Представление зависимости между величинами в виде формул. Представление зависимостей между величинами — Гипермаркет знаний. Предварительная подготовка. Вопросы и задания

Чтобы легко справиться с решением задач на шар, вписанный в пирамиду, полезно разобрать небольшой теоретический материал.

Шар вписан в пирамиду (или сфера вписана в пирамиду) — значит, шар (сфера) касаются каждой грани пирамиды. Плоскости, содержащие грани пирамиды, являются касательными плоскостями шара. Отрезки, соединяющие центр шара с точками касания, перпендикуляры к касательным плоскостям. Их длины равны радиусу шара. Центр вписанного в пирамиду шара — точка пересечения бисекторных плоскостей двугранных углов при основании (то есть плоскостей, делящих эти углы пополам).

Чаще всего в задачах речь идет о шаре, вписанном в правильную пирамиду. Шар можно вписать в любую правильную пирамиду. Центр шара в этом случае лежит на высоте пирамиды. При решении задачи удобно провести сечение пирамиды и шара плоскостью, проходящей через апофему и высоту пирамиды.

Если пирамида четырехугольная или шестиугольная, сечение представляет собой равнобедренный треугольник, боковые стороны которого — апофемы, а основание — диаметр вписанной в основание окружности.

Если пирамида треугольная или пятиугольная, достаточно рассмотреть лишь часть этого сечения — прямоугольный треугольник, катеты которого — высота пирамиды и радиус вписанной в основание пирамиды окружности, а гипотенуза — апофема.

В любом случае, в итоге приходим к рассмотрению соответствующего прямоугольного треугольника и других связанных с ним треугольников.

Итак, в прямоугольном треугольнике SOF катет SO=H — высота пирамиды, катет OF=r — радиус вписанной в основание пирамиды окружности, гипотенуза SF=l — апофема пирамиды. O1- центр шара и, соответственно, окружности, вписанной в треугольник, полученный в сечении (мы рассматриваем его часть). Угол SFO — линейный угол двугранного угла между плоскостью основания и плоскостью боковой грани SBC. Точки K и O — точки касания, следовательно, O1K перпендикулярен SF. OO1=O1K=R — радиусу шара.

Прямоугольные треугольники OO1F и KO1F равны (по катетам и гипотенузе). Отсюда KF=OF=r.

Прямоугольные треугольники SKO1 и SOF подобны (по острому углу S), откуда следует, что

В треугольнике SOF применим свойство биссектрисы треугольника:

Из прямоугольного треугольника OO1F

При решении задач на шар, вписанный в правильную пирамиду, будет полезным еще одно рассуждение.

Теперь найдем отношение объема пирамиды к площади ее поверхности.

Предмет: математика
Класс: 4
Тема урока: Зависимости между скоростью, длиной пройденного пути и временем
движения.
Цель: выявить и обосновать зависимости между величинами: скорость, время,
расстояние;
Задачи: способствовать развитию нестандартного мышления, умение делать выводы,
рассуждать; содействовать воспитанию познавательной активности.
Оборудование: индивидуальные карточки разных цветов, критерии оценивания,
карточка для рефлексии, круги двух цветов.
Ход урока.
1. Орг.момент.
Карточка двух цветов: желтая и синяя. Показать с помощью карточки свое настроение
в начале и конце урока.
Заполнение карточки на начало урока (Приложение 1.)
№ Утверждение
Конец урока
Начало урока
Да
Нет
Не знаю Да
Нет Не
знаю
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
2. Повторение.
­ Как найти скорость? Время? Расстояние?
­ Назовите единицы измерения величины скорости, расстояние, время.
3. Сообщение темы урока.
­ Чему будем учиться на уроке?
4. Работа в группе.
­ Соединить объекты движения (Приложение 2)
Пешеход 70км/ч
Лыжник 5км/ч

Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Проверка работ.
5. Математическая головоломка(самостоятельная работа)
­ Во сколько скорость велосипедиста меньше скорости поезда?
­ На сколько км скорость лыжника больше скорости пешехода?
­ Во сколько раз скорость автомобиля меньше скорости реактивного самолета?
­ Найди общую скорость самого скоростного движущегося средства и самого
медленного.
­ Найди общую скорость поезда велосипедиста и лыжника.
6. Самопроверка работ по критериям.
7. Физминутка.
Красный цвет квадрата­ стоим
Зеленый – идем
Желтый – хлопаем 1 раз в ладоши
8. Работа в группе. (Карточка желтого цвета) (метод Джегсо)
Задача.
Две бабы­яги поспорили, что быстроходнее ступа или помело? Одну и ту же
дистанцию в 228км баба­яга в ступе пролетела за 4ч, а баба­яга на помеле за 3ч. Что
больше, скорость ступы или помела?
9. Работа в паре «Эксперимент».
Придумать задачу на движение, используя величины: 18км/ч, 4ч, 24 км, 3ч.
Проверка работ.
10. Тест.
1.Записать формулу нахождения скорости.
2. Записать формулу нахождения времени.
3. Как найти расстояние? Запиши формулу.
4. Запиши 8 км/мин в км/ч
5. Найди время, за которое пройдет пешеход 42 км, двигаясь со скоростью 5км/ч.
6. Какое расстояние пройдет пешеход, двигаясь со скоростью 5км/ч в течение 6 часов?
11. Итог урока.
Заполнить таблицу, с какими результатами мы пришли к концу урока.
Показать карточку, которая соответствует вашему настроению.

Начало урока
Да
Нет
Приложение 1.
Конец урока
Не знаю Да
№ Утверждение
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
Соединить объекты движения.
Пешеход 70км/ч
Лыжник 5км/ч
Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Нет Не
знаю
Приложение 2.

Моделирование зависимостей

между величинами

«Единственный путь, который ведет к знаниям – это ДЕЯТЕЛЬНОСТЬ» Б. Шоу


Назвался груздем – полезай

в кузов

Как аукнется - так и откликнется.


Значение


  • Имя: смысловое (давление газа, время) и символическое (P,t)
  • Значение: постоянная величина (константа) или переменная
  • Тип: числовой, символьный, логический

По способу представления

информационные

материальные

вербальные

знаковые

образные

компьютерные

некомпьютерные


Информационные модели

Ч и с л о в о й т и п

Математические Табличные Графические


Время падения тела на землю зависит от его первоначальной высоты

t(с) – время падения; H (м) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой


Давление газа в баллоне зависит от его температуры

P (н/м 2) – давление газа; t (°С) – температура газа. Давление при нуле градусов P 0 будем считать константой для данного газа.


Уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе

Загрязненность воздуха будем характеризовать концентрацией примесей – С (мг/м 3). Единица измерения – масса примесей, содержащаяся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей



Математическая модель

Это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики


Табличные и графические модели

Проверим закон свободного падения тела экспериментальным путем.

Будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время его падения.


Таблица и график результатов эксперимента

H, м

t, с


  • Существует три способа моделирования числовых величин: функциональный (формула), табличный и графический;
  • Формула более универсальна; имея формулу, можно легко создать таблицу и построить график

Представьте математическую модель зависимости давления газа от температуры

T= от 10 до 150 с шагом 10


Рефлексия

Цель : выявление уровня осознания содержания пройденного материала

Продолжите фразу:

  • Сегодня я узнал…
  • Я приобрел…
  • У меня получилось …
  • Я смог…
  • Урок дал мне для жизни…
  • Мне захотелось…
  • Было интересно…
  • Было трудно…
  • Я выполнял задания…
  • Самым сложным при выполнении задания для меня было…
  • Самым простым при выполнении задания для меня было…
  • Самым интересным при выполнении задания для меня было…

Рефле́ксия (от позднелат. reflexio - обращение назад) - это обращение внимания субъекта на самого себя и на своё сознание, в частности, на продукты собственной активности, а также какое-либо их переосмысление.



Домашнее задание

  • Из окна дома на высоте 19,6 м брошена монета со скоростью 5 м/с. Определить время, через которое монета упадет на землю. Используя MS EXCEL, построить модель падения с изменением начальной скорости от 5 м/с до 20м/с

Шаг изменения скорости 1 м/с.

Результат отправить по адресу:

Первый слайд на экране.

Добрый день! Садитесь. Откроем рабочие тетради запишем сегодняшнее число и тему урока:

«Моделирование зависимостей между величинами». Откройте рабочие тетради запишите сегодняшнюю дату и название темы. А в качестве эпиграфа к уроку я хотел бы взять известную фразу лауреата Нобелевской премии в области литературы Джоржа Бернарда Шоу: «Единственный путь, который ведет к знаниям – это

ДЕЯТЕЛЬНОСТЬ»

Определите цель сегодняшнего урока. (Научиться моделировать зависимости между величинами).

что такое модель?

Упрощенное представление о реальном объекте, процессе или явлении, которое отражает его существенные свойства.

что такое моделирование?

Моделирование

Процесс построения моделей для исследования и изучения объектов, процессов или явлений;

Метод познания, состоящий в создании и исследовании моделей.

Какие вы знаете модели по способу их представления

Материальные и информационные

Какое стандартное программное обеспечение позволяет нам строить

информационные модели?

Майкрософт эксесс

Майкрософт эксель

Какое приложение из перечисленных включает в себя более развитый математический аппарат?

Майкрософт эксель

Как вы считаете каким стандартным программным обеспечением необходимо научиться пользоваться для получения результата обозначенного темой урока?

Майкрософт эксель

Второй слайд.

Итак, приступим. Перед вами на слайде пословицы:

4. Как аукнется - так и откликнется.

5. Назвался груздем - полезай в кузов.

Определите понятие, которое объединяет все эти пословицы.

ЗАВИСИМОСТЬ

На каких уроках вы встречались с этим понятием?

(на математике физике химии биологии информатике и т.д).

Какие бывают зависимости?

Зависимости бывают математические, физические социальные информационные и т.д.

Давайте определим понятие зависимость как вид связи между величинами, объектами и субъектами.

Запишите это определение. Отметьте что определение понятия зависимость может изменяться исходя из сферы применения этого понятия. (Например определение наркотической зависимости будет включать в себя составляющие отличные от составляющих информационной зависимости).

Отметим еще две существенные формы зависимости величин, имеющих

утилитарное значение

Это – функциональная и статистическая. В математике функциональной зависимостью переменной Y от переменной Х называют зависимость вида y=f(x). Однако, если X и Y случайные величины, то между ними может существовать зависимость иного рода, называемая статистической.

Разновидностью статистической зависимости является корреляционная зависимость, моделированием которой, мы займемся в следующей четверти.

Третий слайд

Определим понятие величина.

Что такое величина?

Величина – количественная характеристика исследуемого объекта.

Запишем это определение и перечислим свойства величин.

Свойства величин:

Имя величины.

может быть полным (подчеркивающим ее смысл), а может быть символическим.

Значение.

Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы - число Пифагора n =З,14159... Величина, меняющая свое значение, называется переменной.

определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический.

Поскольку при раскрытии темы урока мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа, описываемые математическими, табличными и графическими моделями.

Четвертый слайд

Слайд «Место информатики в системе наук»

Межпредметное значение информатики в значительной степени проявляется именно через внедрение компьютерного моделирования в различные научные и прикладные области: математику и физику, технику, биологию и медицину, экономику, управление и многие другие. С помощью компьютерного моделирования решаются многие научные и производственные задачи. Гибким инструментом для компьютерного моделирования является MS Excel.

Шестой слайд

Рассмотрим построение компьютерных моделей на

Примерах следующих зависимостей:

1) время падения тела на землю зависит от первоначальной высоты;

2) давление зависит от температуры газа в баллоне;

3) частота заболевания жителей бронхиальной астмой зависит от качества городского воздуха.

Рассмотрим различные методы представления зависимостей.

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса, явления).

Например, в описании процесса падения тела переменными величинами являются высота (Н) и время падения (t).

Кроме имен укажем размерности величин.

t (сек) - время падения; Н (ж) - высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха. Ускорение свободного падения g (м/сек2) - константа.

Отметим что

Если зависимое между величинами удается представить в математической форме, то мы имеем математическую модель.

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают физические законы и представляются в виде формул:

Построить самостоятельно табличную и графическую модель процесса изменения давления газа, при изменении температуры.

Для того чтобы вспомнить основные принципы работы с MS Excel построим модель процесса падения тела с высоты.

Демонстрация на экране.

В этом примере мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Почему? Потому что формула универсальна. Она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 2.11.

Кроме того, таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов.

Сейчас вы выполните компьютерный тест.

Поднимите руки те, кто получил за тест 5.

Определите проблемные места.

и по завершении тестирования построите модель процесса изменения давления.

Исходные данные:

t меняется от 0 до 150 с шагом 10 ПРОВЕРИТЬ!!!

Коротко о главном

Величина - некоторая количественная характеристика объекта.

Зависимости между величинами могут быть представлены в виде математической модели, в табличной и графической формах.

Зависимость, представленная в виде формулы, является математической моделью.

MS Excel явлется гибким доступным и понятным средством моделирования.

Вспомним цель, которую поставили в начале урока.

Достигли ее?

Все ли было понятно на уроке?-рефлексия

Вопросы и задания

1. а) Какие вам известны формы представления зависимостей между величинами?

б) Что такое математическая модель?

в) Может ли математическая модель включать в себя только константы?

2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками некоторой системы.

3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.

рочитеать &36. Ответить письменно на вопорсы после параграфа.

В начале урока будет проверка по созданию зависимости между величинами в программе Excel на время.

Две величины называются прямо пропорциональными , если при увеличении одной из них в несколько раз другая увеличивается во столько же раз. Соответственно, при уменьшении одной из них в несколько раз, другая уменьшается во столько же раз.

Зависимость между такими величинами — прямая пропорциональная зависимость. Примеры прямой пропорциональной зависимости:

1) при постоянной скорости пройденный путь прямо пропорционально зависит от времени;

2) периметр квадрата и его сторона — прямо пропорциональные величины;

3) стоимость товара, купленного по одной цене, прямо пропорционально зависит от его количества.

Чтобы отличить прямую пропорциональную зависимость от обратной можно использовать пословицу: «Чем дальше в лес, тем больше дров».

Задачи на прямо пропорциональные величины удобно решать с помощью пропорции.

1) Для изготовления 10 деталей нужно 3,5 кг металла. Сколько металла пойдет на изготовление 12 таких деталей?

(Рассуждаем так:

1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем больше деталей, тем больше металла нужно для их изготовления. Значит, это прямо пропорциональная зависимость.

Пусть х кг металла нужно для изготовления 12 деталей. Составляем пропорцию (в направлении от начала стрелки к ее концу):

12:10=х:3,5

Чтобы найти , надо произведение крайних членов разделить на известный средний член:

Значит, потребуется 4,2 кг металла.

Ответ: 4,2 кг.

2) За 15 метров ткани заплатили 1680 рублей. Сколько стоят 12 метров такой ткани?

(1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем меньше ткани покупают, тем меньше за нее надо заплатить. Значит, это прямо пропорциональная зависимость.

3. Поэтому вторая стрелка одинаково направлена с первой).

Пусть х рублей стоят 12 метров ткани. Составляем пропорцию (от начала стрелки к ее концу):

15:12=1680:х

Чтобы найти неизвестный крайний член пропорции, произведение средних членов делим на известный крайний член пропорции:

Значит, 12 метров стоят 1344 рубля.

Ответ: 1344 рубля.

Предварительная подготовка. Вопросы и задания

При решении каких информационных задач используются
электронные таблицы?

а) Как адресуются данные в электронной таблице?

б) Данные каких типов могут храниться в ячейках ЭТ?

в) Что такое принцип относительной адресации?

г) Как можно отменить действие относительной адресации?

В чем состоит назначение диаграмм?

Как определяется область выбора данных из таблицы для построения диаграммы и порядок выбора? Какие величины откладываются по горизонтальной (ОХ) оси и вертикальной (OY) оси?

В каких ситуациях предпочтительнее использовать: гистограммы; графики; круговые диаграммы?


Информационное моделирование в планировании и управлении производством

Изучаемые вопросы

Наиболее распространенные типы задач планирования и управления

Представление зависимостей между величинами

Статистика и статистические данные

Метод наименьших квадратов

Построение регрессионных моделей с помощью табличного процессора

Прогнозирование по регрессионной модели

Понятие о корреляционных зависимостях. Расчет корреляционных зависимостей в электронной таблице

Оптимальное планирование. Использование MS Excel для решения задачи оптимального планирования

Наиболее распространенные типы задач планирования и управления

В управлении и планировании существует целый ряд ти­повых задач, которые можно переложить на плечи компью­тера. Пользователь таких программных средств может даже и не знать глубоко математику, стоящую за применяемым аппаратом. Он лишь должен понимать суть решаемой проб­лемы, готовить и вводить в компьютер исходные данные, интерпретировать полученные результаты.

В данной теме рассмотрим три типа задач, которые часто приходится решать специалистам в области планирования и управления:

1) прогнозирование - поиск ответа на вопросы «Что будет через какое-то время?», или «Что будет, если...?»;

2) определение влияния одних факторов на другие - поиск ответа на вопрос «Как сильно влияет фактор Б на фактор А?», или «Какой фактор - Б или В - влияет сильнее на фактор А?»;

3) поиск оптимальных решений - поиск ответа на вопрос «Как спланировать производство, чтобы достичь оптимального значения некоторого показателя (например, максимума прибыли, или минимума расхода электроэнергии)? ».

Инструментом информационных технологий, который мы будем использовать, является табличный процессор MS Excel.

Представление зависимостей между величинами

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других. Примеры зависимостей:

‒ время падения тела на землю зависит от первоначальной высоты;

‒ давление зависит от температуры газа в баллоне;

‒ частота заболевания жителей бронхиальной астмой зависит от качества городского воздуха.

Рассмотрим различные методы представления зависимостей .

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса, явления). Такие характеристики называются величинами.

Со всякой величиной связаны три основные свойства : имя, значение, тип.

Имя величины может быть полным (подчеркивающим ее смысл), а может быть символическим. Примером полного имени является «Давление газа»; а символическое имя для этой же величины - Р. В базах данных величинами явля­ются поля записей. Для них, как правило, используются полные имена, например: «Фамилия», «Вес», «Оценка» и т. п. В физике и других науках, использующих математи­ческий аппарат, применяются символические имена для обозначения величин.

Если значение величины не изменяется, то она называет­ся постоянной величиной или константой. Пример кон­станты - число Пифагора π=3,14159... Величина, меняю­щая свое значение, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота (Н) и время падения (t).

Третьим свойством величины является ее тип . Тип определяет множество значений, которые может прини­мать величина. Основные типы величин: числовой, символь­ный, логический.

А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные ве­личины, зависимости между которыми нас будут интересо­вать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

1. t (сек) - время падения; Н (м) - высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха. Ускорение свободного падения g (м/сек 2) - константа.

2. Р (кг/м 2) - давление газа; t (С) - температура газа. Давление при нуле градусов Р о считается константой для данного газа.

3. Загрязненность воздуха будем характеризовать концентрацией примесей - С (мг/куб. м). Единица измерения - масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящимся на 1000 жителей данного города - Р (бол./тыс).

Если зависимость между величинами удается предста­вить в математической форме, то мы имеем математическую модель.

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке ма­тематики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают фи­зические законы, и представляется в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую - линейной (давление прямо пропорционально тем­пературе).

В более сложных задачах математические модели пред­ставляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости вели­чин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, ко­торая выражается системой неравенств.

Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического . Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом: бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы со­ставили таблицу и нарисовали график.