Арабский язык с нуля самоучитель. Арабский язык для начинающих. Самая лучшая мотивация

Графическое решение квадратного уравнения Закрепить умение строить графики различных функций; Формировать умение решать квадратные уравнения графическим способом. г. Брдск 2009 Муниципальное общеобразовательное учреждение – Экономический лицей Обобщающий урок по теме «Квадратичная функция», алгебра 8 класс учитель Федосеева Т.М.


Построение графика квадратичной функции Определить направление ветвей: a>0 ветви вверх; a 0 ветви вверх; a"> 0 ветви вверх; a"> 0 ветви вверх; a" title="Построение графика квадратичной функции Определить направление ветвей: a>0 ветви вверх; a"> title="Построение графика квадратичной функции Определить направление ветвей: a>0 ветви вверх; a">


0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точк" title="Построим график функции у=х 2 -2х-3 с помощью алгоритма: 1) а=1>0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точк" class="link_thumb"> 3 Построим график функции у=х 2 -2х-3 с помощью алгоритма: 1) а=1>0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точки пересечения с осью ОХ: х 1 =-1; х 2 =3 1 способ решения уравнения х 2 -2х-3=0 y x Решить уравнение х 2 +2х-3=0 0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точк"> 0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точки пересечения с осью ОХ: х 1 =-1; х 2 =3 1 способ решения уравнения х 2 -2х-3=0 y x 0 1 -4 23 Решить уравнение х 2 +2х-3=0"> 0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точк" title="Построим график функции у=х 2 -2х-3 с помощью алгоритма: 1) а=1>0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точк"> title="Построим график функции у=х 2 -2х-3 с помощью алгоритма: 1) а=1>0 ветви направлены вверх; 2) вершина у о =у(1)=1-2-3=-4 А(1;-4) х=1 – ось параболы Контрольные точки: (0: -3), (3; 0) и им симметричные относительно оси х=1 Строим параболу. Находим точк">


Второй способ: а). Уравнение х 2 -2х-3=0 разобьём на части х 2 = 2х+3 Запишем две функции у= х 2 ; у=2х+3 Строим графики данных функций в одной системе координат. Абсциссы точек пересечения являются корнями уравнения. 0 1 х у Решить уравнение х 2 +2х-3=0


Третий способ: х 2 -3 = 2х y= х 2 -3; y=2х Строим графики данных функций в одной системе координат. Абсциссы точек пересечения являются корнями уравнения. 0 1 х у Решить уравнение х 2 +2х-3=0






ДАГЕСТАНСКИЙ ИНСТИТУТ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

ПЕДАГОГИЧЕСКИХ КАДРОВ

КАФЕДРА ФИЗИКО- МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ И ИКТ

Проект

на тему:

« Построение и п реобразования

графиков функций

в школьном курсе математики »

Рабаданова П.А.

учитель математики

МБОУ « Кочубейская СОШ»

Тарумовский район

2015 г.

1. Введение……………………………………………………………….….3

2. Глава I . Обзор литературы по теме проекта………………………….….5

3. Глава II . Эмпирическая часть:

3.1. Основные методы преобразования графиков функции……….….7

3.2. Построение графиков четной и нечетной функций…………….. 10

3.3. Построение графика обратной функции………………………... 11

3.4. Деформация (сжатие и растяжение) графиков ………………….12

3.5.Комбинация переноса, отражения и деформации………………......13

4.Задания для самостоятельного решения………………………..…...14

5.Заключение………………………………………………………………15

6. Выводы…………………………………………………………..………17

ВВЕДЕНИЕ

Преобразование графиков функции является одним из фундаментальных математических понятий, непосредственно связанные с практической деятельностью. В графиках отражены изменчивость и динамичность реального мира, взаимные отношения реальных объектов и явлений.

Функциональная линия является базовой тематикой, рассматриваемая в Основном и Едином государственных экзаменах. Так же многие математические понятия рассматриваются графическими методами. Например, к вадратичная функция вводится и изучается в тесной связи с квадратными уравнениями и неравенствами. Отсюда следует, что обучение учащихся построению и преобразованию графиков функции является одной из главных задач обучению математике в школе.

Исследование функции дает возможность найти об ласть определения и область значения функции, обла сти убывания или возрастания, асимптоты, интервалы знакопостоянства и др. Однако для построения графи ков многих функций можно использовать ряд методов, облегча ющие построение. Поэтому учащиеся должны иметь компетенции построения графиков по методическим схемам.

Выше сказанное определяет актуальность темы исследования.

Объектом исследования является изучение преобразование графиков функциональной линии в школьной математике.

Предмет исследования – процесс построение и преобразование графиков функции в общеобразовательной школе.

Цель исследования: образовательная - заключается в выявлении методической схемы построения и преобразования графиков функции; развивающая - развитие абстрактного, алгоритмического, логического мышления, пространственного воображения; воспитательная – воспитание графической культуры школьников, формирование навыков умственного труда.

Цели обусловили решение следующих задач:

1. Проанализировать учебно-методическую по исследуемой проблеме.

2. Выявить методические схемы преобразования графиков функции в школьном курсе математики.

3. Отобрать наиболее эффективные методы и средства построение и преобразование графиков функции в общеобразовательной школе , способствующие: осмысленному усвоению учебного материала; повышению познавательной активности учащихся; развитию их творческих способностей.

ГИПОТЕЗА исследования: формирование графических навыков в процессе изучения функций и воспитание графической культуры учащихся будет эффективным, если учащиеся владеют методической схемой построения и преобразования графиков функции в школьном курсе математики.

ГЛАВА I . ОБЗОР ЛИТЕРАТУРЫ ПО ТЕМЕ ПРОЕКТА.

При подготовке к проекту мы изучили следующую литературу:

    Сивашинский, И. Х. Теоремы и задачи по алгебре, элементарным функциям - М., 2002. - 115 с.

    Гельфанд, И. М., Глаголева, Е. Г., Шноль, Э. Э. Функции и графики (основные приемы) - М., 1985. - 120 с

    В.З.Зайцев, В.В. Рыжков, М.И. Сканави. Элементарная математика- М., 2010(переиздание). - 590 с.

    Кузьмин, М. К. Построение графика функции - Ж. Математика в школе. - 2003. - №5. - С. 61-62.

    Шилов Г.Е. Как строить графики? - М., 1982.

    Исаак Танатар. Геометрические преобразования графиков функций - МЦНМО, 2012

В отмечено, что умение с помощью графика «прочитать» поведение функции на некотором множестве находит применение не только в курсе математики, но и в любой практической деятельности человека, в которой ему приходится иметь дело с теми или иными графическими изображениями зависимостей. Поэтому учащиеся должны уметь по графику функции определить некоторые ее свойства.

В строго изложен теоретический материал преобразования графиков. Сопровождается методика иллюстрацией рисунками, различной сложности примерами и их решениями, что дает возможность углублено расширить знания и построении графиков сложных функций.

Представляет электронный учебный курс, объем и содержание которого соответствуют требованиям к курсу математики старших классов средней школы. Теоретический материал подкреплен графическими анимационными иллюстрациями, которые дают наглядные представления об изучаемой теме. Курс включает три модуля: модуль изучения теоретического материала, модуль самопроверки и модуль контроля знаний.

Из , , использованы для эмпирической части проекта методические схемы построения графиков, примеры для самостоятельной работы.

Выводы к 1 главе

Изучение учебно-методической литературы позволило:

1. Выявить методическую схему изучения, построения и преобразования графиков функции в школьном курсе математики.

2. Отобрать наиболее эффективные методы и средства построение и преобразование графиков функции в школьной математике, способствующие:

осмысленному усвоению учебного материала;

повышению познавательной активности учащихся;

развитию их творческих способностей.

3. показать, что функциональная линия оказывает существенное влияние при изучении различных понятий в математике.

Глава 2. ЭМПИРИЧЕСКАЯ ЧАСТЬ

В этой главе мы рассмотрим основные методы преобразования графиков функций, дадим методические схемы построения различных комбинаций графиков для различных функций.

2.1. ОСНОВНЫЕ МЕТОДЫ ПРЕОБРАЗОВАНИЯ ГРАФИКОВ ФУНКЦИИ

    Перенос вдоль оси ординат

f ( x ) f ( x )+ b .

Для построения графика функции y = f ( x ) + b следу ет:

1. построить график функции y = f ( x )

2. перенести ось абсцисс на | b | единиц вверх при b >0 или на | b | еди ниц вниз при b < 0. Полученный в новой системе коор динат график является графиком функции y = f ( x ) + b .

2. Перенос вдоль оси абсцисс

f ( x ) f ( x + a ) .

y = f ( x + a ) следу ет:

3. Построение графика функции вида y = f (- x )

f (x ) f (- x ).

Для построения графика функции y = f ( - х) следует:

    построить график функции y = f ( x )

    отразить его отно сительно оси ординат

    полученный график является графиком функции y = f ( - х).

4. Построение графика функции вида у = - f ( x )

f ( x ) - f ( x )

- f ( x ) следует:

    построить график функции y = f ( x )

    отразить его относительно оси абсцисс

2.2. Построение графиков четной и нечетной функций

При построении графиков четной и нечетной функции удобно пользоваться следующими свойствами:

1.График четной функции симмет ричен относительно оси ординат.

2. График нечетной функции симметричен относительно начала координат.

Для построения графиков четной и нечетной функции достаточно построить только правую ветвь графика для положительных значений аргумента. Левая ветвь достраивается симметрично относительно начала координат для нечетной функции и относительно оси ординат для четной функции.

Для построения графика четной функции y = f ( x ) сле дует:

    построить ветвь графика этой функции только в об ласти положительных значений аргумента х≥О.

    О тразить этот ветвь относительно оси ординат

Для построения графика нечетной функции y = f ( x ) следует:

    строить ветвь графика этой функции только в области положительных значений аргумента (х≥0).

    О тразить этот ветвь относительно начало координат в область отрицательных значений х.

2.3. Построение графика обратной функции

Как уже отмечалось, прямая и обратная функции вы ражают одну и ту же зависимость между переменными х и у, с тем только отличием, что в обратной функции эти переменные поменялись ролями, что равносильно изме нению обозначений осей координат. Поэтому график обратной функции симметричен графику прямой функции относительно биссектрисы I и III координатных углов, т. е. относительно прямой у = х. Таким образом, получаем следующее правило.

Для построения графика функции у = (х), обратной по отношению к функции y = f ( x ), следует построить график y = f ( x ) и отразить его относительно прямой у = х.

2.4. Деформация (сжатие и растяжение) графиков

1. Сжатие (растяжение) графика вдоль оси ординат

f ( x ) A f ( x ).

Для построения графика функции y = A f ( x ) следует:

8. Сжатие (растяжение) графика вдоль оси абсцисс

f ( x )

Для построения графика функции у = f ( x ) следует:

2.5. Комбинация переноса, отражения и деформации

Очень часто при построении графиков функций при меняют комбинацию приемов .

Последовательное применение ряда таких приемов поз воляет существенно упростить построение графика ис ходной функции и нередко свести его в конце концов к построению одной из простейших элементарных функ ций. Рассмотрим, как с учетом изложенного следует строить графики функций.

Отметим, что поря док упрощения целесообразно проводить в следующей последователь ности.

    Использование четности или нечетности функции.

    Перенос осей.

    Отражение и деформация.

    Построение же графика выполняется в обратной последовательности.

Пример. Построить график функции

Построение проведем по следующим шагам:

1. построим график натурального логарифма :

2. сожмём к оси OY в 2 раза: ;
3.
отобразим симметрично относительно оси OY : ;
4. сдвинем вдоль оси
OX на (!!!) вправо: :

5. отобразим симметрично относительно оси OX : ;
6. сдвинем
вдоль оси OY на 3 единицы вверх: :

ПРИМЕРЫ ПОСТРОЕНИЯ и ПРЕОБРАЗОВАНИЯ ГРАФИКОВ ФУНКЦИИ

Пример 1. Построить график функции .

Сначала изобразим график синуса, его период равен :

график функции получается путём сжатия графика к оси ординат в два раза. log .

Построить график функции у = 2 cos х.

Построить график функции y = sin x .

ЗАКЛЮЧЕНИЕ

Во время работы над проектной работой были проанализирована различная учебно-методическая литература по данной проблеме. Результаты исследования позволили выявить наиболее характерные положительные стороны изучения , построения и преобразования графиков функции в школьном курсе математики

Основной целью проекта является формирование у учащихся умений и навыков в чтении и выполнении чертежей, в формировании у них рациональных приемов самостоятельной деятельности.

Необходимость усовершенствования графического образования в целом диктуется не только современными требованиями производства, но и ролью графики в развитии технического мышления и познавательных способностей учащихся. Способность человека к переработке графической информации является одним из показателей его умственного развития. Поэтому графическая подготовка должна стать неотъемлемым элементом общеобразовательной подготовки.

Выводы

Таким образом, разработанный проект « Построение и преобразование графиков функции», посвященный одному из центральных понятий математики - функциональной зависимости, ориентирован на систематизацию и расширение знаний учащихся. Изучение конкретных способов преобразования графиков функций проводится аналитико-графическим путем по строгим методическим схемам. Собранный материал можно использовать на уроках и для самоподготовки учащихся. Для проведения занятий могут использоваться разнообразные формы и методы организации и обучения.

Одним из способов решения уравнений является графический способ. Он основан на построении графиков функции и определения точек их пересечения. Рассмотрим графический способ решения квадратного уравнения a*x^2+b*x+c=0.

Первый способ решения

Преобразуем уравнение a*x^2+b*x+c=0 к виду a*x^2 =-b*x-c. Строим графики двух функций y= a*x^2 (парабола) и y=-b*x-c (прямая). Ищем точки пересечения. Абсциссы точек пересечения и будут являться решением уравнения.

Покажем на примере: решить уравнение x^2-2*x-3=0.

Преобразуем его в x^2 =2*x+3. Строим в одной системе координат графики функции y= x^2 и y=2*x+3.

Графики пересекаются в двух точках. Их абсциссы будут являться корнями нашего уравнения.

Решение по формуле

Для убедительности проверим это решение аналитическим путем. Решим квадратное уравнение по формуле:

D = 4-4*1*(-3) = 16.

X1= (2+4)/2*1 = 3.

X2 = (2-4)/2*1 = -1.

Значит, решения совпадают.

Графический способ решения уравнений имеет и свой недостаток, с помощью него не всегда можно получить точное решение уравнения. Попробуем решить уравнение x^2=3+x.

Построим в одной системе координат параболу y=x^2 и прямую y=3+x.

Опять получили похожий рисунок. Прямая и парабола пересекаются в двух точках. Но точные значения абсцисс этих точек мы сказать не можем, только лишь приближенные: x≈-1,3 x≈2,3.

Если нас устраивают ответы такой точности, то можно воспользоваться этим методом, но такое бывает редко. Обычно нужны точные решения. Поэтому графический способ используют редко, и в основном для проверки уже имеющихся решений.

Нужна помощь в учебе?



Предыдущая тема:

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;