Свет в физике. Свет в полевой физике. Свет как электромагнитная волна

Современная физическая оптика рассматривает свет как разновидность электромагнитных волн, воспринимаемых глазом человека. Другими словами можно сказать, что свет - это видимое электромагнитное излучение.

Видимый свет

Как известно, электромагнитные волны различаются частотой и длиной волны. И в зависимости от этих значений электромагнитное излучение делят по частотным диапазонам.

Вне физической оптики к понятию «свет» относят также электромагнитные волны, не видимые глазом человека, в инфракрасном диапазоне с длиной волны 1 мм - 780 нм и частотой 300 ГГц - 429 ТГц и в ультрафиолетовом диапазоне с длиной волны 380 - 10 нм и частотой 7,5·10 14 Гц - 3·10 16 Гц.

Инфракрасное, видимое и ультрафиолетовое излучения называют оптической областью спектра . Верхняя граница оптического диапазона является длинноволновой границей инфракрасного излучения, а нижняя - коротковолновой границей ультрафиолетового излучения. Таким образом, диапазон оптического излучения - от 1 мм до 10 нм.

Как же возникает свет? Оказывается, он образуется в результате процессов, происходящих внутри атомов при изменении их состояния. При этом возникает поток частиц, называемых фотонами. Они не имеют массы, но обладают энергией.

Получается, что свет одновременно обладает свойствами электромагнитной волны и свойствами дискретных частиц - фотонов.

Источники света

Любое тело, излучающее электромагнитные волны с частотой, расположенной в диапазоне видимого света, можно назвать источником света. Все источники света делятся на естественные, созданные самой природой, и искусственные, созданные людьми.

Самый важный естественный источник света на Земле - это, конечно же, Солнце. Оно даёт нам не только свет, но и тепло. Благодаря энергии солнечного света на нашей планете существует жизнь. Свет излучают Луна, звёзды, кометы и другие космические тела. Источниками естественного света могут быть не только тела, но и природные явления. Во время грозы мы видим, каким мощным светом озаряет всё вокруг вспышка молнии. Полярные сияния, светящиеся живые организмы, минералы и др. - это тоже природные источники света.

Самым первым и самым древним искусственным источником света можно назвать огонь костра. Позднее люди научились использовать другие виды топлива и создавать переносные источники света: свечи, факелы, масляные лампы, газовые фонари и др. Все эти источники были основаны на горении и вместе со светом выделяли большое количество тепла.

С изобретением электричества появились электрические лампочки, до сих пор использующиеся людьми в качестве источников света.

Геометрическая оптика

Распространение света в прозрачной среде, его отражение от зеркально-отражающихся поверхностей, преломление на границе двух прозрачных сред происходит по определённым законам, изучением которых занимается геометрическая оптика.

Для изучения различных световых явлений в геометрической оптике применяются такие понятия, как точечный источник света и световой луч.

Основное понятие геометрической оптики - световой луч .

Обычная лампа распространяет свет равномерно во все стороны. Закроем эту лампу непрозрачным материалом таким образом, чтобы свет, излучаемый ею, мог проходить лишь в небольшое узкое отверстие. Через него пойдёт узкий световой поток, направленный вдоль прямой линии. Эта линия, вдоль которой распространяется световой пучок, называется световым лучом. Направление этого луча не зависит от его поперечных размеров.

Свечи, фонари, лампы и другие источники света имеют довольно большие размеры по сравнению с расстоянием, на которое распространяется их свет. Их называют протяжёнными источниками света . Точечным источником света считается такой источник, размерами которого можно пренебречь по сравнению с расстоянием, до которого доходит этот свет. Например, космическая звезда, имеющая на самом деле огромные размеры, может считаться точечным источником света, так как расстояние, на которое этот свет распространяется, огромно по сравнению с размерами самой звезды.

Рассмотрим основные законы геометрической оптики.

Закон прямолинейного распространения света

В прозрачной однородной среде свет распространяется прямолинейно. Доказательством этого закона служит опыт, в котором свет от точечного источника проходит через небольшое отверстие в экране. В результате образуется узкий световой пучок, а в плоскости, расположенной за экраном параллельно ему, появляется правильный световой круг с центром на прямой, вдоль которой свет распространяется.

Разместим между источником света и экраном небольшой предмет. На экране мы увидим тень этого предмета. Тень - это область, куда не попадает световой луч. Её появление объясняется прямолинейным распространением света. Если источник света точечный, то образуется только тень. Если же его размеры довольно велики по сравнению с расстоянием до предмета, то создаются тень и полутень. Ведь в этом случае световые лучи исходят от каждой точки источника. Некоторые из них, попадая в область тени, подсвечивают её края, и тем самым создают полутень - область, в которую световые лучи попадают частично.

Закон прямолинейного распространения объясняет природу солнечного и лунного затмений. Солнечное затмение происходит, когда Луна располагается между Солнцем и Землёй, и тень от Луны падает на Землю.

Закон прямолинейного распространения света использовали ещё древние греки при установке колонн. Если колонны расположить строго по прямой линии, то самая ближайшая из них зрительно закроет собой все остальные.

Закон отражения света

Если на пути светового луча встречается отражающая поверхность, то световой луч меняет своё направление. Падающий и отражённый лучи и нормаль (перпендикуляр) к отражающей поверхности, восстановленная в точке падения, лежат в одной плоскости. Угол между лучами делится этой нормалью на две равные части. Наиболее распространённая формулировка закона отражения: «Угол падения равен углу отражения ». Но это определение не указывает направление отражённого луча. Между тем отражённый луч пойдёт в направлении, обратном падающему лучу.

Если размеры неровностей поверхности меньше длины световой волны, то лучи, падающие параллельным потоком, отразятся зеркально и также пойдут параллельными потоками.

Если же размеры неровностей превышают длину волны, то узкий пучок будет рассеиваться, и отражённые лучи пойдут по разным направлениям. Такое отражение называют диффузным , или рассеянным . Но, несмотря на беспорядочное рассеивание, закон отражения выполняется и в этом случае. Для любого луча угол падения и угол отражения будут равны.

Закон преломления света

Опустим карандаш в чашку с водой. Зрительно нам кажется, что он словно переломился надвое на поверхности воды. На самом деле с карандашом ничего не произошло. Причина в том, что луч света падает на поверхность воды под одним углом, а уходит вглубь под другим. Из-за этого искажаются размеры и расположение физических тел.

Изменение направления светового луча на границе раздела двух прозрачных для световых волн сред называют преломлением света.

Закон, описывающий преломление световых волн, называется законом Снеллиуса (Снелля или Снелля) по имени его автора - голландского математика Виллеброрда Снеллиуса, открывшего его в 1621 г.

Согласно этому закону угол падения света на поверхность раздела и угол преломления связаны отношением:

n 1 sinƟ 1 = n 2 sinƟ 2 ,

или sin Ɵ 1 / sin Ɵ 2 = n 2 / n 1 ,

где n 1 - показатель преломления среды, из которой свет падает на границу раздела;

Ɵ 1 - угол между падающим на поверхность раздела световым лучом и нормалью к этой поверхностью;

n 2 - показатель преломления среды, в которую попадает свет после границы раздела;

Ɵ 2 - угол между прошедшим поверхность раздела лучом и нормалью к этой поверхности.

Показатель преломления среды - это отношение скорости света в вакууме к его скорости в данной среде:

n = c/v

Чем больше он отличается от единицы, тем бóльшим будет угол отклонения светового луча при переходе из вакуума в среду.

Отношение n 2 / n 1 называют относительным показателем преломления .

Луч света, входящий в более плотную среду, образует с нормалью к этой поверхности меньший угол, то есть преломляется вниз. Но в реальности кажется, что этот угол, наоборот, бóльший, чем угол падения. В результате этого мы наблюдаем искажение размеров, формы и расположения предметов. Предметы, находящиеся в воде, кажутся нам бóльшими, чем они есть на самом деле, и расположенными выше. Так, купальщики часто ошибаются, оценивая глубину водоёма. Они видят дно приподнятым, а глубина кажется им меньшей.

Из-за преломления солнечного света в атмосфере мы наблюдает восход Солнца немного раньше, а закат немного позже, чем эти явления происходили бы, если бы атмосферы не было.

На основе явления преломления построены объективы фото- и кинокамер, микроскопов, телескопов, биноклей и других оптических приборов, в составе которых есть оптические линзы или призмы.

При переходе света из более плотной среды в менее плотную (например, из воды в воздух) можно наблюдать полное внутреннее отражение светового луча . Оно возникает, когда угол падения равен некоторому значению, называемому предельным углом полного внутреннего отражения . При этом падающие лучи полностью отражаются от поверхности раздела. Преломлённые лучи исчезают совсем.

Это явление используют в волоконных светодиодах, которые изготавливают из оптически прозрачного материала. Они представляют собой очень тонкие нити. Свет, попадающий в них, полностью отражается от внутренних боковых поверхностей и распространяется на большие расстояния.

Геометрическая оптика рассматривает свойства света без учёта его волновой теории и квантовых явлений. Конечно, точно описывать оптические явления она не может. Но так как её законы намного проще по сравнению с обобщающими волновыми законами, то её широко используют при расчёте оптических систем.

Когда-то в древности люди считали, что наша способность видеть обусловлена некими лучами, исходящими из глаз и как-бы «ощупывающими» поверхность предметов. Каким бы смешным сегодня не казалось подобное представление, задумайтесь - а вы знаете, что такое свет? Откуда он берется? Как мы воспринимаем его, и почему разные предметы имеют разный цвет?

Включите лампочку и поднесите к ней руку. Вы ощутите исходящее от лампочки тепло. Соответственно, свет - это излучение. Всякое излучение переносит энергию, однако далеко не всякое излучение мы можем воспринимать зрительно. Сделаем вывод, что свет - это видимое излучение.

Свойства света

Опытным путем установлено, что свет имеет электромагнитную природу, поэтому можно дополнить наше определение следующим образом: свет - это видимое электромагнитное излучение.

Свет может проходить сквозь прозрачные тела и вещества. Поэтому свет солнца проникает к нам через атмосферу, хотя при этом свет преломляется . А встречаясь с непрозрачными предметами, свет отражается от них, и мы можем воспринимать этот отраженный свет глазом, и таким образом видим.

Часть света при этом впитывается предметами, и они нагреваются. Темные предметы нагреваются сильнее светлых, соответственно, большая часть света впитывается ими, а отражается меньшая. Поэтому эти предметы выглядят для нас темными.

Больше всего света впитывают предметы черного цвета. Именно поэтому летом в жару не стоит одевать черные вещи, потому что можно получить тепловой удар. По этой же причине летом мамы обязательно надевают детям светлые головные уборы, которые нагреваются значительно меньше, чем волосы, имеющие более темный цвет.

Источники света

Тела, от которых свет исходит, называются источниками света. Различают естественные и искусственные источники света. Самый известный абсолютно всем жителям нашей планеты естественный источник света - это Солнце.

Солнце - это не только источник видимого света, но и тепла, вследствие которого и возможна жизнь на Земле. Другие естественные источники света - это звезды, атмосферные явления типа молнии, живые существа, такие как светлячки, и так далее.

Благодаря человеку существуют также и искусственные источники. Раньше для людей основным источником света в темное время был огонь: свечи, факелы, газовые горелки и так далее. В наше время наиболее распространенными являются электрические источники света. Причем они подразделяются в свою очередь на тепловые (лампы накаливания) и люминесцентные (лампы дневного света, газосветовые лампы).

Распространение света

Еще одно свойство света - это прямолинейное распространение. Свет не может огибать препятствия, поэтому за непрозрачным предметом образуется тень. Тень часто является не совсем черной, потому что туда попадают различные отраженные и рассеянные лучи света от других предметов.

Вечером ты повернул выключатель, и комната наполнилась светом. Опять повернул выключатель - стало темно. Куда же девался свет, наполнявший комнату?

Ты всегда можешь показать, где находится источник света, потому что свет от него идёт к тебе по прямой линии. Именно потому, что свет распространяется прямолинейно, всякий предмет, освещённый только с одной стороны, отбрасывает в другую сторону тень. Если бы свет мог обогнуть этот предмет, тень не получилась бы.

Когда свет встречает препятствие, хотя бы часть света отражается, попадает к нам в глаза, и мы видим предметы, которые сами не излучают света. Особенно хорошо отражает лучи гладкая поверхность, например водная гладь или изготовленное людьми зеркало.

Когда свет падает на поверхность воды, он не только отражается. Часть света проходит в воду, освещает дно и рыб, поэтому мы их видим. При этом световые лучи немного меняют своё направление, преломляются. Отражённые дном лучи, выходя из воды в воздух, тоже меняют своё направление. Поэтому ручей всегда кажется менее глубоким, а рыбы - ближе к поверхности.

Прямолинейное распространение, отражение и преломление - основные свойства света. Но они не полностью объясняют, что такое свет.

Первым, кто попытался разгадать природу света, был великий английский учёный . Он предположил, что луч света - это поток мельчайших частиц- корпускул. Однако уже в то время другой учёный - голландец Гюйгенс считал, что свет - это своеобразные , чем-то похожие на волны звука в воздухе. Но поскольку воздуха в космосе нет, последователям Гюйгенса пришлось предположить, что всё космическое пространство заполнено каким-то особым веществом - эфиром.

Корпускулярная теория Ньютона и волновая теория, начало которой положил Гюйгенс, два столетия спорили между собой.

В середине 19 в. удалось более или менее точно измерить скорость распространения света, хотя и до наших дней её величина уточняется. В пустоте скорость света - около 300 тысяч километров в секунду- самая большая из всех возможных скоростей в природе. В воздухе она почти такая же, а в воде - 3/4 скорости света в воздухе.

Всё, что было известно к этому времени о свете, как будто подтверждало правильность волновой природы света. Однако эта теория не могла существовать без выдуманного эфира. И когда точно определили, что никакого мирового эфира не существует, появилась другая теория света.

Английский учёный прошлого века Максвелл установил, что свет - это не волны, подобные звуковым, а особые, электромагнитные, способные распространяться и в полной пустоте, такие же, как волны .

Ещё лучше познали люди природу света в нашем веке в связи с успехами в изучении атома. Оказалось, что , протон, нейтрон обладают не только свойствами частиц, «кусочков» вещества, но и свойствами волн. Точно так же и свет - это не только волны, но в то же время и частицы, которые назвали фотонами. Таким образом, две враждовавшие некогда теории - корпускулярная и волновая- как бы объединились.

Когда какое-либо тело светится, это означает, что в нём рождаются фотоны. Они рождаются, когда атомные частицы сталкиваются или изменяют путь своего движения. От того, какая это частица и как изменился её путь, зависит длина волны излучения, цвет луча. Поэтому свет, его , может рассказать о веществе, которое испускает лучи. Многие наши знания о звёздах и других небесных телах получены при изучении их света, дошедшего до Земли.

Когда свет падает на какое-либо тело, он не только отражается и преломляется, но и поглощается. Это означает, что фотоны исчезают. При этом они вызывают движение атомных частиц в поглотившем их теле. Получая энергию фотонов, предмет нагревается, от одних лучей сильнее, от других почти незаметно. Таким образом, свет всё время излучается и всё время поглощается. Он не знает покоя, всегда мчится с невообразимой скоростью и переносит от вещества к веществу.

Вот теперь мы можем ответить на вопрос, с которого начали этот рассказ: куда девается свет, «наполнявший» комнату? Когда ты только зажёг лампу, комната мгновенно осветилась: скорость света слишком велика, чтобы мы могли заметить, как свет идёт от лампы к стенам. И всё время, пока лампа горела, испускаемый ею свет за ничтожный миг покрывал расстояние до стен, потолка, мебели и поглощался ими. А когда лампа погасла, последние «порции» света также мгновенно пролетели свой путь и исчезли в веществе окружающих тебя предметов.

Большую часть информации об окружающем мире человек воспринимает через органы зрения. Но сами глаза способны видеть лишь один вид энергии - электромагнитную, да и то в очень узком световом диапазоне. Так что такое свет? Какие известные источники видимого излучения использует человек? В чем заключается двойственная природа света? И каковы его основные свойства? Сейчас выясним ответы на эти вопросы.

Свет как электромагнитная волна

Светом считают электромагнитную волну, которую способен видеть глаз человека. Для этого длина этой волны не должна выходить за границы от 380-400 нм до 760-780 нм. После 780 нм начинается инфракрасный диапазон, который человек может ощущать, как тепло, а перед видимым спектром идет ультрафиолетовое излучение. Его способны видеть некоторые насекомые и птицы, а кожа человека может отреагировать на него загаром. Сам видимый диапазон электромагнитного излучения разделен на отрезки, каждый из которых человек воспринимает как свет определенного цвета. К примеру, фиолетовый соответствует длине волны 380-440 нм, зеленый - 500-565 нм, а красный - 625-740 нм. Всего выделяют 7 основных цветов видимого спектра, их можно наблюдать, глядя на радугу. А вот белый свет - это смешение всех цветов спектра.

Источники света

Источником света является нагретое до определенной температуры или возбужденное вещество. На Землю свет поступает с Солнца, других звезд, некоторых разогретых планет, комет и иных небесных тел. На нашей планете источником света может быть огонь - костер, пламя свечи, факела или масляной лампы, а также разогретое вещество. Человек изобрел и искусственные источники видимого излучения, в частности, лампу накаливания, где свет излучает разогретая электротоком вольфрамовая спираль, люминесцентную лампу, в которой светится слой люминофора, возбужденный электроразрядом в наполняющем колбу газе, галогенную лампу, ртутную и другие.

Свойства света

Отражение

Видимое электромагнитное излучение распространяется в вакууме и однородных прозрачных средах прямолинейно со , равной примерно 300 000 км/с. При этом свет имеет множество иных свойств. Например, свет отражается от непрозрачных поверхностей, причем угол падения равен углу отражения. В результате отраженный от предметов свет воспринимается глазом и позволяет видеть эти предметы. Также заметим, что Луна и некоторые планеты - не источники света, а видим их мы потому, что эти небесные тела отражают излучение Солнца.

Преломление

При переходе между двумя средами с разной оптической плотностью свет способен преломляться. Скажем, когда луч переходит из воздуха в воду, из-за разной оптической плотности этих сред меняется скорость и направление движения в них света. Именно поэтому ложка в стакане воды кажется немного переломанной, а камешки на дне озера представляются ближе, чем на самом деле.

Интерференция и дифракция

Волновая природа света проявляется в таких его свойствах, как интерференция и дифракция. Первое свойство заключается в способности нескольких волн складываться в результирующую волну, параметры которой в разных точках заметно усиливаются или ослабевают. Результат интерференции света можно наблюдать в виде игры радужных разводов на мыльных пузырях, масляных пятнах или крыльях насекомых. А дифракция - это способность волны света огибать препятствие и попадать в область его геометрической тени, например, рассеивание света на капельках воды в виде радужных облаков.

Свет как поток частиц

При этом свет имеет не только волновые свойства, а в некоторых случаях ведет себя как поток частиц - фотонов. В частности, закономерности явления фотоэффекта, когда падающий на вещество свет вырывает из него электроны, можно объяснить лишь с точки зрения корпускулярной теории света, представляющей электромагнитное излучение в виде потока фотонов. Однако волновая и фотонная теории света не только не противоречат друг другу, а взаимно дополняют. В научной среде говорят о корпускулярно-волновой двойственности света, которая объясняет, что такое свет, выявляет его свойства как волны и как потока частиц.

«И сказал Бог: «Да будет свет!», и стал свет». Всем известны эти слова из Библии и всем понятно: жизнь без него невозможна. Но что такое свет по своей природе? Из чего состоит он и какие имеет свойства? Что такое видимый и невидимый свет? Об этих и некоторых других вопросах поговорим в статье.

О роли света

Большинство информации обычно воспринимается человеком через глаза. Все разнообразие цветов и форм, которые свойственны материальному миру, открывается ему. А воспринимать через зрение он может лишь то, что отражает определенный, так называемый видимый свет. Источники света могут быть естественными, например солнце, или искусственные, созданные электричеством. Благодаря такому освещению стало возможным работать, отдыхать - словом, вести полноценный образ жизни в любое время суток.

Естественно, такой важный жизненный аспект занимал умы многих людей, живших в разные эпохи. Рассмотрим, что такое свет, под разными углами зрения, то есть с позиций различных теорий, которых придерживаются сегодня ученые мужи.

Свет: определение (физика)

Аристотель, задавшийся этим вопросом, считал свет определенным действием, которое распространялось в среде. Другого мнения придерживался философ из Древнего Рима, Лукреций Кар. Он был уверен, что все существующее в мире состоит из самых мелких частиц — атомов. И свет также имеет такое строение.

В семнадцатом веке эти взгляды легли в основу двух теорий:

  • корпускулярной;
  • волновой.

Сегодня известно, что все тела распространяют инфракрасный свет. Источники света, испуская инфракрасные лучи, имеют большую длину волны, но слабее чем красные.

Теплом является излучение инфракрасного спектра, исходящее от движущихся молекул. Чем выше их скорость, тем больше излучение, и такой объект становится теплее.

Ультрафиолет

Как только открыли инфракрасное излучение, Вильгельм Риттер, немецкий физик, начал изучать противоположную сторону спектра. Длина волны здесь оказалась меньше, чем у фиолетового цвета. Он заметил, как хлористое серебро чернело за фиолетом. И это происходило быстрее, чем действовала длина волны видимого света. Выяснилось, что такое излучение происходит тогда, когда менялись электроны на внешних атомных оболочках. Стекло способно поглощать ультрафиолет, поэтому при исследованиях применялись кварцевые линзы.

Излучение поглощается кожей человека и животного, а также верхними растительными тканями. Небольшие дозы ультрафиолета могут благоприятно сказаться на самочувствии, укрепляя иммунитет и создавая витамин D. Но большие дозы могут вызвать ожоги кожи и повредить глаза, а чересчур большие оказывают даже канцерогенное действие.

Применение ультрафиолета

Заключение

Если учитывать ничтожно малый спектр видимого света, становится понятным, что и оптический диапазон человеком изучен очень скудно. Одной из причин такого подхода является повышенный интерес людей к тому, что видно глазу.

Но из-за этого понимание остается на низком уровне. Весь космос пронизан электромагнитными излучениями. Чаще люди их не только не видят, но и не чувствуют. Но если энергия этих спектров увеличивается, то они могут вызывать недомогания и даже становятся смертельно опасными.

При изучении невидимого спектра становятся понятными некоторые, как их называют, мистические явления. Например, шаровые молнии. Бывает, что они, словно ниоткуда, появляются и внезапно исчезают. На самом деле просто осуществляется переход от невидимого диапазона в видимый и обратно.

Если использовать при проведении фотосъемок неба во время грозы разные камеры, то иногда получается запечатлеть переход плазмоидов, их появление в молниях и изменения, происходящие в самих молниях.

Вокруг нас совершенно неизведанный нами мир, который имеет вид, отличный от того, что мы привыкли видеть. Известное утверждение «Пока своими глазами не увижу, не поверю» давно потеряло свою актуальность. Радио, телевидение, сотовая связь и тому подобное давно доказали, что если мы чего-то не видим, то это совсем не значит, что этого не существует.