Подготовка к поступлению в университет. Как готовиться к поступлению в вуз: пошаговая инструкция. Преподаватели, но не экзаменаторы

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.


Двугранный угол. Линейный угол двугранного угла. Двугранным углом называется фигура, образованная двумя не принадлежащим одной плоскости полуплоскостями, имеющими общую границу – прямую а. Полуплоскости, образующие двугранный угол, называются его гранями, а общая граница этих полуплоскостей – ребром двугранного угла. Линейным углом двугранного угла называется угол, сторонами которого являются лучи, по которым грани двугранного угла, пересекаются плоскостью, перпендикулярной ребру двугранного угла. У каждого двугранного угла сколько угодно линейных углов: через каждую точку ребра можно провести плоскость, перпендикулярный этому ребру; лучи, по которым эта плоскость пересекает грани двугранного угла, и образуют линейные углы.


Все линейные углы двугранного угла равны между собой. Докажем, что если равны двугранные углы, образованные плоскостью основания пирамиды КАВС и плоскостям ее боковых граней, то основание перпендикуляра, проведенного из вершины К, является центром вписанной в треугольник АВС окружности.


Доказательство. Прежде всего, построим линейные углы равных двугранных углов. По определению, плоскость линейного угла должна быть перпендикулярна ребру двугранного угла. Следовательно, ребро двугранного угла должно быть перпендикулярно сторонам линейного угла. Если КО перпендикуляр к плоскости основания, то можно провести ОР перпендикуляр АС, ОR перпендикуляр СВ, OQ перпендикулярAB, а затем соединить точки P, Q, R С точкой К. Тем самым, мы построим проекцию наклонных РК, QK, RK так, что ребра АС, СВ, АВ перпендикулярны этим проекциям. Следовательно, эти ребра перпендикулярны и самим наклонным. И потому плоскости треугольников РОК, QOK, ROK перпендикулярны соответствующим ребрам двугранного угла и образуют те равные линейные углы, о которых сказано в условии. Прямоугольные треугольники РОК, QOK, ROK равны (так как у них общий катет ОК и равны противолежащие этому катету углы). Следовательно, ОР = OR = OQ. Если провести окружность с центром О и радиусом ОР, то стороны треугольника АВС перпендикулярны радиусам ОР, OR и OQ а потому являются касательными к этой окружности.


Перпендикулярность плоскостей. Плоскость альфа и бета называются перпендикулярными, если линейный угол одного из двугранных углов, образовавшихся при их пересечении равен 90". Признаки перпендикулярности двух плоскостей Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.






На рисунке изображен прямоугольный параллелепипед. Его основаниями служат прямоугольники ABCD и A1B1C1D1. А боковые ребра АА1 ВВ1, СС1, DD1, перпендикулярны к основаниям. Отсюда следует что АА1 перпендикуляр АВ, т. е. боковая грань – прямоугольник. Таким образом, можно обосновать свойства прямоугольного параллелепипеда: В прямоугольном параллелепипеде все шесть граней – прямоугольники. В прямоугольном параллелепипеде все шесть граней – прямоугольники. Все двугранные углы прямоугольного параллелепипеда – прямые. Все двугранные углы прямоугольного параллелепипеда – прямые.


Теорема Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Обратимся снова к рисунку, И докажем что АС12 =АВ2+AD2+АА12 Так как ребро СС1 перпендикулярно к основанию АВСD то угол АСС1 прямой. Из прямоугольного треугольника АСС1 по теореме Пифагора получаем АС12=АС2+СС12. Но АС - диагональ прямоугольника АВСD, поэтому АС2 = АВ2+АD2. Кроме того, СС1 = АА1. Следовательно АС12= АВ2+АD2+AA12 Теорема доказана.







Понятие двугранного угла

Для введения понятия двугранного угла, для начала вспомним одну из аксиом стереометрии.

Любую плоскость можно разделить на две полуплоскости прямой $a$, лежащей в этой плоскости. При этом, точки, лежащие в одной полуплоскости находятся с одной стороны от прямой $a$, а точки, лежащие в разных полуплоскостях -- по разные стороны от прямой $a$ (рис. 1).

Рисунок 1.

На этой аксиоме основан принцип построение двугранного угла.

Определение 1

Фигура называется двугранным углом , если она состоит из прямой и двух полуплоскостей этой прямой, не принадлежащих одной плоскости.

При этом полуплоскости двугранного угла называются гранями , а прямая, разделяющая полуплоскости -- ребром двугранного угла (рис. 1).

Рисунок 2. Двугранный угол

Градусная мера двугранного угла

Определение 2

Выберем на ребре произвольную точку $A$. Угол между двумя прямыми, лежащими в разных полуплоскостях, перпендикулярных ребру и пересекающихся в точке $A$ называется линейным углом двугранного угла (рис. 3).

Рисунок 3.

Очевидно, что каждый двугранный угол имеет бесконечное число линейных углов.

Теорема 1

Все линейные углы одного двугранного угла равняются между собой.

Доказательство.

Рассмотрим два линейных угла $AOB$ и $A_1{OB}_1$ (рис. 4).

Рисунок 4.

Так как лучи $OA$ и ${OA}_1$ лежат в одной полуплоскости $\alpha $ и перпендикулярны одной прямой, то они являются сонаправленными. Так как лучи $OB$ и ${OB}_1$ лежат в одной полуплоскости $\beta $ и перпендикулярны одной прямой, то они являются сонаправленными. Следовательно

\[\angle AOB=\angle A_1{OB}_1\]

В силу произвольности выборов линейных углов. Все линейные углы одного двугранного угла равны между собой.

Теорема доказана.

Определение 3

Градусной мерой двугранного угла называется градусная мера линейного угла двугранного угла.

Примеры задач

Пример 1

Пусть нам даны две неперпендикулярные плоскости $\alpha $ и $\beta $ которые пересекаются по прямой $m$. Точка $A$ принадлежит плоскости $\beta $. $AB$ -- перпендикуляр к прямой $m$. $AC$ перпендикуляр к плоскости $\alpha $ (точка $C$ принадлежит $\alpha $). Доказать, что угол $ABC$ является линейным углом двугранного угла.

Доказательство.

Изобразим рисунок по условию задачи (рис. 5).

Рисунок 5.

Для доказательства вспомним следующую теорему

Теорема 2: Прямая, проходящая через основание наклонной, перпендикулярно ей, перпендикулярна её проекции.

Так как $AC$ - перпендикуляр к плоскости $\alpha $, то точка $C$ - проекция точки $A$ на плоскость $\alpha $. Следовательно, $BC$ -- проекция наклонной $AB$. По теореме 2, $BC$ перпендикулярна ребру двугранного угла.

Тогда, угол $ABC$ удовлетворяет всем требованиям определения линейного угла двугранного угла.

Пример 2

Двугранный угол равен $30^\circ$. На одной из граней лежит точка $A$, которая удалена от другой грани на расстояние $4$ см. Найти расстояние от точки $A$ до ребра двугранного угла.

Решение.

Будем рассматривать рисунок 5.

По условию, имеем $AC=4\ см$.

По определению градусной меры двугранного угла, имеем, что угол $ABC$ равен $30^\circ$.

Треугольник $ABC$ является прямоугольным треугольником. По определению синуса острого угла

\[\frac{AC}{AB}=sin{30}^0\] \[\frac{5}{AB}=\frac{1}{2}\] \

Данный урок предназначается для самостоятельного изучения темы «Двугранный угол». В ходе этого занятия учащиеся познакомятся с одной из самых важных геометрических фигур - двугранным углом. Также на уроке нам предстоит узнать о том, как определить линейный угол рассматриваемой геометрической фигуры и какой бывает двугранный угол при основании фигуры.

Повторим, что такое угол на плоскости и как он измеряется.

Рис. 1. Плоскость

Рассмотрим плоскость α (рис. 1). Из точки О исходят два луча - ОВ и ОА .

Определение . Фигура, образованная двумя лучами, исходящими из одной точки, называется углом.

Угол измеряется в градусах и в радианах.

Вспомним, что такое радиан.

Рис. 2. Радиан

Если мы имеем центральный угол, длина дуги которого равна радиусу, то такой центральный угол называется углом в 1 радиан. , ∠АОВ = 1 рад (рис. 2).

Связь радианов и градусов.

рад.

Получаем, рад. (). Тогда,

Определение . Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а , не принадлежащими одной плоскости.

Рис. 3. Полуплоскости

Рассмотрим две полуплоскости α и β (рис. 3). Их общая граница - а . Указанная фигура называется двугранным углом.

Терминология

Полуплоскости α и β - это грани двугранного угла.

Прямая а - это ребро двугранного угла.

На общем ребре а двугранного угла выберем произвольную точку О (рис. 4). В полуплоскости α из точки О восстановим перпендикуляр ОА к прямой а . Из той же точки О во второй полуплоскости β восставим перпендикуляр ОВ к ребру а . Получили угол АОВ , который называется линейным углом двугранного угла.

Рис. 4. Измерение двугранного угла

Докажем равенство всех линейных углов для данного двугранного угла.

Пусть мы имеем двугранный угол (рис. 5). Выберем точку О и точку О 1 на прямой а . Построим линейный угол соответствующий точке О , т. е. проведем два перпендикуляра ОА и ОВ в плоскостях α и β соответственно к ребру а . Получаем угол АОВ - линейный угол двугранного угла.

Рис. 5. Иллюстрация доказательства

Из точки О 1 проведем два перпендикуляра ОА 1 и ОВ 1 к ребру а в плоскостях α и β соответственно и получим второй линейный угол А 1 О 1 В 1 .

Лучи О 1 А 1 и ОА сонаправленны, так как они лежат в одной полуплоскости и параллельны между собой как два перпендикуляра к одной и той же прямой а .

Аналогично, лучи О 1 В 1 и ОВ сонаправлены, значит, АОВ = А 1 О 1 В 1 как углы с сонаправленными сторонами, что и требовалось доказать.

Плоскость линейного угла перпендикулярна ребру двугранного угла.

Доказать : а АОВ.

Рис. 6. Иллюстрация доказательства

Доказательство :

ОА а по построению, ОВ а по построению (рис. 6).

Получаем, что прямая а перпендикулярна двум пересекающимся прямым ОА и ОВ из плоскости АОВ , значит, прямая а перпендикулярна плоскости ОАВ , что и требовалось доказать.

Двугранный угол измеряется своим линейным углом. Это означает, что, сколько градусов радиан содержится в линейном угле, столько же градусов радиан содержится в его двугранном угле. В соответствии с этим различают следующие виды двугранных углов.

Острый (рис. 6)

Двугранный угол острый, если его линейный угол острый, т.е. .

Прямой (рис. 7)

Двугранный угол прямой, когда его линейный угол равен 90°- Тупой (рис. 8)

Двугранный угол тупой, когда его линейный угол тупой, т.е. .

Рис. 7. Прямой угол

Рис. 8. Тупой угол

Примеры построения линейных углов в реальных фигурах

АВС D - тетраэдр.

1. Построить линейный угол двугранного угла с ребром АВ .

Рис. 9. Иллюстрация к задаче

Построение :

Речь идет о двугранном угле, который образован ребром АВ и гранями АВ D и АВС (рис. 9).

Проведем прямую D Н перпендикулярно плоскости АВС , Н - основание перпендикуляра. Проведем наклонную D М перпендикулярно прямой АВ, М - основание наклонной. По теореме о трех перпендикулярах заключаем, что проекция наклонной НМ также перпендикулярна прямой АВ .

То есть, из точки М восстановлены два перпендикуляра к ребру АВ в двух гранях АВ D и АВС . Мы получили линейный угол D МН .

Заметим, что АВ , ребро двугранного угла, перпендикулярно плоскости линейного угла, т. е. плоскости D МН . Задача решена.

Замечание . Двугранный угол можно обозначить следующим образом: D АВС , где

АВ - ребро, а точки D и С лежат в разных гранях угла.

2. Построить линейный угол двугранного угла с ребром АС .

Проведем перпендикуляр D Н к плоскости АВС и наклонную D N перпендикулярно прямой АС. По теореме о трех перпендикулярах получаем, что НN - проекция наклонной D N на плоскость АВС, также перпендикулярна прямой АС. D - линейный угол двугранного угла с ребром АС .

В тетраэдре D АВС все ребра равны. Точка М - середина ребра АС . Докажите, что угол D МВ - линейный угол двугранного угла ВАС D , т. е. двугранного угла с ребром АС . Одна его грань - АС D , вторая - АСВ (рис. 10).

Рис. 10. Иллюстрация к задаче

Решение :

Треугольник ADC - равносторонний, DM - медиана, а значит и высота. Значит, D М АС. Аналогично, треугольник A В C - равносторонний, В M - медиана, а значит, и высота. Значит, ВМ АС.

Таким образом, из точки М ребра АС двугранного угла восстановлено два перпендикуляра DM и ВМ к этому ребру в гранях двугранного угла.

Значит, ∠DM В - линейный угол двугранного угла, что и требовалось доказать.

Итак, мы определили двугранный угол, линейный угол двугранного угла.

На следующем уроке мы рассмотрим перпендикулярность прямых и плоскостей, дальше узнаем что такое двугранный угол при основании фигур.

Список литературы по теме "Двугранный угол", "Двугранный угол при основании геометрических фигур"

  1. Геометрия. 10-11 класс: учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  2. Геометрия. 10 класс: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Yaklass.ru ().
  2. E-science.ru ().
  3. Webmath.exponenta.ru ().
  4. Tutoronline.ru ().

Домашнее задание по теме "Двугранный угол", определение двугранного угла при основании фигур

Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 2, 3 стр. 67.

Что такое линейный угол двугранного угла? Как его построить?

АВС D - тетраэдр. Построить линейный угол двугранного угла с ребром:

а) В D б) D С.

АВС DA 1 B 1 C 1 D 1 - куб. Постройте линейный угол двугранного угла А 1 АВС с ребром АВ . Определите его градусную меру.

Мы предлагаем профильные и общие курсы по основным творческим дисциплинам для подготовки и поступления в художественный вуз .

Занятия ведут профессиональные педагоги, художники, члены московского союза художников (МСХ)

Курс разработан на основе программ подготовки по следующим предметам:

  • Академический рисунок
  • Академическая живопись
  • Композиция
  • Черчение

Эффективность программы подтверждена большим количеством абитуриентов, поступивших на бюджетные места в самые престижные художественные вузы. Ученики, прошедшие курс обучения, получают высокий уровень подготовки, необходимый для поступления в любой художественный вуз.

Методика подготовки в художественный вуз.

Программа подготовки делится на несколько этапов:

  1. Определение существующего уровня подготовки абитуриента. Если у вас есть собственные творческие работы, привезите их на первое занятие, это позволит легче определить уровень и особенности техники.
  2. Требуемая задача. В зависимости от того, какой вуз вы выбрали для поступления, какие предстоят экзамены, и, сколько осталось времени до экзаменов, подбирается оптимальная программа подготовки.
  3. Поэтапное выполнение заданий в тематике экзаменационной программы
  4. Ознакомление с теоретическими особенностями выбранных дисциплин, техническими приемами владения графическими материалами и важными деталями каждой постановки.

Натюрморты, гипсовые модели, натура, графические композиции полностью соответствуют постановкам на экзамене.

Благодаря многолетнему опыту обучения художественным дисциплинам наши педагоги разработали эффективную систему подготовки, объединяющую в себе индивидуальный подход к каждому ученику, его способностям, и достижение требуемого результата в зависимости от целей занятий.

Поступление в художественный вуз - это сложный этап в становлении карьеры художника. Выбор вуза, направления, факультета, все эти вопросы необходимо обдумать, и быть готовым к вступительным испытаниям.

Есть несколько важных особенностей при поступлении в художественный вуз.

Предварительный просмотр. Чаще всего перед поступлением проводятся собеседования, где требуют представить работы по рисунку, живописи и композиции для оценки и допуска к вступительным экзаменам. Иногда эта оценка зачисляется в общие баллы, что очень важно. Поэтому для этого этапа вам просто необходимо иметь набор хороших работ по всем требуемым дисциплинам.

Сдача творческих экзаменов. На вступительных экзаменах нужно выполнить определенное задание за ограниченное время. Для каждой дисциплины свои параметры. На подготовительных заданиях мы тренируем навык сконцентрированной работы, чтобы без спешки, не на последних минутах быстро дорисовывать, а спокойно сделать качественную работу, сохранив при этом нервы и силы для будущих экзаменов. Чаще всего, отведенного на выполнение задания времени достаточно, а иногда и с избытком хватает для хорошей работы.

Работа на экзамене. Процесс рисования или живописи на экзаменах - это всегда напряжение, стресс и страх от ожидания результатов и итогов. Как показывает практика, лучший способ не волноваться и уверенно делать работу это предварительные «тренировочные» экзамены, на которых выполняются точно такие же задания за такое же время.

Как гласит неизменное правило «Чем больше мы что-то делаем, тем лучше это у нас получается».

Поэтому приглашаем вас на подготовительные занятия в нашу мастерскую.

Подробнее о программах подготовки по рисунку, живописи и композиции смотрите, перейдя по ссылкам.