .

В буквенном виде правило вычитания отрицательного числа b из произвольного числа a выглядит так: a−b=a+(−b) .

Докажем справедливость данного правила вычитания чисел.

Для начала напомним смысл вычитания чисел a и b . Найти разность чисел a и b - это значит найти такое число с , сумма которого с числом b равна a (смотрите связь вычитания со сложением). То есть, если найдено число с такое, что c+b=a , то разность a−b равна c .

Таким образом, чтобы доказать озвученное правило вычитания, достаточно показать, что прибавление к сумме a+(−b) числа b даст число a . Чтобы это показать, обратимся к свойствам действий с действительными числами . В силу сочетательного свойства сложения справедливо равенство (a+(−b))+b=a+((−b)+b) . Так как сумма противоположных чисел равна нулю, то a+((−b)+b)=a+0 , а сумма a+0 равна a , так как прибавление нуля не изменяет число. Таким образом, доказано равенство a−b=a+(−b) , а значит, доказана и справедливость приведенного правила вычитания отрицательных чисел.

Мы доказали данное правило для действительных чисел a и b . Однако, это правило справедливо и для любых рациональных чисел a и b , а также для любых целых чисел a и b , так как действия с рациональными и целыми числами тоже обладают свойствами, которые мы использовали при доказательстве. Отметим, что с помощью разобранного правила можно выполнять вычитание отрицательного числа как из положительного числа, так и из отрицательного числа, а также из нуля.

Осталось рассмотреть, как выполняется вычитание отрицательных чисел с помощью разобранного правила.

Примеры вычитания отрицательных чисел

Рассмотрим примеры вычитания отрицательных чисел . Начнем с решения простого примера, чтобы разобраться со всеми тонкостями процесса, не утруждаясь вычислениями.

Пример.

Отнимите от отрицательного числа −13 отрицательное число −7 .

Решение.

Числом, противоположным вычитаемому −7 , является число 7 . Тогда по правилу вычитания отрицательных чисел имеем (−13)−(−7)=(−13)+7 . Осталось выполнить сложение чисел с разными знаками , получаем (−13)+7=−(13−7)=−6 .

Вот все решение: (−13)−(−7)=(−13)+7=−(13−7)=−6 .

Ответ:

(−13)−(−7)=−6 .

Вычитание дробных отрицательных чисел можно выполнить, осуществив переход к соответствующим обыкновенным дробям , смешанным числам или десятичным дробям . Здесь стоит отталкиваться от того, с какими числами удобнее работать.

Пример.

Выполните вычитание из числа 3,4 отрицательного числа .

Решение.

Применив правило вычитания отрицательных чисел, имеем . Теперь заменим десятичную дробь 3,4 смешанным числом: (смотрите перевод десятичных дробей в обыкновенные дроби), получаем . Осталось выполнить сложение смешанных чисел : .

На этом вычитание отрицательного числа из числа 3,4 завершено. Приведем краткую запись решения: .

Ответ:

.

Пример.

Отнимите отрицательное число −0,(326) от нуля.

Решение.

По правилу вычитания отрицательных чисел имеем 0−(−0,(326))=0+0,(326)=0,(326) . Последний переход справедлив в силу свойства сложения числа с нулем.

Сложение отрицательных чисел.

Сумма отрицательных чисел есть число отрицательное. Модуль суммы равен сумме модулей слагаемых .

Давайте разберемся, почему же сумма отрицательных чисел будет тоже отрицательным числом. Поможет нам в этом координатная прямая, на которой мы выполним сложение чисел -3 и -5. Отметим на координатной прямой точку, соответствующее числу -3.

К числу -3 нам нужно прибавить число -5. Куда мы пойдем от точки, соответствующей числу -3? Правильно, влево! На 5 единичных отрезков. Отмечаем точку и пишем число ей соответствующее. Это число -8.

Итак, при выполнении сложения отрицательных чисел с помощью координатной прямой мы все время находимся слева от начала отсчета, поэтому, понятно, что результат сложения отрицательных чисел есть число тоже отрицательное.

Примечание. Мы складывали числа -3 и -5, т.е. находили значение выражения -3+(-5). Обычно при сложении рациональных чисел просто записывают эти числа с их знаками, как бы перечисляют все числа, которые нужно сложить. Такую запись называют алгебраической суммой. Применяют (в нашем примере) запись: -3-5=-8.

Пример. Найти сумму отрицательных чисел: -23-42-54. (Согласитесь, что эта запись короче и удобнее вот такой: -23+(-42)+(-54))?

Решаем по правилу сложения отрицательных чисел: складываем модули слагаемых: 23+42+54=119. Результат будет со знаком «минус».

Записывают обычно так: -23-42-54=-119.

Сложение чисел с разными знаками.

Сумма двух чисел с разными знаками имеет знак слагаемого с большим модулем. Чтобы найти модуль суммы, нужно из большего модуля вычесть меньший .

Выполним сложение чисел с разными знаками с помощью координатной прямой.

1) -4+6. Требуется к числу -4 прибавить число 6. Отметим число -4 точкой на координатной прямой. Число 6 — положительное, значит от точки с координатой -4 нам нужно идти вправо на 6 единичных отрезков. Мы оказались справа от начала отсчета (от нуля) на 2 единичных отрезка.

Результат суммы чисел -4 и 6 — это положительное число 2:

— 4+6=2. Как можно было получить число 2? Из 6 вычесть 4, т.е. из большего модуля вычесть меньший. У результата тот же знак, что и у слагаемого с большим модулем.

2) Вычислим: -7+3 с помощью координатной прямой. Отмечаем точку, соответствующую числу -7. Идем вправо на 3 единичных отрезка и получаем точку с координатой -4. Мы были и остались слева от начала отсчета: ответ — отрицательное число.

— 7+3=-4. Этот результат мы могли получить так: из большего модуля вычли меньший, т.е. 7-3=4. В результате поставили знак слагаемого, имеющего больший модуль: |-7|>|3|.

Примеры. Вычислить: а) -4+5-9+2-6-3; б) -10-20+15-25.

В этой статье мы поговорим про сложение отрицательных чисел . Сначала дадим правило сложения отрицательных чисел и докажем его. После этого разберем характерные примеры сложения отрицательных чисел.

Навигация по странице.

Прежде чем дать формулировку правила сложения отрицательных чисел, обратимся к материалу статьи положительные и отрицательные числа. Там мы упоминали, что отрицательные числа можно воспринимать как долг, а модуль числа в этом случае определяет величину этого долга. Следовательно, сложение двух отрицательных чисел – это есть сложение двух долгов.

Этот вывод позволяет осознать правило сложения отрицательных чисел . Чтобы сложить два отрицательных числа, нужно:

  • сложить их модули;
  • поставить перед полученной суммой знак минус.

Запишем правило сложения отрицательных чисел −a и −b в буквенном виде: (−a)+(−b)=−(a+b) .

Понятно, что озвученное правило сводит сложение отрицательных чисел к сложению положительных чисел (модуль отрицательного числа является числом положительным). Также понятно, что результатом сложения двух отрицательных чисел является отрицательное число, о чем свидетельствует знак минус, который ставится перед суммой модулей.

Правило сложения отрицательных чисел можно доказать, основываясь на свойствах действий с действительными числами (или таких же свойствах действий с рациональными или целыми числами). Для этого достаточно показать, что разность левой и правой частей равенства (−a)+(−b)=−(a+b) равна нулю.

Так как вычитание числа – это все равно, что прибавление противоположного числа (смотрите правило вычитания целых чисел), то (−a)+(−b)−(−(a+b))=(−a)+(−b)+(a+b) . В силу переместительного и сочетательного свойств сложения имеем (−a)+(−b)+(a+b)=(−a+a)+(−b+b) . Так как сумма противоположных чисел равна нулю, то (−a+a)+(−b+b)=0+0 , а 0+0=0 в силу свойства сложения числа с нулем. Этим доказано равенство (−a)+(−b)=−(a+b) , а значит, и правило сложения отрицательных чисел.

Таким образом, данное правило сложения применимо как к отрицательным целым числам, так и к рациональным числам, а также к действительным числам.

Осталось лишь научиться применять правило сложения отрицательных чисел на практике, что мы и сделаем в следующем пункте.

Примеры сложения отрицательных чисел

Разберем примеры сложения отрицательных чисел . Начнем с самого простого случая – сложения отрицательных целых чисел, сложение будем проводить по правилу, рассмотренному в предыдущем пункте.

Выполните сложение отрицательных чисел −304 и −18 007 .

Выполним все шаги правила сложения отрицательных чисел.

Сначала находим модули складываемых чисел: и . Теперь нужно сложить полученные числа, здесь удобно выполнить сложение столбиком:

Теперь ставим знак минус перед полученным числом, в результате имеем −18 311 .

Запишем все решение в краткой форме: (−304)+(−18 007)= −(304+18 007)=−18 311 .

Сложение отрицательных рациональных чисел в зависимости от самих чисел можно свести либо к сложению натуральных чисел, либо к сложению обыкновенных дробей, либо к сложению десятичных дробей.

Сложите отрицательное число и отрицательное число −4,(12) .

По правилу сложения отрицательных чисел сначала нужно вычислить сумму модулей. Модули складываемых отрицательных чисел равны соответственно 2/5 и 4,(12) . Сложение полученных чисел можно свести к сложению обыкновенных дробей. Для этого переведем периодическую десятичную дробь в обыкновенную дробь: . Таким образом, 2/5+4,(12)=2/5+136/33 . Теперь выполним сложение дробей с разными знаменателями: .

Осталось поставить перед полученным числом знак минус: . На этом сложение исходных отрицательных чисел завершено.

По этому же правилу сложения отрицательных чисел складываются и отрицательные действительные числа. Здесь стоит отметить, что результат сложения действительных чисел очень часто записывается в виде числового выражения, а значение этого выражение вычисляется приближенно, и то при необходимости.

Для примера найдем сумму отрицательных чисел и −5 . Модули этих чисел равны квадратному корню из трех и пяти соответственно, а сумма исходных чисел равна . В таком виде и записывается ответ. Другие примеры можно посмотреть в статье сложение действительных чисел .

www.cleverstudents.ru

Правило как сложить два отрицательных числа

Действия с отрицательными и положительными числами

Абсолютная величина (модуль). Сложение.

Вычитание. Умножение. Деление.

Абсолютная величина (модуль). Для отрицательного числа – это положительное число, получаемое от перемены его знака с « – » на « + »; для положительного числа и нуля – само это число. Для обозначения абсолютной величины (модуля) числа используются две прямые черты, внутри которых записывается это число.

П р и м е р ы: | – 5 | = 5, | 7 | = 7, | 0 | = 0.

1) при сложении двух чисел с одинаковыми знаками складываются

их абсолютные величины и перед суммой ставится общий знак.

2) при сложении двух чисел с разными знаками их абсолютные

величины вычитаются (из большей меньшая) и ставится знак

числа с большей абсолютной величиной.

Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.

(+ 8) – (+ 5) = (+ 8) + (– 5) = 3;

(+ 8) – (– 5) = (+ 8) + (+ 5) = 13;

(– 8) – (– 5) = (– 8) + (+ 5) = – 3;

(– 8) – (+ 5) = (– 8) + (– 5) = – 13;

Умножение. При умножении двух чисел их абсолютные величины умножаются, а произведение принимает знак « + » , если знаки сомножителей одинаковы, и знак « – » , если знаки сомножителей разные.

Полезна следующая схема (правила знаков при умножении ):

При умножении нескольких чисел (двух и более) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.

Деление. При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.

Здесь действуют те же правила знаков, что и при умножении :

Сложение отрицательных чисел

Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси.

Сложение чисел с помощью координатной прямой

Сложение небольших по модулю чисел удобно выполнять на координатной прямой, мысленно представляя себе как точка, обозначающая число передвигается по числовой оси.

Возьмём какое-нибудь число, например, 3 . Обозначим его на числовой оси точкой « A ».

Прибавим к числу положительное число 2 . Это будет означать, что точку « A » надо переместить на два единичных отрезка в положительном направлении, то есть вправо. В результате мы получим точку « B » с координатой 5 .

Для того чтобы к положительному числу, например, к 3 прибавить отрицательное число « −5 », точку « A » надо переместить на 5 единиц длины в отрицательном направлении, то есть влево.

В этом случае координата точки « B » равна - « 2 ».

Итак, порядок сложения рациональных чисел с помощью числовой оси будет следующим:

  • отметить на координатной прямой точку « A » с координатой равной первому слагаемому;
  • передвинуть её на расстояние, равное модулю второго слагаемого в направлении, которое соответствует знаку перед вторым числом (плюс - передвигаем вправо, минус - влево);
  • полученная на оси точка « B » будет иметь координату, которая будет равна сумме данных чисел.
  • Двигаясь от точки - 2 влево (так как перед 6 стоит знак минус), получим - 8 .

    Сложение чисел с одинаковыми знаками

    Складывать рациональные числа можно проще, если использовать понятие модуля.

    Пускай нам нужно сложить числа, которые имеют одинаковые знаки.

    Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

    Пример сложения отрицательных чисел.

    Чтобы сложить числа одного знака надо сложить их модули и поставить перед суммой знак, который был перед слагаемыми.

    Сложение чисел с разными знаками

    Если числа имеют разные знаки, то действуем несколько по-иному, чем при сложении чисел с одинаковыми знаками.

  • Отбрасываем знаки перед числами, то есть берём их модули.
  • Из большего модуля вычитаем меньший.
  • Перед разностью ставим тот знак, который был у числа с бóльшим модулем.
  • Пример сложения отрицательного и положительного числа .

    Пример сложения смешанных чисел.

    Чтобы сложить числа разного знака надо:

    • из бóльшего модуля вычесть меньший модуль;
    • перед полученной разностью поставить знак числа, имеющего больший модуль.
    • Сложение и вычитание положительных и отрицательных чисел

      Ничего непонятно?

      Попробуй обратиться за помощью к преподавателям

      Правило сложения отрицательных чисел

      Для сложения двух отрицательных чисел необходимо:

    • выполнить сложение их модулей;
    • дописать к полученной сумме знак «–».
    • Согласно правилу сложения можно записать:

      Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.

      Сложить отрицательные числа $−185$ и $−23 \ 789.$

      Воспользуемся правилом сложения отрицательных чисел.

      Выполним сложение полученных чисел:

      $185+23 \ 789=23 \ 974$.

      Поставим знак $«–»$ перед найденным числом и получим $−23 974$.

      Краткая запись решения: $(−185)+(−23 \ 789)=−(185+23 \ 789)=−23 \ 974$.

      При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.

      Сложить отрицательные числа $-\frac $ и $−7,15$.

      Согласно правилу сложения отрицательных чисел сначала необходимо найти сумму модулей:

      Полученные значения удобно свести к десятичным дробям и выполнить их сложение:

      Поставим перед полученным значением знак $«–»$ и получим $–7,4$.

      Краткая запись решения:

      Сложение чисел с противоположными знаками

      Правило сложения чисел с противоположными знаками:

    • вычислить модули чисел;
    • выполнить сравнение полученных чисел:
    • если они равны, то исходные числа являются противоположными и их сумма равна нулю;

      если они не равны, то нужно запомнить знак числа, у которого модуль больше;

    • из большего модуля вычесть меньший;
    • перед полученным значением поставить знак того числа, у которого модуль больше.
    • Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.

      Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.

      Сложить числа $4$ и $−8$.

      Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.

      Найдем модули данных чисел:

      Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.

      Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$

      Лень читать?

      Задай вопрос специалистам и получи
      ответ уже через 15 минут!

      Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.

      Вычитание отрицательных чисел

      Правило вычитания отрицательных чисел:

      Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.

      Согласно правилу вычитания можно записать:

      Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.

      Вычесть из отрицательного числа $−28$ отрицательное число $−5$.

      Противоположное число для числа $–5$ – это число $5$.

      Согласно правилу вычитания отрицательных чисел получим:

      Выполним сложение чисел с противоположными знаками:

      Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

      При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.

      Вычитание чисел с противоположными знаками

      Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.

      Вычесть положительное число $7$ из отрицательного числа $−11$.

      Противоположное число для числа $7$ – это число $–7$.

      Согласно правилу вычитания чисел с противоположными знаками получим:

      Выполним сложение отрицательных чисел:

      При вычитании дробных чисел с противоположными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.

      Так и не нашли ответ
      на свой вопрос?

      Просто напиши с чем тебе
      нужна помощь

      Сложение отрицательных чисел: правило, примеры

      В рамках этого материала мы затронем такую важную тему, как сложение отрицательных чисел. В первом параграфе мы расскажем основное правило для этого действия, а во втором – разберем конкретные примеры решения подобных задач.

      Основное правило сложения натуральных чисел

      Перед тем, как вывести правило, вспомним, что мы вообще знаем о положительных и отрицательных числах. Ранее мы условились, что отрицательные числа нужно воспринимать как долг, убыток. Модуль отрицательного числа выражает точные размеры этого убытка. Тогда сложение отрицательных чисел можно представить как сложение двух убытков.

      Воспользовавшись этим рассуждением, сформулируем основное правило сложения отрицательных чисел.

      Для того чтобы выполнить сложение отрицательных чисел , нужно сложить значения их модулей и поставить минус перед полученным результатом. В буквенном виде формула выглядит как (− a) + (− b) = − (a + b) .

      Исходя из этого правила, можно сделать вывод, что сложение отрицательных чисел аналогично сложению положительных, только в итоге у нас обязательно должно получиться отрицательное число, ведь перед суммой модулей надо ставить знак минус.

      Какие можно привести доказательства этого правила? Для этого нам потребуется вспомнить основные свойства действий с действительными числами (или с целыми, или с рациональными –они одинаковы для всех этих типов чисел). Для доказательства нам нужно всего лишь продемонстрировать, что разность левой и правой части равенства (− a) + (− b) = − (a + b) будет равна 0 .

      Вычесть одно число из другого – это то же самое, что и прибавить к нему такое же противоположное число. Следовательно, (− a) + (− b) − (− (a + b)) = (− a) + (− b) + (a + b) . Вспомним, что числовые выражения со сложением обладают двумя основными свойствами – сочетательным и переместительным. Тогда мы можем сделать вывод, что (− a) + (− b) + (a + b) = (− a + a) + (− b + b) . Поскольку, сложив противоположные числа, мы всегда получаем 0 , то (− a + a) + (− b + b) = 0 + 0 , а 0 + 0 = 0 .Наше равенство можно считать доказанным, значит, и правило сложения отрицательных чисел мы тоже доказали.

      Задачи на сложение отрицательных чисел

      Во втором параграфе мы возьмем конкретные задачи, где нужно складывать отрицательные числа, и попробуем применить в них изученное правило.

      Найдите сумму двух отрицательных чисел — 304 и — 18 007 .

      Решение

      Выполним действия пошагово. Сначала нам надо найти модули складываемых чисел: — 304 = 304 , — 180007 = 180007 . Далее нам нужно выполнить действие сложения, для чего мы используем метод подсчета столбиком:

      Все, что нам осталось, – это поставить минус перед результатом и получить — 18 311 .

      Ответ: — — 18 311 .

      От того, какие у нас числа, зависит, к чему мы можем свести действие сложения: к нахождению суммы натуральных чисел, к сложению обыкновенных или десятичных дробей. Разберем задачу с такими числами.

      Найдите сумму двух отрицательных чисел — 2 5 и − 4 , (12) .

      Находим модули искомых чисел и получаем 2 5 и 4 , (12) . У нас получились две разные дроби. Сведем задачу к сложению двух обыкновенных дробей, для чего представим периодическую дробь в виде обыкновенной:

      4 , (12) = 4 + (0 , 12 + 0 , 0012 + . . .) = 4 + 0 , 12 1 — 0 , 01 = 4 + 0 , 12 0 , 99 = 4 + 12 99 = 4 + 4 33 = 136 33

      В итоге мы получили дробь, которую будет легко сложить с первым исходным слагаемым (если вы забыли, как правильно складывать дроби с разными знаменателями, повторите соответствующий материал).

      2 5 + 136 33 = 2 · 33 5 · 33 + 136 · 5 33 · 5 = 66 165 + 680 165 = 764 165 = 4 86 105

      В итоге мы получили смешанное число, перед которым нам осталось только поставить минус. На этом расчеты завершены.

      Ответ: — 4 86 105 .

      Действительные отрицательные числа складываются аналогичным образом. Результат такого действия принято записывать числовым выражением. Его значение можно и не вычислять или ограничиться примерными расчетами. Так, к примеру, если нам надо найти сумму — 3 + (− 5) , то ответ мы записываем как — 3 − 5 . Сложению действительных чисел мы посвятили отдельный материал, в котором можно найти и другие примеры.