Какое поле называется электромагнитным. Электромагнитное поле. Определение, характеристики. К основным источникам электромагнитных полей относят

Электромагнитное поле это такой вид материи, которая возникает вокруг движущихся зарядов. Например, вокруг проводника с током. Электромагнитное поле состоит из двух составляющих это электрическое и магнитное поле. Независимо друг от друга они существовать не могут. Одно порождает другое. При изменении электрического поля тут же возникает магнитное.

Скорость распространения электромагнитной волны V=C/EM

Где e и м соответственно магнитная и диэлектрическая проницаемость среды, в которой распространяется волна.
Электромагнитная волна в вакууме распространяется со скоростью света, то есть 300 000 км/с. Поскольку диэлектрическая и магнитная проницаемость вакуума считается равными 1.

При изменении электрического поля возникает магнитное поле. Так как вызвавшее его электрическое поле не является неизменным (то есть изменяется во времени) то и магнитное поле также будет переменным.

Изменяющееся магнитное поле в свою очередь порождает электрическое поле и так далее. Таким образом, для последующего поля (неважно будет оно электрическое или магнитное) источником будет служить предыдущее поле, а не первоначальный источник, то есть проводник с током.

Таким образом, даже после отключения тока в проводнике электромагнитное поле будет продолжать существовать и распространятся в пространстве.

Электромагнитная волна распространяется в пространстве во все стороны от своего источника. Можно себе представить включению лампочку, лучи света от нее распространяются во все стороны.

Электромагнитная волна при распространении переносит энергию в пространстве. Чем сильнее ток в проводнике вызвавший поле, тем больше энергия переносимая волной. Также энергия зависит от частоты излучаемых волн, при увеличении ее в 2,3,4 раза энергия волны увеличится в 4,9,16 раз соответственно. То есть энергия распространения волны пропорциональна квадрату частоты.

Наилучшие условия распространения волн создаются, когда длинна проводника, равна длине волны.

Силовые линии магнитного и электрического полетим взаимно перпендикулярно. Магнитные силовые линии охватывают проводник с током и всегда замкнуты.
Электрические силовые линии идут от одного заряда к другому.

Электромагнитная волна это всегда поперечная волна. То есть силовые линии как магнитные, так и электрические лежат в перпендикулярной плоскости к направлению распространения.

Напряжённость электромагнитного поля силовая характеристика поля. Также напряженность, векторная величина то есть у нее есть начало и направление.
Напряжённость поля направлена по касательной к силовым линиям.

Поскольку напряжённость электрического и магнитного поля перпендикулярны между собой, то есть правило, по которому можно определить направление распространения волны. При вращении винта по кратчайшему пути от вектора напряжённости электрического поля к вектору напряжённости магнитного поля поступательное движение винта укажет направление распространения волны.

1. Введение. Предмет изучения в валеологии.

3. Основные источники электромагнитного поля.

5. Методы защиты здоровья людей от электромагнитного воздействия.

6. Список использованных материалов и литературы.

1. Введение. Предмет изучения в валеологии.

1.1 Введение.

Валеология – от лат. «valeo»-«здравствую» - научная дисциплина, изучающая индивидуальное здоровье здорового человека. Принципиальное отличие валеологии от других дисциплин (в частности, от практической медицины) состоит именно в индивидуальном подходе к оценке здоровья каждого конкретного субъекта (без учета общих и усредненных по какому-либо коллективу данных).

Впервые валеология как научная дисциплина была официально зарегистрирована в 1980 году. Её основоположником стал российский ученый И. И. Брехман, работавший во Владивостокском Государственном Университете.

В настоящее время новая дисциплина активно развивается, накапливаются научные работы, активно ведутся практические исследования. Постепенно происходит переход от статуса научной дисциплины к статусу самостоятельной науки.

1.2 Предмет изучения в валеологии.

Предметом изучения в валеологии является индивидуальное здоровье здорового человека и влияющие на него факторы. Также валеология занимается систематизацией здорового образа жизни с учетом индивидуальности конкретного субъекта.

Наиболее распространённым на данный момент определением понятия «здоровье» является определение, предложенное экспертами Всемирной Организации Здравоохранения (ВОЗ):

Здоровье есть состояние физического, психического и социального благополучия.

Современная валеология выделяет следующие основные характеристики индивидуального здоровья:

1. Жизнь – наиболее сложное проявление существования материи, которое превосходит по сложности различные физико-химические и био- реакции.

2. Гомеостаз – квазистатичное состояние жизненных форм, характеризующееся изменчивостью на относительно больших временных отрезках и практической статичностью – на малых.

3. Адаптация – свойство жизненных форм приспосабливаться к изменяющимся условиям существования и перегрузкам. При нарушениях адаптации или слишком резких и радикальных изменениях условий возникает дезадаптация – стресс.

4. Фенотип – сочетание факторов окружающей среды, влияющих на развитие живого организма. Также термин «фенотип» характеризует совокупность особенностей развития и физиологии организма.

5. Генотип – сочетание наследственных факторов, влияющих на развитие живого организма, являющихся сочетанием генетического материала родителей. При передаче от родителей деформированных генов возникают наследственные патологии.

6. Образ жизни – совокупность поведенческих стереотипов и норм, характеризующих конкретный организм.

        Здоровье (согласно определению ВОЗ).

2. Электромагнитное поле, его виды, характеристики и классификация.

2.1 Основные определения. Виды электромагнитного поля.

Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электрическое поле – создается электрическими зарядами и заряженными частицами в пространстве. На рисунке представлена картина силовых линий (воображаемых линий, используемых для наглядного представления полей) электрического поля для двух покоящихся заряженных частиц:

Магнитное поле – создается при движении электрических зарядов по проводнику. Картина силовых линий поля для одиночного проводника представлена на рисунке:

Физической причиной существования электромагнитного поля является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а изменяющееся магнитное поле – вихревое электрическое поле. Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. Поле неподвижной или равномерно движущейся частицы неразрывно связано с носителем (заряженной частицей).

Однако при ускоренном движении носителей электромагнитное поле «срывается» с них и существует в окружающей среде независимо, в виде электромагнитной волны, не исчезая с устранением носителя (например, радиоволны не исчезают при исчезновении тока (перемещения носителей – электронов) в излучающей их антенне).

2.2 Основные характеристики электромагнитного поля.

Электрическое поле характеризуется напряженностью электрического поля (обозначение «E», размерность СИ – В/м, вектор). Магнитное поле характеризуется напряженностью магнитного поля (обозначение «H», размерность СИ – А/м, вектор). Измерению обычно подвергается модуль (длина) вектора.

Электромагнитные волны характеризуются длиной волны (обозначение «(», размерность СИ - м), излучающий их источник – частотой (обозначение – «(», размерность СИ - Гц). На рисунке Е – вектор напряженности электрического поля, H – вектор напряженности магнитного поля.

При частотах 3 – 300 Гц в качестве характеристики магнитного поля может также использоваться понятие магнитной индукции (обозначение «B», размерность СИ - Тл).

2.3 Классификация электромагнитных полей.

Наиболее применяемой является так называемая «зональная» классификация электромагнитных полей по степени удаленности от источника/носителя.

По этой классификации электромагнитное поле подразделяется на «ближнюю» и «дальнюю» зоны. «Ближняя» зона (иногда называемая зоной индукции) простирается до расстояния от источника, равного 0-3(,де (- длина порождаемой полем электромагнитной волны. При этом напряженность поля быстро убывает (пропорционально квадрату или кубу расстояния до источника). В этой зоне порождаемая электромагнитная волна еще не полностью сформирована.

«Дальняя» зона – это зона сформировавшейся электромагнитной волны. Здесь напряженность поля убывает обратно пропорционально расстоянию до источника. В этой зоне справедливо экспериментально определенное соотношение между напряженностями электрического и магнитного полей:

где 377 – константа, волновое сопротивление вакуума, Ом.

Электромагнитные волны принято классифицировать по частотам:

|Наименование |Границы |Наименование |Границы |

|частотного |диапазона |волнового |диапазона |

|диапазона | |диапазона | |

|Крайние низкие, | Гц |Декамегаметровые | Мм |

|Сверхнизкие, СНЧ | Гц |Мегаметровые | Мм |

|Инфранизкие, ИНЧ | Кгц |Гектокилометровые | |

|Очень низкие, ОНЧ | Кгц |Мириаметровые | км |

|Низкие частоты, НЧ| Кгц|Километровые | км |

|Средние, СЧ | МГц |Гектометровые | км |

|Высокие, ВЧ | МГц |Декаметровые | м |

|Очень высокие, ОВЧ| МГц|Метровые | м |

|Ультравысокие, УВЧ| ГГц |Дециметровые | м |

|Сверхвысокие, СВЧ | ГГц |Сантиметровые | см |

|Крайне высокие, | ГГц|Миллиметровые | мм |

|Гипервысокие, ГВЧ | |Децимиллиметровые | мм |

Измеряют обычно только напряженность электрического поля E. При частотах выше 300 МГц иногда измеряется плотность потока энергии волны, или вектор Пойтинга (обозначение «S», размерность СИ – Вт/м2).

3.Основные источники электромагнитного поля.

В качестве основных источников электромагнитного поля можно выделить:

Линии электропередач.

Электропроводка (внутри зданий и сооружений).

Бытовые электроприборы.

Персональные компьютеры.

Теле- и радиопередающие станции.

Спутниковая и сотовая связь (приборы, ретрансляторы).

Электротранспорт.

Радарные установки.

3.1 Линии электропередач (ЛЭП).

Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Стандартами установлены границы санитарно-защитных зон вблизи ЛЭП (согласно СН 2971-84):

|Рабочее напряжение |330 и ниже |500 |750 |1150 |

|ЛЭП, кВ | | | | |

|Размер |20 |30 |40 |55 |

|санитарно-защитной | | | | |

|зоны, м | | | | |

(фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м).

3.2 Электропроводка.

К электропроводке относятся:кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

3.3 Бытовые электроприборы.

Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

В нижеприведенной таблице представлены предельно допустимые уровни магнитной индукции для наиболее мощных источников магнитного поля среди бытовых электроприборов:

|Прибор |Интервал предельно допустимых |

| |величин магнитной индукции, мкТл|

|Кофеварка | |

|Стиральная машина | |

|Утюг | |

|Пылесос | |

|Электроплита | |

|Лампа «дневного света» (люминесцентные лампы ЛТБ,| |

|Электродрель (электродвигатель | |

|мощностью Вт) | |

|Электромиксер (электродвигатель мощностью | |

| Вт) | |

|Телевизор | |

|Микроволновая печь (индукционная, СВЧ) | |

3.4 Персональные компьютеры.

Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. В большинстве современных мониторов СВО представляет собой электронно-лучевую трубку. В таблице перечислены основные факторы воздействия СВО на здоровье:

|Эргономические |Факторы воздействия электромагнитного |

| |поля электронно-лучевой трубки |

|Значительное снижение контрастности |Электромагнитное поле в частотном |

|воспроизводимого изображения в условиях |диапазоне МГц. |

|внешней подсветки экрана прямыми лучами | |

|света. | |

|Зеркальное отражение лучей света от |Электростатический заряд на поверхности |

|поверхности экрана (блики). |экрана монитора. |

|Мультипликационный характер |Ультрафиолетовое излучение (диапазон |

|воспроизведения изображения |длин волн нм). |

|(высокочастотное непрерывное обновление | |

|Дискретный характер изображения |Инфракрасное и рентгеновское |

|(подразделение на точки). |ионизирующие излучения. |

В дальнейшем в качестве главных факторов воздействия СВО на здоровье будем рассматривать только факторы воздействия электромагнитного поля электронно- лучевой трубки.

Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля. Следующая таблица показывает электромагнитную обстановку вблизи компьютера (вклад монитора в данной таблице не учитывается, так как был рассмотрен ранее):

|Источник |Диапазон частот генерируемого |

| |электромагнитного поля |

|Системный блок в сборе. |. |

|Устройства ввода-вывода (принтеры, | Гц. |

|сканеры, дисководы и др.). | |

|Источники бесперебойного питания, |. |

|сетевые фильтры и стабилизаторы. | |

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю.

3.5 Теле- и радиопередающие станции.

На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности.

Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Электромагнитное поле, излучаемое антеннами радиотрансляционных центров, имеет сложный спектральный состав и индивидуальное распределение напряженностей в зависимости от конфигурации антенн, рельефа местности и архитектуры прилегающей застройки. Некоторые усредненные данные по различным видам радиотрансляционных центров представлены в таблице:

|Тип |Нормируемая |Нормируемая |Особенности. |

|радиотрансляционно|напряженность |напряженность | |

|го центра. |электрического |магнитного поля, | |

| |поля, В/м. |А/м. | |

|ДВ – радиостанции |630 |1,2 |Наибольшая напряженность |

|(частота | | |поля достигается на |

|КГц, | | |расстояниях менее 1 длины |

|мощности | | |волны от излучающей |

|передатчиков 300 –| | |антенны. |

|500 КВт). | | | |

|СВ – радиостанции |275 |<нет данных> |Вблизи антенны (на |

|(частота , | | |наблюдается некоторое |

|мощности | | |понижение напряженности |

|передатчиков 50 - | | |электрического поля. |

|200 КВт). | | | |

|КВ – радиостанции |44 |0,12 |Передатчики могут быть |

|(частота | | |расположены на |

|МГц, | | |густозастроенных |

|мощности | | |территориях, а также на |

|передатчиков 10 – | | |крышах жилых зданий. |

|100 КВт). | | | |

|Телевизионные |15 |<нет данных> |Передатчики обычно |

|радиотрансляционны| | |расположены на высотах |

|е центры (частоты | | |более 110 м над средним |

| МГц, | | |уровнем застройки. |

|мощности | | | |

|передатчиков 100 | | | |

|КВт – 1МВт и | | | |

|более). | | | |

3.6 Спутниковая и сотовая связь.

3.6.1 Спутниковая связь.

Системы спутниковой связи состоят из передающей станции на Земле и путников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

3.6.2 Сотовая связь.

Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом км. В нижеследующей таблице представлены основные характеристики действующих в России систем сотовой связи:

|Наименование|Рабочий |Рабочий |Максимальная |Максимальная |Радиус |

|системы, |диапазон |диапазон |излучаемая |излучаемая |покрытия |

|принцип |базовых |мобильных |мощность |мощность |единичной |

|передачи |станций, |аппаратов,|базовых |мобильных |базовой |

|информации. |МГц. |МГц. |станций, Вт. |аппаратов, |станции, |

| | | | |Вт. |км. |

|NMT450. | |

|Аналоговый. |5] |5] | | | |

|AMPS. |||100 |0,6 | |

|Аналоговый. | | | | | |

|DAMPS (IS – |||50 |0,2 | |

|136). | | | | | |

|Цифровой. | | | | | |

|CDMA. |||100 |0,6 | |

|Цифровой. | | | | | |

|GSM – 900. |||40 |0,25 | |

|Цифровой. | | | | | |

|GSM – 1800. | |

|Цифровой. |0] |5] | | | |

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения ппарата).

3.7 Электротранспорт.

Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем). В таблице приведены данные по измеренной величине магнитной индукции для некоторых видов электротранспорта:

|Вид транспорта и род |Среднее значение величины |Максимальное значение |

|потребляемого тока. |магнитной индукции, мкТл. |величины магнитной |

| | |индукции, мкТл. |

|Пригородные электропоезда.|20 |75 |

|Электротранспорт с |29 |110 |

|приводом постоянного тока | | |

|(электрокары и т.п.). | | |

3.8 Радарные установки.

Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч.

Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

4. Влияние электромагнитного поля на индивидуальное здоровье человека.

Человеческий организм всегда реагирует на внешнее электромагнитное поле. В силу различного волнового состава и других факторов электромагнитное поле различных источников действует на здоровье человека по-разному. Вследствие этого в данном разделе воздействие различных источников на здоровье будем рассматривать по отдельности. Однако резко диссонирующее с естественным электромагнитным фоном поле искусственных источников почти во всех случаях оказывает на здоровье находящихся в зоне его воздействия людей негативное влияние.

Широкие исследования влияния электромагнитных полей на здоровье были начаты в нашей стране в 60-е годы. Было установлено, что нервная система человека чувствительна к электромагнитному воздействию, а также что поле обладает так называемым информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта (величина напряженности поля, при которой начинает проявляться его тепловое воздействие).

В нижеследующей таблице приведены наиболее распространенные жалобы на ухудшение состояния здоровья людей, находящихся в зоне воздействия поля различных источников. Последовательность и нумерация источников в таблице соответствуют их последовательности и нумерации, принятых в разделе 3:

|Источник |Наиболее распространенные жалобы. |

|электромагнитного | |

|1. Линии |Кратковременное облучение (порядка нескольких минут) способно|

|электропередач (ЛЭП). |привести к негативной реакции только у особо чувствительных |

| |людей или у больных некоторыми видами аллергических |

| |заболеваний. Продолжительное облучение обычно приводит к |

| |различным патологиям сердечно-сосудистой и нервной систем |

| |(из-за разбалансировки подсистемы нервной регуляции). При |

| |сверхдлительном (порядка 10-20 лет) непрерывном облучении |

| |возможно (по непроверенным данным) развитие некоторых |

| |онкологических заболеваний. |

|2. Внутренняя |На настоящее время данных о жалобах на ухудшение состояния |

|электропроводка зданий|здоровья, связанное непосредственно с работой внутренних |

|и сооружений. |электросетей не имеется. |

|3. Бытовые |Имеются непроверенные данные о жалобах на кожные, |

|электроприборы. |сердечно-сосудистые и нервные патологии при долговременном |

| |систематическом пользовании микроволновыми печами старых |

| |моделей (до 1995 года выпуска). Также имеются аналогичные |

| |данные относительно применения микроволновых печей всех |

| |моделей в производственных условиях (например, для разогрева |

| |пищи в кафе). Кроме микроволновых печей имеются данные о |

| |негативном влиянии на здоровье людей телевизоров, имеющих в |

| |качестве прибора визуализации электронно-лучевую трубку. |

Научно-технический прогресс сопровождается резким увеличением мощности электромагнитных полей (ЭМП), созданных человеком, которые в отдель-ных случаях в сотни и тысячи раз выше уровня естественных полей.

Спектр электромагнитных колебаний включает волны длиной от 1000 км до 0,001 мкм и по частоте f от 3×10 2 до 3×10 20 Гц. Электромагнитное поле характеризуется совокупностью векторов электрических и магнитных со-ставляющих. Разные диапазоны электромагнитных волн имеют общую фи-зическую природу, но различаются энергией, характером распространения, поглощения, отражения и действием на среду, человека. Чем короче длина волны, тем больше энергии несет в себе квант.

Основными характеристиками ЭМП являются:

Напряженность электрического поля Е , В/м.

Напряженность магнитного поля Н , А/м.

Плотность потока энергии, переносимый электромагнитными волна-ми I , Вт/м 2 .

Связь между ними определяется зависимостью:

Связь энергии I и частоты f колебаний определяется как:

где: f = с/l, а с = 3 × 10 8 м/с (скорость распространения электромагнит-ных волн), h = 6,6 × 10 34 Вт/см 2 (постоянная Планка).

В пространстве. окружающем источник ЭМП выделяют 3 зоны (рис.9):

а) Ближняя зона (индукции), где нет распространения волны, нет переноса энергии, а следовательно электрическая и магнитная со-ставляющая ЭМП рассматриваются независимо. Граница зоны R < l/2p.

б) Промежуточная зона (дифракции), где волны накладываются друг на друга, образуя максимумы и стоячие волны. Границы зоны l/2p < R < 2pl. Основная характеристика зоны суммарная плотность потоков энергии волн.

в) Зона излучения (волновая) с границей R > 2pl. Есть распространение волны, следовательно характеристикой зоны излучения является плотность потока энергии, т.е. коли-чество энергии, падающей на единицу поверхности I (Вт/м 2).

Рис. 1.9 . Зоны существования электромагнитного поля

Электромагнитное поле по мере удаления от источников излучения затухает обратно пропорционально квадрату расстояний от источника. В зоне индукции напряженность электрического поля убывает обратно пропорционально расстоянию в третьей степени, а маг-нитного поля обратно пропорционально квадрату расстояния.

По характеру воздействия на организм человека ЭМП разделяют на 5 диапазонов:

Электромагнитные поля промышленной частоты (ЭМП ПЧ): f < 10 000 Гц.

Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ) f 10 000 Гц.

Электромагнитные поля радиочастотной части спектра разбиваются на четыре поддиапазона:

1) f от 10 000 Гц до 3 000 000 Гц (3 МГц);


2) f от 3 до 30 МГц;

3) f от 30 до 300 МГц;

4) f от 300 МГц до 300 000 МГЦ (300 ГГц).

Источниками электромагнитных полей промышленной частоты являются линии электропередач высокого напряжения, открытые распре-делительные устройства, все электрические сети и приборы, питающиеся переменным током 50 Гц. Опасность воздействия линий растет с увеличе-нием напряжения вследствие возрастания заряда, сосредоточенного на фазе. Напряженность электрического поля в районах прохождения высоко-вольтных линий электропередач может достигать нескольких тысяч вольт на метр. Волны этого диапазона сильно поглощаются почвой и на удале-нии 50-100 м от линии напряженность падает до нескольких десятков вольт на метр. При систематическом воздействии ЭП наблюдаются функцио-нальные нарушения в деятельности нервной и сердечно-сосудистой систе-мы. С возрастанием напряженности поля в организме наступают стойкие функциональные изменения в ЦНС . Наряду с биологическим действием электрического поля между человеком и металлическим предметом могут возникнуть разряды, обусловленные потенциалом тела, который достигает нескольких киловольт, если человек изолирован от Земли.

Допустимые уровни напряженности электрических полей на рабочих местах устанавливаются ГОСТом 12.1.002-84 «Электрические поля промышленной частоты». Предельно до-пустимый уровень напряженности ЭМП ПЧ устанавливается в 25 кВ/м. Допустимое время пребывания в таком поле составляет 10 мин. Пребыва-ние в ЭМП ПЧ напряженностью более 25 кВ/м без средств защиты не допускает-ся, а в ЭМП ПЧ напряженностью до 5 кВ/м пребывание допускается в течение всего рабочего дня. Для расчета допустимого времени пребывания в ЭП при напряженно-сти свыше 5 до 20 кВ/м включительно используется формула Т = (50/Е ) - 2, где: Т - допустимое время пребывания в ЭМП ПЧ, (час); Е - напряженность электрической составляющей ЭМП ПЧ, (кВ/м).

Санитарные нормы СН 2.2.4.723-98 регламентируют ПДУ магнитной составляющей ЭМП ПЧ на рабочих местах. Напряженность магнитной составляющей Н не должна превышать 80 А/м при 8-ми часовом пребывании в условиях этого поля.

Напряженность электрической составляющей ЭМП ПЧ в жилой застройке и квартирах регламентируется СанПиН 2971-84 «Санитарными нормами и правилами защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты». Согласно этому документу, величина Е не должна превышать 0,5 кВ/м внутри жилых помещений и 1 кВ/м на территории городской застройки. Нормы ПДУ магнитной составляющей ЭМП ПЧ для жилой и городской среды в настоящее время не разработаны.

ЭМИ РЧ используются для термообработки, плавки металлов, в радио-связи, медицине. Источниками ЭМП в производственных помещениях яв-ляются ламповые генераторы, в радиотехнических установках - антенные системы, в СВЧ-печах - утечки энергии при нарушении экрана рабочей камеры.

ЭМИ РЧ придействии на организм вызывает поляризацию атомов и мо-лекул тканей, ориентацию полярных молекул, появление в тканях ионных токов, нагрев тканей за счет поглощения энергии ЭМП. Это нарушает структуру электрических потенциалов, циркуляцию жидкости в клетках ор-ганизма, биохимическую активность молекул, состав крови.

Биологический эффектЭМИ РЧ зависит от его параметров: длины вол-ны, интенсивности и режима излучения (импульсный, непрерывный, пре-рывистый), от площади облучаемой поверхности, продолжительности об-лучения. Электромагнитная энергия частично поглощается тканями и пре-вращается в тепловую, происходит локальный нагрев тканей, клеток. ЭМИ РЧ ока-зывает неблагоприятное действие на ЦНС, вызывает нарушения в нервно-эндокринной регуляции, изменения в крови, помутнение хрусталика глаз (исключительно 4 поддиапазон), нарушения обменных процессов.

Гигиеническое нормирование ЭМИ РЧ осуществляется со-гласно ГОСТ 12.1.006-84 «Электромагнитные поля радиочастот. Допусти-мые уровни на рабочих местах и требования к проведению контроля». Уровни ЭМП на рабочих местах контролируются измерением в диапа-зоне частот 60 кГц-300 МГц напряженности электрической и магнитных составляющих, а в диапазоне частот 300 МГц-300 ГГц плотности потока энергии (ППЭ) ЭМП с учетом времени пребывания в зоне облучения.

Для ЭМП радиочастот от 10 кГц до 300 МГц регламентируется напряженность электрической и магнитной составляющей поля в зависимости от диапазо-на частот: чем выше частоты, тем меньше допускаемая величина напря-женности. Например, электрическая составляющая ЭМП для частот 10 кГц - 3МГц составляет 50 В/м, а для частот 50 МГц - 300 МГц только 5 В/м. В диапазоне частоты 300 МГц - 300 ГГц регламентируется плотность потока энергии излучения и создаваемая им энергетическая нагрузка, т.е. поток энергии, проходящий через единицу облучаемой поверхности за время действия. Максимальное значение плотности потока энергии не должно превышать 1000 мкВт/см 2 . Время пребывания в таком поле не должно превышать 20 мин. Пребывание в поле в ППЭ равном 25 мкВт/см 2 допускается в течение 8-ми часовой рабочей смены.

В городской и бытовой среде нормирование ЭМИ РЧ осуществляется согласно СН 2.2.4/2.1.8-055-96 «Электромагнитные излучения радиочастотного диапазона». В жилых помещениях ППЭ ЭМИ РЧ не должна превышать 10 мкВт/см 2 .

В машиностроении широко используется магнитно-импульсная и электрогидравлическая обработка металлов низкочастотным импульсным током 5-10 кГц (резка и обжатие трубчатых заготовок, штамповка, вырубка отверстий, очистка отливок). Источниками импульсного магнитного по-ля на рабочих местах являются открытые рабочие индукторы, электроды, тоководящие шины. Импульсное магнитное поле оказывает влияние на обмен веществ в тканях головного мозга, на эндокринные системы регуляции.

Электростатическое поле (ЭСП) - это поле неподвижных электриче-ских зарядов, взаимодействующих между собой. ЭСП характеризуется на-пряженностью Е , то есть отношением силы, действующей в поле на то-чечный заряд, к величине этого заряда. Напряженность ЭСП измеряется в В/м. ЭСП возникают в энергетических установках, в электротехнологиче-ских процессах. ЭСП используется в электрогазоочистке, при нанесении лакокрасочных покрытий. ЭСП оказывает негативное влияние на ЦНС; у работающих в зоне ЭСП возникает головная боль, нарушение сна и др. В источниках ЭСП, помимо биологического воздействия, определенную опасность представляет аэроионы. Источником аэроионов является корона, возникающая на проводах при напряженности Е >50 кВ/м.

Допустимые уровни напряженности ЭСП установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля». Допустимый уровень напряженности ЭСП устанавливается в зависимости от времени пребывания на рабочих местах. ПДУ напряженности ЭСП устанавливается равный 60 кВ/м в течение 1 часа. При напряженности ЭСП менее 20 кВ/м время пре-бывания в ЭСП не регламентируется.

Основными характеристиками лазерного излучения являются: длина волны l, (мкм), интенсивность излучения, определяемая по величине энергии или мощно-сти выходного пучка и выражаемая в джоулях (Дж) или ваттах (Вт): дли-тельность импульса (сек), частота повторения импульса (Гц). Глав-ными критериями опасности лазера являются его мощность, длина волны, длительность импульса и экспозиция облучения.

По степени опасности лазеры разделены на 4 класса: 1 - выходное излучение не опасно для глаз, 2 - опасно для глаз прямое и зеркально от-раженное излучение, 3 - опасно для глаз диффузно отраженное излуче-ние, 4 - опасно для кожи диффузно отраженное излучение.

Класс лазера по степени опасности генерируемого излучения опреде-ляется предприятием-изготовителем. При работе с лазерами персонал под-вергается воздействию вредных и опасных производственных факторов.

К группе физических вредных и опасных факторов при работе лазеров относят:

Лазерное излучение (прямое, рассеянное, зеркальное или диффузно отраженное),

Повышенное значение напряжения электропитания лазеров,

Запыленность воздуха рабочей зоны продуктами взаимодействия ла-зерного излучения с мишенью, повышенный уровень ультрафиолетовой и инфракрасной радиации,

Ионизирующие и электромагнитные излучения в рабочей зоне, по-вышенная яркость света от импульсных ламп накачки и взрывоопасность систем накачки лазеров.

На персонал, обслуживающий лазеры, действуют химически опасные и вредные факторы, как-то: озон, окислы азота и другие газы, обусловлен-ные характером производственного процесса.

Действие лазерного излучения на организм зависит от параметров излучения (мощности, длины волны, длительности импульса, частоты следования им-пульсов, времени облучения и площади облучаемой поверхности), локали-зация воздействия и особенности облучаемого объекта. Лазерное излуче-ние вызывает в облучаемых тканях органические изменения (первичные эффекты) и специфические изменения в самом организме (вторичные эф-фекты). При действии излучения происходит быстрый нагрев облучаемых тканей, т.е. термический ожог. В результате быстрого нагрева до высоких температур происходит резкое повышение давления в облучаемых тканях, что приводит к их механическому повреждению. Действия лазерного излу-чения на организм могут вызвать функциональные нарушения и даже пол-ную потерю зрения. Характер поврежденной кожи варьирует от легких до разной степени ожогов, вплоть до некрозов. Помимо изменений тканей, ла-зерное излучение вызывает функциональные сдвиги в организме.

Предельно допустимые уровни облучения регламентируются «Сани-тарными нормами и правилами устройства и эксплуатации лазеров» 2392-81. Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров. Для каждого режима работы, участка оптического диапазона величина ПДУ определяется по специальным таблицам. Дози-метрический контроль лазерного излучения осуществляют в соответствии с ГОСТ 12.1.031-81. При контроле измеряются плотность мощности непре-рывного излучения, плотность энергии импульсного и импульсно-модулированного излучения и другие параметры.

Ультрафиолетовое излучение - это невидимое глазом электромаг-нитное излучение, занимающее промежуточное положение между светом и рентгеновским излучением. Биологически активную часть УФ-излучения делят на три части: А с длиной волны 400-315 нм, В с длиной волны 315-280 нм и С 280-200 нм. УФ-лучи обладают способностью вызывать фото-электрический эффект, люминесценцию, развитие фотохимических реак-ций, а также обладают значительной биологической активностью.

УФ-излучения характеризуется бактерицидными и эритемными свойствами. Мощность эритемного излучения - это величина, характери-зующая полезное воздействие УФ-излучений на человека. За единицу эритемного излучения принят Эр, соответствующий мощности в 1 Вт для дли-ны волны 297 нм. Единица эритемной освещенности (облученности) Эр на квадратный метр (Эр/м 2) или Вт/м 2 . Доза облучения Нэр измеря-ется в Эр×ч/м 2 , т.е. это облучение поверхности за определенное время. Бактерицидность потока УФ-излучения измеряется в бакт. Соответственно бактерицидная облученность-бакт на м 2 , а доза бакт в час на м 2 (бк×ч/м 2).

Источниками УФ-излучения на производстве являются электрическая дуга, автогенное пламя, ртутно-кварцевые горелки и другие температурные излучатели.

Естественные УФ-лучи оказывают положительное влияние на организм. При недос-татке солнечного света возникает "световое голодание", авитаминоз Д, ос-лабление иммунитета, функциональные расстройства нервной системы. Вместе с тем УФ-излучение от производственных источников может стать причиной острых и хронических профессиональных заболеваний глаз. Острое поражение глаз называется электроофтальмия. Нередко обнаружи-вается эритема кожи лица и век. К хроническим поражениям следует отне-сти хронический коньюнктивит, катаракту хрусталика, кожные поражения (дерматиты, отеки с образованием пузырей).

Нормирование УФ-излучения осуществляется согласно «Санитарные нормы ультрафиолетового излучения в производственных помещениях» 4557-88. При нормирова-нии устанавливается интенсивность излучения в Вт/м 2 . При поверхности облучения 0,2 м 2 в течение до 5 мин с перерывом 30 мин при общей про-должительности до 60 мин норма для УФ-А 50 Вт/ м 2 , для УФ-В 0,05 Вт/ м 2 и для УФ-С 0,01 Вт/ м 2 . При общей продолжительности облуче-ния 50% рабочей смены и однократном облучении 5 мин норма для УФ-А 10 Вт/ м 2 , для УФ-В 0,01 Вт/ м 2 при площади облучения 0,1 м 2 , а об-лучение УФ-С не допускается.

Электромагнитное поле - это порождающие друг друга переменные электрические и магнитные поля.
Теория электромагнитного поля создана Джеймсом Максвеллом в 1865 г.

Он теоретически доказал, что:
любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле.
Если электрические заряды движутся с ускорением, то создаваемое ими электрическое поле периодически меняется и само создает в пространстве переменное магнитное поле и т.д.

Источниками электромагнитного поля могут быть:
- движущийся магнит;
- электрический заряд, движущийся с ускорением или колеблющийся (в отличие от заряда движущегося с постоянной скоростью, например, в случае постоянного тока в проводнике, здесь создается постоянное магнитное поле).

Электрическое поле существует всегда вокруг электрического заряда, в любой системе отсчета, магнитное – в той, относительно которой электрические заряды движутся.
Электромагнитное поле существует в системе отсчета, относительно которой электрические заряды движутся с ускорением.

ПОПРОБУЙ РЕШИ

Кусок янтаря потёрли о ткань, и он зарядился статическим электричеством. Какое поле можно обнаружить вокруг неподвижного янтаря? Вокруг движущегося?

Заряженное тело покоится относительно поверхности земли. Автомобиль равномерно и прямолинейно движется относительно поверхности земли. Можно ли обнаружить постоянное магнитное поле в системе отсчета, связанной с автомобилем?

Какое поле возникает вокруг электрона, если он: покоится; движется с постоянной скоростью; движется с ускорением?

В кинескопе создаётся поток равномерно движущихся электронов. Можно ли обнаружить магнитное поле в системе отсчёта, связанной с одним из движущихся электронов?

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Электромагнитные волы - это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды

Свойства электромагнитных волн:
-распространяются не только в веществе, но и в вакууме;
- распространяются в вакууме со скоростью света (С = 300 000 км/c);
- это поперечные волны;
- это бегущие волны (переносят энергию).

Источником электромагнитных волн являются ускоренно движущиеся электрические заряды.
Колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.


ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН

Все окружающее нас пространство пронизано электромагнитным излучением. Солнце, окружающие нас тела, антенны передатчиков испускают электромагнитные волны, которые в зависимости от их частоты колебаний носят разные названия.


Радиоволны-это электромагнитные волны (c длиной волны от более чем 10000м до 0,005м), служащие для передачи сигналов (информации) на расстояние без проводов.
В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.
Радиоволны различной длины распространяются по-разному.

Электромагнитные излучения с длиной волны, меньшей чем 0,005м, но большей чем 770 нм, т. е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением (ИК).
Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

К видимому свету относят излучения с длинной волны примерно от 770нм до 380нм, от красного до фиолетового света. Значения этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием для развития зеленых растений и, следовательно, необходимым условием для существования жизни Земле.

Невидимое глазом электромагнитное излучение с длиннной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением (УФ).. Ультрафиолетовые излучение способно убивать белезнетворных бактерий, поэтому его широко применяют а медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются оразрядные лампы. Трубки таких ламп изготовляют из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи (Ри) невидимы азом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку. Способность рентгеновских лучей проникать через толстые слои веществ используется для диагностики заболеваний внутренних органов человека.

Электромагнитное поле

Электромагнитное поле относится к такому виду материи, которая возникает вокруг движущихся зарядов. Оно состоит из электрического, а также магнитного полей. Их существование взаимосвязано, так как существовать отдельно и независимо друг от друга они не могут, потому что, одно поле порождает другое.

А теперь попробуем подойти к теме электромагнитного поля более подробно. Из определения можно сделать вывод, что в случае изменения электрического поля появляются предпосылки к возникновению магнитного поля. А так как электрическое поле имеет свойство со временем изменяться и его нельзя назвать неизменным, то магнитное поле также является переменным.

При изменении одного поля, порождается другое. И независимо от того, каким будет последующее поле, источником будет служить предыдущее поле, то есть проводник с током, а не первоначальный его источник.

И даже в том случае, когда в проводнике будет отключен ток, все равно электромагнитное поле никуда не исчезнет, а будет продолжать существовать и распространятся в пространстве.

Свойства электромагнитных волн

Теория Максвелла. Вихревое электрическое поле

Джеймсом Клерком Максвеллом, известным британским физиком в 1857 году была написана работа, в которой он привел доказательства того, что такие поля, как электрическое и магнитное тесно связаны между собой.

По его теории следовало, что переменное магнитное поле имеет свойство создавать такое новое ЭП, которое отличается от предыдущего электрического поля, созданного при помощи источника тока, так как это новое электрическое поле является вихревым.

И здесь мы с вами видим, что вихревым электрическим полем является такое поле, у которого силовые линии являются замкнутыми. То есть, следует отметить, что у электрического поля линии такие же замкнутые, как и у магнитного поля.

Из этого следует вывод, что переменное магнитное поле способно создавать вихревое электрическое поле, а вихревое электрическое поле имеет способность заставить двигаться заряды. И в итоге мы получаем индукционный электрический ток. Из работы Максвелла следует, что такие поля, как электрическое и магнитное тесно существуют друг с другом.

То есть, для существования магнитного поля необходим движущийся электрический заряд. Ну а электрическое поле создается благодаря покоящемуся электрическому заряду. Вот такая прозрачная взаимосвязь существует между полями. Из этого мы можем сделать еще один вывод, что в разных системах отсчета можно наблюдать различные виды полей.

Если следовать теории Максвелла, то можно подвести итог, что переменные электрические и магнитные поля не способны существовать по отдельности, ведь при изменении магнитное поле порождает электрическое, а меняющееся электрическое поле порождает магнитное.

Природные источники электромагнитных полей

Для современного человека не является секретом тот факт, что электромагнитные поля хоть и остаются невидимыми нашему глазу, но окружают нас повсюду.

К природным источникам ЭМП относятся:

Во-первых, это постоянное электрическое и магнитное поло Земли.
Во-вторых, к таким источникам относятся радиоволны, преобразовывающие такие космические источники, как Солнце, звезды и т.д.
В-третьих, этими источниками выступают и такие атмосферные процессы, как разряды молний и т.д.

Антропогенные (искусственные) источники электромагнитных полей

Кроме природных источников появления ЭМП, они еще возникают и благодаря антропогенными источниками. К таким источникам можно отнести рентгеновские лучи, которые используют в медицинских учреждениях. Они используются и для передачи информации при помощи различных радиостанций, станций мобильной связи и также ТВ антенн. Да и электричество, которое есть в каждой розетке, также образовывает ЭМП, но правда, более низкой частоты.

Влияние ЭМП на здоровье человека



Современное общество в настоящее время не мыслит своей жизни, без таких благ цивилизации, как присутствие различной бытовой техники, компьютеров, мобильной связи. Они, конечно же, облегчают нашу жизнь, но создают вокруг нас электромагнитные поля. Естественно, мы с вами ЭМП не можем видеть, но они нас окружают повсюду. Они присутствуют в наших домах, на работе и даже в транспорте.

Можно смело сказать, что современный человек живет в сплошном электромагнитном поле, которое, к сожалению, оказывает огромное влияние на здоровье человека. При длительном влиянии электромагнитного поля на организм человека, появляются такие неприятные симптомы, как хроническая усталость, раздражительность, нарушение сна, внимания и памяти. Такое продолжительное воздействие ЭМП способно вызвать у человека головную боль, бесплодие, нарушения в работе нервной и сердечной систем, а так же появление онкологических заболеваний.