Что такое числовая функция определение. Презентация к уроку по алгебре (10 класс) на тему: Числовые функции. Определение и способы задания. Мотивация познавательной деятельности учащихся

Он поистине драгоценен.

Предыстория и история

Вначале были протоны – галактический водород. В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента №94.

Но все эти изотопы – гипотетические и реальные – не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 – 75 млн лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.

В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента №94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, – элемент №93. Этот элемент назвали нептунием , а 94-й – плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.

Элементы №92 и 93 названы в честь далеких планет солнечной системы – Урана и Нептуна, но и Нептун в солнечной системе – не последний, еще дальше пролегает орбита Плутона – планеты, о которой до сих пор почти ничего не известно... Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium – neptunium – plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония – почти такой же отрезок времени разделял открытия Урана – планеты и урана – элемента.

Загадки для шифровальщиков

Первый изотоп элемента №94 – плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный – генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».

Руководителей «проекта» плутоний-238 не интересовал. Его ядра, как, впрочем, ядра всех изотопов плутония с четными массовыми числами, нейтронами низких энергий* не делятся, поэтому он не мог служить ядерной взрывчаткой. Тем не менее первые не очень внятные сообщения об элементах №93 и 94 попали в печать лишь весной 1942 г.

* Нейтронами низких энергий мы называем нейтроны, энергия которых не превышает 10 кэВ. Нейтроны с энергией, измеряемой долями электронвольта, называются тепловыми, а самые медленные нейтроны – с энергией меньше 0,005 эВ – холодными. Если же энергия нейтрона больше 100 кэВ, то такой нейтрон считается уже быстрым.

Чем это объяснить? Физики понимали: синтез изотопов плутония с нечетными массовыми числами – дело времени, и недалекого. От нечетных изотопов ждали, что, подобно урану-235, они смогут поддерживать цепную ядерную реакцию. В них, еще не полученных, кое-кому виделась потенциальная ядерная взрывчатка. И эти надежды плутоний, к сожалению, оправдывал.

В шифровках того времени элемент №94 именовался не иначе, как... медью. А когда возникла необходимость в самой меди (как конструкционном материале для каких-то деталей), то в шифровках наряду с «медью» появилась «подлинная медь».

«Древо познания добра и зла»

В 1941 г. был открыт важнейший изотоп плутония – изотоп с массовым числом 239. И почти сразу же подтвердилось предсказание теоретиков: ядра плутония-239 делились тепловыми нейтронами. Более того, в процессе их деления рождалось не меньшее число нейтронов, чем при делении урана-235. Тотчас же были намечены пути получения этого изотопа в больших количествах...

Прошли годы. Теперь уже ни для кого не секрет, что ядерные бомбы, хранящиеся в арсеналах, начинены плутонием-239 и что их, этих бомб, достаточно, чтобы нанести непоправимый ущерб всему живому на Земле.

Распространено мнение, что с открытием цепной ядерной реакции (неизбежным следствием которого стало создание ядерной бомбы) человечество явно поторопилось. Можно думать по-другому или делать вид, что думаешь по-другому, – приятнее быть оптимистом. Но и перед оптимистами неизбежно встает вопрос об ответственности ученых. Мы помним триумфальный июньский день 1954 г., день, когда дала ток первая атомная электростанция в Обнинске. Но мы не можем забыть и августовское утро 1945 г. – «утро Хиросимы», «черный день Альберта Эйнштейна»... Помним первые послевоенные годы и безудержный атомный шантаж – основу американской политики тех лет. А разве мало тревог пережило человечество в последующие годы? Причем эти тревоги многократно усиливались сознанием, что, если вспыхнет новая мировая война, ядерное оружие будет пущено в ход.

Здесь можно попробовать доказать, что открытие плутония не прибавило человечеству опасений, что, напротив, оно было только полезно.

Допустим, случилось так, что по какой-то причине или, как сказали бы в старину, по воле божьей, плутоний оказался недоступен ученым. Разве уменьшились бы тогда наши страхи и опасения? Ничуть не бывало. Ядерные бомбы делали бы из урана-235 (и в не меньшем количестве, чем из плутония), и эти бомбы «съедали» бы еще большие, чем сейчас, части бюджетов.

Зато без плутония не существовало бы перспективы мирного использования ядерной энергии в больших масштабах. Для «мирного атома» просто не хватило бы урана-235. Зло, нанесенное человечеству открытием ядерной энергии, не уравновешивалось бы, пусть даже частично, достижениями «доброго атома».

Как измерить, с чем сравнить

Когда ядро плутония-239 делится нейтронами на два осколка примерно равной массы, выделяется около 200 МэВ энергии. Это в 50 млн раз больше энергии, освобождающейся в самой известной экзотермической реакции C + O 2 = CO 2 . «Сгорая» в ядерном реакторе, грамм плутония дает 2·10 7 ккал. Чтобы не нарушать традиции (а в популярных статьях энергию ядерного горючего принято измерять внесистемными единицами – тоннами угля, бензина, тринитротолуола и т.д.), заметим и мы: это энергия, заключенная в 4 т угля. А в обычный наперсток помещается количество плутония, энергетически эквивалентное сорока вагонам хороших березовых дров.

Такая же энергия выделяется и при делении нейтронами ядер урана-235. Но основную массу природного урана (99,3%!) составляет изотоп 238 U, который можно использовать, только превратив уран в плутоний...

Энергия камней

Оценим энергетические ресурсы, заключенные в природных запасах урана.

Уран – рассеянный элемент, и практически он есть всюду. Каждому, кто побывал, к примеру, в Карелии, наверняка запомнились гранитные валуны и прибрежные скалы. Но мало кто знает, что в тонне гранита до 25 г урана. Граниты составляют почти 20% веса земной коры. Если считать только уран-235, то в тонне гранита заключено 3,5·10 5 ккал энергии. Это очень много, но...

На переработку гранита и извлечение из него урана нужно затратить еще большее количество энергии – порядка 10 6 ...10 7 ккал/т. Вот если бы удалось в качестве источника энергии использовать не только уран-235, а и уран-238, тогда гранит можно было бы рассматривать хотя бы как потенциальное энергетическое сырье. Тогда энергия, полученная из тонны камня, составила бы уже от 8·10 7 до 5·10 8 ккал. Это равноценно 16...100 т угля. И в этом случае гранит мог бы дать людям почти в миллион раз больше энергии, чем все запасы химического топлива на Земле.

Но ядра урана-238 нейтронами не делятся. Для атомной энергетики этот изотоп бесполезен. Точнее, был бы бесполезен, если бы его не удалось превратить в плутоний-239. И что особенно важно: на это ядерное превращение практически не нужно тратить энергию – напротив, в этом процессе энергия производится!

Попробуем разобраться, как это происходит, но вначале несколько слов о природном плутонии.

В 400 тысяч раз меньше, чем радия

Уже говорилось, что изотопы плутония не сохранились со времени синтеза элементов при образовании нашей планеты. Но это не означает, что плутония в Земле нет.

Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые – очень немногие – атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний – первый трансурановый элемент. Нептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик – 24 тыс. лет.

Почему не добывают плутоний из урановых руд? Мала, слишком мала концентрация. «В грамм добыча – в год труды» – это о радии, а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть – даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.

Когда 2,70 >> 2,23

Накапливают плутоний в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше – в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.

Если реактор работает на тепловых нейтронах (напомним, что их скорость – порядка 2000 м в секунду, а энергия – доли электронвольта), то из естественной смеси изотопов урана получают количество плутония, немногим меньшее, чем количество «выгоревшего» урана-235. Немногим, но меньшее, плюс неизбежные потери плутония при химическом выделении его из облученного урана. К тому же цепная ядерная реакция поддерживается в природной смеси изотопов урана только до тех пор, пока не израсходована незначительная доля урана-235. Отсюда закономерен вывод: «тепловой» реактор на естественном уране – основной тип ныне действующих реакторов – не может обеспечить расширенного воспроизводства ядерного горючего. Но что же тогда перспективно? Для ответа на этот вопрос сравним ход цепной ядерной реакции в уране-235 и плутонии-239 и введем в наши рассуждения еще одно физическое понятие.

Важнейшая характеристика любого ядерного горючего – среднее число нейтронов, испускаемых после того, как ядро захватило один нейтрон. Физики называют его эта-числом и обозначают греческой буквой η. В «тепловых» реакторах на уране наблюдается такая закономерность: каждый нейтрон порождает в среднем 2,08 нейтрона (η = 2,08). Помещенный в такой реактор плутоний под действием тепловых нейтронов дает η = 2,03. Но есть еще реакторы, работающие на быстрых нейтронах. Естественную смесь изотопов урана в такой реактор загружать бесполезно: цепная реакция не пойдет. Но если обогатить «сырье» ураном-235, она сможет развиваться и в «быстром» реакторе. При этом η будет равно уже 2,23. А плутоний, помещенный под обстрел быстрыми нейтронами, даст η, равное 2,70. В наше распоряжение поступит «лишних полнейтрона». И это совсем не мало.

Проследим, на что тратятся полученные нейтроны. В любом реакторе один нейтрон нужен для поддержания цепной ядерной реакции. 0,1 нейтрона поглощается конструктивными материалами установки. «Избыток» идет на накопление плутония-239. В одном случае «избыток» равен 1,13, в другом – 1,60. После «сгорания» килограмма плутония в «быстром» реакторе выделяется колоссальная энергия и накапливается 1,6 кг плутония. А уран и в «быстром» реакторе даст ту же энергию и 1,1 кг нового ядерного горючего. И в том и в другом случае налицо расширенное воспроизводство. Но нельзя забывать об экономике.

В силу ряда технических причин цикл воспроизводства плутония занимает несколько лет. Допустим, что пять лет. Значит, в год количество плутония увеличится только на 2%, если η = 2,23, и на 12%, если η = 2,7! Ядерное горючее – капитал, а всякий капитал должен давать, скажем, 5% годовых. В первом случае налицо большие убытки, а во втором – большая прибыль. Этот примитивный пример иллюстрирует «вес» каждой десятой числа η в ядерной энергетике.

Сумма многих технологий

Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления – как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики – всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» – помогает отделить плутоний и от урана, и от осколков деления.

Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.

Разделение близких по химическим свойствам актиноидов – урана, нептуния и плутония – может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.

Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы – соосаждение с носителями, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии – его двуокись PuO 2 или фториды – PuF 3 или PuF 4 . Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала – тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония – всего 640°C – вполне достижима.

При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°C твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°C, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде.

Температура продолжает падать, вот она достигла 451°C, и атомы снова образовали кубическую решетку, но расположились на большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством – отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается.

Когда температура достигает 122°C и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно – от 17,77 до 19,82 г/см 3 . Больше, чем на 10%! Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно.

Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5...6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.

Тяжелые изотопы

В плутонии-239 в незначительном количестве содержатся и высшие изотопы этого элемента – с массовыми числами 240 и 241. Изотоп 240 Pu практически бесполезен – этот балласт в плутонии. Из 241-го получают америций – элемент №95. В чистом виде, без примеси других изотопов, длутоний-240 и плутоний-241 можно получить при электромагнитном разделении плутония, накопленного в реакторе. Перед этим плутоний дополнительно облучают нейтронными потоками со строго определенными характеристиками. Конечно, все это очень сложно, тем более что плутоний не только радиоактивен, но и весьма токсичен. Работа с ним требует исключительной осторожности.

Один из самых интересных изотопов плутония – 242 Pu можно получить, облучая длительное время 239 Pu в потоках нейтронов. 242 Pu очень редко захватывает нейтроны и потому «выгорает» в реакторе медленнее остальных изотопов; он сохраняется и после того, как остальные изотопы плутония почти полностью перешли в осколки или превратились в плутоний-242.

Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-251 потребуется около 20 лет.

Можно сократить время накопления высших изотопов, увеличив интенсивность потока нейтронов в реакторе. Так и делают, но тогда нельзя облучать большое количество плутония-239. Ведь этот изотоп делится нейтронами, и в интенсивных потоках выделяется слишком много энергии. Возникают дополнительные сложности с охлаждением контейнера и реактора. Чтобы избежать этих сложностей, пришлось бы уменьшить количество облучаемого плутония. Следовательно, выход калифорния стал бы снова мизерным. Замкнутый круг!

Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках... Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от калифорния до эйнштейния.

Не самый тяжелый, но самый долгоживущий

Всякий раз, когда учеными удавалось получить новый изотоп плутония, измеряли период полураспада его ядер. Периоды полураспада изотопов тяжелых радиоактивных ядер с четными массовыми числами меняются закономерно. (Этого нельзя сказать о нечетных изотопах.)

Рис. 8.

Посмотрите на график, где отражена зависимость периода полураспада четных изотопов плутония от массового числа. С увеличением массы растет и «время жизни» изотопа. Несколько лет назад высшей точки этого графика был плутоний-242. А дальше как пойдет эта кривая – с дальнейшим ростом массового числа? В точку 1 , которая соответствует времени жизни 30 млн, лет, или в точку 2 , которая отвечает уже 300 млн лет? Ответ на этот вопрос был очень важен для наук о Земле. В первом случае, если бы 5 млрд лет назад Земля целиком состояла из 244 Pu, сейчас во всей массе Земли остался бы только один атом плутония-244. Если же верно второе предположение, то плутоний-244 может быть в Земле в таких концентрациях, которые уже можно было бы обнаружить. Если бы посчастливилось найти в Земле этот изотоп, наука получила бы ценнейшую информацию о процессах, происходивших при формировании нашей планеты.

Несколько лет назад перед учеными встал вопрос: стоит ли пытаться найти тяжелый плутоний в Земле? Для ответа на него нужно было прежде всего определить период полураспада плутония-244. Теоретики не могли рассчитать эту величину с нужной точностью. Вся надежда была только на эксперимент.

Плутоний-244 накопили в ядерном реакторе. Облучали элемент №95 – америций (изотоп 243 Am). Захватив нейтрон, этот изотоп переходил в америций-244; америций-244 в одном из 10 тыс. случаев переходил в плутоний-244.

Из смеси америция с кюрием выделили препарат плутония-244. Образец весил всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа. Он оказался равным 75 млн лет. Позже другие исследователи уточнили период полураспада плутония-244, но ненамного – 82,8 млн лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите.

Много попыток предпринимали ученые, чтобы найти изотоп трансуранового элемента, живущий дольше, чем 244 Pu. Но все попытки остались тщетными. Одно время возлагали надежды на кюрий-247, но после того, как этот изотоп был накоплен в реакторе, выяснилось, что его период полураспада всего 14 млн лет. Побить рекорд плутония-244 не удалось, – это самый долгоживущий из всех изотопов трансурановых элементов.

Еще более тяжелые изотопы плутония подвержены бета-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. Мы знаем наверное, что в термоядерных взрывах образуются все изотопы плутония, вплоть до 257 Pu. Но их время жизни – десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.

Возможности первого изотопа

И напоследок – о плутонии-238 – самом первом из «рукотворных» изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т.е. его ядра самопроизвольно испускают альфа-частицы – ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию; рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия? Шесть миллионов электрон-вольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока – 5 ватт.

Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа-распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu – исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от нее несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашел применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности.

Но 238 Pu не самый легкий из известных изотопов элемента №94, получены изотопы плутония с массовыми числами от 232 до 237. Период полураспада самого легкого изотопа – 36 минут.

Плутоний – большая тема. Здесь рассказано главное из самого главного. Ведь уже стала стандартной фраза, что химия плутония изучена гораздо лучше, чем химия таких «старых» элементов, как железо. О ядерных свойствах плутония написаны целые книги. Металлургия плутония – еще один удивительный раздел человеческих знаний... Поэтому не нужно думать, что, прочитав этот рассказ, вы по-настоящему узнали плутоний – важнейший металл XX в.

Родители мальчишек должны быть готовы к различным чрезвычайным ситуациям со своими чадами, не помешает даже знать, что делать, если ваш сын нашел плутоний.

Как выглядит плутоний

Для начала нужно представить, как будет выглядеть то, что предстоит найти вашему сыну. Это очень-очень тяжелый металл серебристого цвета в виде порошка, который ослепительно блестит, если его почистить. Но благодаря своим электроотрицательным свойствам, блестящим он остается недолго: сначала тускнеет, затем покрывается светло-желтой пленкой, которая постепенно превращается в темно-пурпурную.

Подумать, что еще может выглядеть примерно так же, как серебристо-белый порошок, потому что нельзя найти плутоний возле качелей или горки. И даже если лазить по стройке, то мальчишка скорее станет хозяином куска проволоки или гвоздя, чем горсти плутония.

Если все же ребенок принес домой то, что по вашим представлениям и является описанным тяжелым металлом, нужно срочно звонить в полицию или местный отдел МЧС, ведь вещество это радиоактивное, опасное, которое необходимо быстрее изъять и спрятать подальше.

Реагировать на “находку” нужно мгновенно. Это не та жизненная ситуация, в которой можно позвонить подруге и узнать, . Ведь огурцы, даже прокисшие, опасны как максимум острой диареей. А если хватит ума не есть их после того, как сорвало крышку, то и вообще здоровью они не помеха.

Влияние плутония на организм человека

Плутоний (Pu) не так безобиден, как прокисшие огурцы. Он является тяжелым металлом, следовательно, должен быть химически токсичным веществом. Однако это его свойство описано мало, поскольку основная опасность кроется в радиотоксичности. Токсичность его обусловлена альфа-радиоактивностью.

Альфа-частица опасна для организма, только в случае, когда ее источник находится в теле человека. Проще говоря, чтобы проявилось радиоактивное действие, металл этот нужно проглотить. Снаружи Pu действует на человека нейтронами и гамма-лучами, но сильного вреда не причиняет из-за их малого уровня.

Альфа-частицы в человеческом теле повреждают только те ткани, с которыми непосредственно контактируют. При высоком уровне облучения развивается острое отравление и сразу проявляется токсический эффект. Низкий уровень облучения повреждает организм постепенно, формируя предрасположенность к раковым заболеваниям.

В пищеварительном тракте Pu всасывается плохо. Даже если принять металл в виде растворимой соли, то она не стремится всасываться, а перемешивается с кишечным содержимым. Из загрязненной воды много плутония в организм не попадет, он осаждается из водных растворов, образуя нерастворимые соединения.

Чтобы умереть от острого облучения за несколько дней или неделю, нужно съесть 500 мг Pu. При этом он должен быть в хорошо измельченном виде. Смерть от отека легких в срок до 10 дней грозит индивидуумам, вдохнувшим 100 мг плутония в легкие. Меньшие дозы Pu в организме создают благодатную почву для появления и прогрессирования раковых болезней.

А нужен ли людям

Изотоп 239Pu применяют в виде ядерного топлива для энергетических реакторов, которые работают на быстрых и тепловых нейтронах. Незаменим изотоп 239Pu и при производстве ядерного оружия.

Атомные электростанции, разбросанные по земному шару, производят около 15% всей производимой в мире электроэнергии.

Атомные электрические батарейки, содержащие Pu-236, имеют срок службы до 5 лет. Медики используют такие батарейки в кардиостимуляторах, которые вшиваются в грудную клетку больных и заставляют сердце сокращаться.
Pu-238 – незаменимый источник питания для космических аппаратов, которые люди используют для изучения космоса.

Увлекательные факты

Любознательным мальчишкам можно рассказать запоминающиеся факты про плутоний, который им вряд ли посчастливится найти в реальной жизни.

Сильно накапливают этот элемент морские организмы, накапливающая способность уменьшается в ряду смешанный планктон – водоросли – желудок рыб – морские звезды – кости рыб.

Pu-244 – это долгожитель среди изотопов трансурановых элементов. Его период полураспада составляет 82,8 миллиона лет!

Если добавить плутоний в сплав, получается отливка без единой трещинки. Это свойство активно используют металлурги.

Заряды ядерных бомб делают из плутония. Металл настолько тяжелый, что маленький шарик из плутония, который можно спрятать в кубике 10*10 см, весит 5-6 килограмм.

Каждому родителю хочется пожелать, чтобы их сын плутоний не находил и домой не приносил, а мирно играл с более безобидными игрушками.

Видео: Плутоний-239 из РИД-1


Этот металл называют драгоценным, однако не за красоту, а за незаменимость. В периодической системе Менделеева этот элемент занимает ячейку под номером 94. Именно с ним ученые связывают свои самые большие надежды, и именно плутоний они называют самым опасным металлом для человечества.

Плутоний: описание

По внешнему виду это серебристо-белый металл. Он является радиоактивным и может быть представлен в виде 15 изотопов, имеющих различные периоды полураспада, к примеру:

  • Pu-238 – около 90 лет
  • Pu-239 – около 24 тысяч лет
  • Pu-240 – 6580 лет
  • Pu-241 – 14 лет
  • Pu-242 – 370 тысяч лет
  • Pu-244 – около 80 миллионов лет

Этот металл нельзя добыть из руды, поскольку он является продуктом радиоактивного превращения урана.

Как получают плутоний?

Производство плутония требует расщепления урана, что можно осуществить только в атомных реакторах. Если же говорить о присутствии элемента Pu в земной коре, то на 4 миллиона тонн урановой руды будет приходиться всего 1 грамм чистого плутония. И этот грамм образуется путем естественного захвата нейтронов ядрами урана. Таким образом, чтобы получить это ядерное горючее (обычно – изотоп 239-Pu) в количестве нескольких килограмм необходимо проведение сложного технологического процесса в атомном реакторе.

Свойства плутония


Радиоактивный металл плутоний обладает следующими физическими свойствами:

  • плотность 19,8 г/см 3
  • температура плавления – 641°C
  • температура кипения – 3232°C
  • теплопроводность (при 300 K) – 6,74 Вт/(м·К)

Плутоний радиоактивен, поэтому теплый на ощупь. При этом для этого металла характерна самая низкая теплопроводность и электропроводность. Жидкий плутоний является самым вязким из всех существующих металлов.

Малейшее изменение температуры плутония приводит к моментальному изменению плотности вещества. В целом же, масса плутония постоянно меняется, поскольку ядра этого металла находятся в состоянии постоянного деления на более мелкие ядра и нейтроны. Критическая масса плутония – так называют минимальную массу делимого вещества, при которой протекание деления (цепной ядерной реакции) остается возможным. К примеру, критическая масса оружейного плутония – 11 кг (для сравнения, критическая масса высокообогащенного урана – 52 кг).

Уран и плутоний – основное ядерное горючее. Чтобы получить плутоний в больших количествах применяется две технологии:

  • облучение урана
  • облучение трансурановых элементов, полученных из отработанного топлива


Оба способа представляют собой отделение плутония и урана в результате протекания химической реакции.

(Pu) – серебристо-белый радиоактивный металл группы актиноидов, теплый на ощупь (из-за своей радиоактивности. В природе встречается в очень малых количествах в уранитовий смолке и других рудах урана и церия, в значительном количестве получают искусственно. Около 5 тонн плутония выброшено в атмосферу в результате ядерных испытаний.
История
Открытый 1940 Гленом Сиборг (Glenn Seaborg), Эдвином Макмиллан (Edwin McMillan), Кеннеди (Kennedy) и Артуром Уолхом (Arthur Wahl) 1940 года в Беркли (США) во время бомбардировки урановой мишени дейтронами, ускоренными в циклотроне.
Происхождение названия
Плутоний был назван в честь планеты Плутон, поскольку предыдущий открытый химический элемент получил название Нептуний.
Получение
Плутоний получают в ядерных реакторах.
Изотоп 238 U, что составляет основную массу природного урана, мало пригоден к делению. Для ядерных реакторов уран несколько обогащают, но доля 235 U в ядерном топливе остается небольшой (примерно 5%). Основную часть в ТВЭЛах составляет 238 U. Во время работы ядерного реактора часть ядер 238 U захватывает нейтроны и превращается в 239 Pu, который в дальнейшем можно выделить.

Выделить плутоний среди продуктов ядерных реакций достаточно сложно, так как плутоний (как и уран, торий, нептуний) относится к очень похожих между собой по химическим свойствам актиноидов. Задача усложняется тем, что среди продуктов распада содержащихся редкоземельные элементы, химические свойства которых тоже подобные плутония. Применяют традиционные радиохимические методы – осаждение, экстракцию, ионный обмен и т.д. Конечным продуктом этой многостадийной технологии являются оксиды плутония PuO 2 или фториды (PuF 3, PuF 4).
Добывают плутоний методом Металлотермия (восстановлением активными металлами из оксидов и солей в вакууме):

PuF 4 +2 Ba = 2BaF 2 + Pu

Изотопы
Известно более десятка изотопов плутония, все они радиоактивны.
Важнейшим является изотоп 239 Pu, способный к делению ядра и цепной ядерной реакции. Это единственный изотоп, пригодный для использования в ядерном оружии. Имеет лучшие, чем уран-235, показатели поглощения и рассеяния нейтронов, количества нейтронов на одно деление (около 3 против 2,3) и, соответственно, меньшую критическую массу. Его период полураспада составляет около 24 тыс. лет. Другие изотопы плутония рассматривают прежде всего с точки зрения вредности для основного (вооруженного) применения.
Изотопу 238 Pu имеет мощную альфа-радиоактивность и, как следствие, значительное тепловыделение (567 Вт / кг). Это создает неудобства для использования в ядерном оружии, но находит применение в ядерных батареях. Почти все космические аппараты, улетевшие за орбиту Марса, имеют радиоизотопные реакторы на 238 Pu. В реакторном плутонии доля этого изотопа очень незначительна.
Изотоп 240 Pu является основным загрязнителем оружейного плутония. Имеет высокую интенсивность спонтанного распада, создает высокий нейтронный фон, что существенно усложняет подрыв ядерных зарядов. Считают, что его доля в оружии не должна превышать 7%.
241 Pu имеет низкий нейтронный фон и умеренную тепловую эмиссию. Его доля составляет чуть менее 1% и на свойства оружейного плутония не влияет. Однако с периодом полураспада 1914 превращается в америций-241, который выделяет много тепла, что может создавать проблему перегрева зарядов.
242 Pu имеет очень малое сечение реации захвата нейтронов и накапливается в ядерных реакторах, хотя и в очень небольшом количестве (менее 0,1%). На свойства оружейного плутония не влияет. Его применяют в основном для дальнейших ядерных реакций синтеза трансплутониевого элементов: тепловые нейтроны не вызывают деления ядра, поэтому любые количества этого изотопа можно облучать мощными потоками нейтронов.
Другие изотопы плутония встречаются чрезвычайно редко и не имеют влияния на изготовление ядерных зарядов. Тяжелые изотопы образуются в очень незначительных количествах, имеют небольшое время жизни (менее нескольких дней или часов) и, путем бета-распада, превращаются в соответствующие изотопы америция. Среди них выделяется 244 Pu – его период полураспада составляет около 82 млн. лет. Это самый изотоп среди всех трансурановых элементов.
Применение
На конец 1995 года в мире было произведено около 1270 тонн плутония, из них 257 тонн – для вооруженного использования, для которого пригоден только изотоп 239 Pu. Возможно применение 239 Pu качестве топлива в ядерных реакторах, но он проигрывает урана по экономическим показателям. Стоимость переработки ядерного топлива для добычи плутония намного больше, чем стоимость низкообогащенного (~ 5% 235 U) урана. Программу энергетического использования плутония имеет только Япония.
Аллотропные модификации
В твердом виде плутоний имеет семь аллотропных модификаций (однако фазы? и?1 иногда объединяют и считают одной фазе). При комнатной температуре плутоний представляет собой кристаллическую структуру, которая называется ?-фаза. Атомы связаны ковалентной связью (вместо металлического), поэтому физические свойства ближе к минералам чем к металлам. Это твердый, хрупкий материал, ломается в определенных направлениях. Имеет низкую теплопроводность среди всех металлов, низкую электропроводность, за исключением марганца. ?-фаза не поддается обработке обычными для металлов технологиями.
При изменениях температуры в плутонии происходит перестройка структуры и он испытывает чрезвычайно сильные изменения. Некоторые переходы между фазами сопровождаются просто поразительными изменениями объема. В двух из этих фаз (? и?1) плутоний обладает уникальным свойством – отрицательный температурный коефициент расширения, т.е. он сжимается с увеличением температуры.
У гамма и дельта фазах плутоний проявляет обычные свойства металлов, в частности ковкость. Однако в дельта-фазе плутоний проявляет нестабильность. Под небольшим давлением он пытается осесть в плотную (на 25%) альфа-фазу. Это свойство применяют в имплозийних устройствах ядерного оружия.
В чистом плутонии под давлением свыше 1 килобар дельта-фаза вообще не существует. Под давлением более 30 килобар существуют только альфа-и бета-фазы.
Металлургия плутония
Плутоний можно стабилизировать в дельта-фазе при обычном давлении и комнатной температуры путем образования сплава с трехвалентными металлами, такими как галлий, алюминий, церий, индий в концентрации несколько молярных процентов. Именно в таком виде плутоний применяют в ядерном оружии.
Вооруженный плутоний
Для производства ядерного оружия нужно достичь чистоты нужного изотопа (235 U или 239 Pu) более 90%. Создание зарядов из урана требует многих стадий обогащения (потому, что доля 235 U в природном уране составляет менее 1%), в то время как доля 239 Pu в реакторном плутонии обычно составляет от 50% до 80% (т.е. почти в 100 раз больше). А в некоторых режимах работы реакторов можно получить плутоний, содержащий более 90% 239 Pu – такой плутоний не требует обогащения и может использоваться для изготовления ядерного оружия напрямую.
Биологическая роль
Плутоний является одной из самых токсичных известных веществ. Токсичность плутония обусловлена не столько химическими свойствами (хотя плутоний, пожалуй, токсический как любой тяжелый металл), сколько его альфа-радиоактивности. Альфа-частицы задерживаются даже незначительными слоями материалов или тканей. Скажем, несколько миллиметров кожи полностью поглотит их поток, защищая внутренние органы. Но альфа-частицы наздвичайно сильно повреждают ткани, с которыми они контактируют. Итак, плутоний представляет серьезную опасность, если попадает в организм. Он очень плохо всасывается в желудочном тракте, даже если попадает туда в растворимом виде. Но поглощения полграмма плутония может привести к смерти в течение нескольких недель вследствие острого облучения путей пищеварения.
Вдыхание десятой доли грамма пыли плутония приводит к смерти от отека легких в течение десяти дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза течение месяца. Меньшие дозы вызывают кацерогенний эффект. Попадание в организм 1 мкг плутония увеличивает вероятность рака легких на 1%. Следовательно, 100 мкг плутония в организме почти гарантируют развитие рака (в течение десяти лет, хотя повреждения тканей могут оказался и раньше).
В биологических системах плутоний обычно находится в степени окисления +4 и обнаруживает сходство с железа. Попадая в кровь, он наиболее вероятно будет концентрироваться в тканях, содержащих железо: костном мозге, печени, селезенке. Если даже 1-2 микрограмма плутония осядут в костном мозге, иммунитет существенно ухудшится. Период выведения плутония из костной ткани составляет 80-100 лет, т.е. он будет оставаться там практически в течение всей жизни.
Международная комиссия по радиологической защите установила величину максимального ежегодного поглощения плутония на уровне 280 нанограмм.

Плутоний-239 - весьма токсичный альфа-излучатель с энергией около 5 Мэв. Приблизительно 4% распадов ядер плутония сопровождается испусканием мягкого рентгеновского излучения со средней энергией
17 кэв и 0,01% распадов - образованием гамма-квантов с энергией 37 кэв, что используется для определения плутония в организме по внешнему излучению. Плутоний является одним из основных источников получения ядерной энергии. Он широко используется в медико-биологических исследованиях при изучении радиационной патологии ряда органов и систем.

Период полураспада Pu239 8,9·10 6 дней, полувыведения из организма 6,4·10 4 дней (около 200 лет), т. е. освобождения от поступившего в организм плутония не происходит на протяжении всей жизни человека. Удельная активность изотопа очень велика, в связи с чем, а также из-за высокой токсичности предельное содержание его в организме принимается равным 0,04 мккюри.

Описанию токсикологии Pu239 посвящен ряд специальных отечественных и зарубежных изданий. Большое место занимали вопросы токсикологии Pu239 на симпозиуме по отдаленным последствиям действия радионуклидов в США в 1967 г. (10. И. Москалев, 1968). Анализ основных публикаций показывает, что даже наиболее растворимые соединения плутония всасываются из желудочно-кишечного тракта в долях процента. Из этого количества от 1/3 до 1/2 откладывается в костях. На втором месте по доле инкорпорированного изотопа (около 1/4) стоит печень. Оба эти органа и принимаются в качестве критических для различных растворимых соединений, используемых в практике. В дальнейшем накопление плутония в кости становится преобладающим (до 70% от общего количества).

Ингаляционное поступление соединений Pu239, обладающих невысокой растворимостью, приводит к тому, что существенная доля изотопа откладывается в легких [от 20 до 85%, по данным Norwood (1963), West и Bair (1964), Bair и др. (1963, 1964)]. При этом полагают, что 1/10 общей массы частиц выдыхается с T1/2 = 20 дням из верхних дыхательных путей и около 3/4 откладывается в легких. Из этого количества остается в легких в дальнейшем около 1/10, а остальные частицы фагоцитируются, частично накапливаясь в лимфатических узлах легких, либо переходят в желудочно-кишечный тракт, затем кровоток и далее в печень и кости. Предполагается (Norwood, 1963, 1964), что 100-кратное превышение предельно допустимой величины для профессионального поступления (4 мккюри) не вызывает немедленного возникновения симптомов поражения, однако не исключает развития отдаленных неблагоприятных последствий. Клиническая картина поражения на основе экстраполяции экспериментальных данных (В. К. Лемберг, 1964; 3. М. Бухтоярова, 1962; Э. Р. Любчанский, Н. А. Кошурникова, 1968, и др.) может складываться из признаков поражения лимфоидного и костномозгового кроветворения, изменений в костных структурах; менее вероятны в случае поступления растворимых соединений нарушения функции печени и почек. При ингаляционном поступлении, особенно слаборастворимых соединений плутония, изменения развиваются преимущественно в легких, варьируя параллельно с уменьшением доз от ранней неспецифической пневмонии до своеобразного пневмосклероза или опухолей легких (в отдаленные сроки). Слаборастворимые соединения прочно фиксируются в легких и практически почти не выводятся (Э. Р. Любчанский, 1965).

Опасно поступление Pu239 через поврежденную кожу (непосредственно в кровь). При этом изотоп очень быстро разносится током крови по всему организму и уже через 15 минут - 1 час может быть обнаружен в моче и кале. Последующее перераспределение происходит обычным для Pu239 образом с накоплением его в костях и печени; выделение изотопа с мочой и калом происходит медленно - в тысячных долях процента по отношению к находящемуся в организме.

Характерные случаи раневого поступления плутония описаны Norwood (1962, 1964), Foreman (1964), Lafuma (1963).

Динамика очищения раны и уменьшения общего содержания плутония в организме после иссечения и деконтаминации с помощью ДТПА (пентацина) и вид раны после иссечения показаны на рис. 67-69.

Рис. 67. Динамика содержания плутония в ране пациента в различные сроки и под влиянием двукратного иссечения (по Norwood, 1962).

Стрелками обозначен эффект первого (1) и второго (2) иссечения раны.

Рис. 68. Вид пальца больного (по Norwood, 1962).
а - непосредственно; б - в отдаленные сроки после иссечения раны, загрязненной плутонием.


Рис. 69. Динамика выделения плутония с мочой (штриховая линия). Содержание его в крови (сплошная линия) пациента в различные сроки после поступления и иссечения раны (по Norwood, 1962). По оси ординат - количество плутония в моче (ось слева) и циркулирующей крови (ось справа). Цифрами показан эффект первого (1) и второго (2) иссечения раны.

Как следует из токсикологических экспериментов, пути введения и растворимость соединений плутония оказывают существенное влияние на его распределение в организме и характер клинических проявлении (Stover, Rosental, Lindenbaum, Mays и др.; цит. по Ю. И. Москалеву, 1968).

В реальных условиях ингаляционным путем в организм человека могут поступать одновременно соединения плутония с различной степенью растворимости. Это очень- усложняет анализ дозовых нагрузок и возможных клинических проявлений. Путем экстраполяции экспериментальных данных (Bair et al., 1963; Э. Р. Любчанский, 1965; Л. А. Булдаков, Э. Р. Любчанский, Ю. И. Москалев и А. П. Нифатов, 1969) можно предположить возникновение различных соотношений, приводящих к пороговой дозе повреждения отдельных критических органов, и тем самым возможность возникновения соответствующих клинических симптомов.

Для нерастворимых соединений практически единственным критическим органом являются легкие. При достижении в них доз, достаточных для развития относительно ранних и тяжелых изменений, возникают характерные признаки лучевого пневмосклероза - фиброза альвеолярных перегородок (Bair et al., 1963). Дозы на остальные даже наиболее радиочувствительные органы невелики, за исключением регионарных лимфатических узлов легких. Это объясняет отсутствие заметных изменений в других органах и системах, кроме умеренной лимфопении (Bair, 1960, 1966).

При поступлении высокорастворимых соединений «лимитирующим» органом становится костная ткань с заключенным в ней костным мозгом. Это положение сохраняет свое значение и для смеси соединений различной растворимости. Однако в подобных случаях повреждающая кроветворение доза накапливается за больший промежуток времени, и к клиническим симптомам нарушений кроветворения в эти сроки могут присоединяться признаки нарушения функции печени, а позднее и органов дыхания.

Из других биологических эффектов, которые можно ожидать при поступлении в организм плутония по экспериментальным данным, следует отметить возможность относительно большего облучения лимфоидной ткани, сосудов растущих участков кости, воздействие на систему гипофиз - надпочечники (Lee, Dachum, Bertley; цит. по Ю. И. Москалеву, 1968). Всеми авторами (Rosenthal, Lindenbaum; В. К. Лемберг, 3. М. Бухтоярова, А. П. Нифатов, Н. А. Кошурникова, Н. П. Кудашева, 1966) подчеркивается значение микрогеометрии распределения различных соединений плутония для вызываемого им биологического эффекта. Основное число экспериментальных и клинических наблюдений касается изотопа Pu239; лишь единичные сведения относятся к Pu238. Вместе с тем в реальных условиях (изготовление пластин альфа-источников) возможен контакт и с этим изотопом. Доступная литература о поражении плутонием человека охватывает преимущественно радиометрические аспекты, в связи с чем невозможно привести характерный клинический пример.

Имея в виду известное своеобразие поражений инкорпорированными изотопами и отсутствие такого раздела в основных руководствах, считаем целесообразным привести некоторые общие принципы осуществления диагностических и лечебных мероприятий, показанных при их поступлении в организм. При этом целесообразно выделить мероприятия, проводимые непосредственно на месте происшествия и в стационаре.