Геометрическая оптика и ее законы. Геометрическая оптика. Закон прямолинейного распространения

Международный союз теоретической и прикладной химии (IUPAC) утвердил названияновых четырёх элементов таблицы Менделеева: 113-го, 115-го, 117-го и 118-го. Последний назван в честь российского физика, академика Юрия Оганесяна. Учёные попадали "в клеточку" и раньше: Менделеев, Эйнштейн, Бор, Резерфорд, чета Кюри… Но лишь второй раз в истории это произошло при жизни учёного. Прецедент случился в 1997 году, когда такой чести удостоился Гленн Сиборг. Юрию Оганесяну давно прочат Нобелевскую премию. Но, согласитесь, получить собственную клеточку в таблице Менделеева куда круче.

В нижних строках таблицы вы легко найдёте уран, его атомный номер 92. Все последующие элементы, начиная с 93-го, - это так называемые трансураны. Некоторые из них появились примерно 10 миллиардов лет назад в результате ядерных реакций внутри звёзд. Следы плутония и нептуния были обнаружены в земной коре. Но большинство трансурановых элементов давно распалось, и теперь можно лишь предсказывать, какими они были, чтобы потом пытаться воссоздать их в лабораторных условиях.

Первыми это сделали в 1940 году американские учёные Гленн Сиборг и Эдвин Макмиллан. Родился плутоний. Позднее группа Сиборга синтезировала америций, кюрий, берклий… К тому времени чуть ли не весь мир включился в гонку за сверхтяжёлыми ядрами.

Юрий Оганесян (р. 1933). Выпускник МИФИ, специалист в области ядерной физики, академик РАН, научный руководитель лаборатории ядерных реакций ОИЯИ. Председатель Научного совета РАН по прикладной ядерной физике. Имеет почётные звания в университетах и академиях Японии, Франции, Италии, Германии и других стран. Награждался Государственной премией СССР, орденами Трудового Красного Знамени, Дружбы народов, «За заслуги перед Отечеством» и пр. Фото: wikipedia.org

В 1964 году новый химический элемент с атомным номером 104 впервые синтезировали в СССР, в Объединённом институте ядерных исследований (ОИЯИ), который находится в подмосковной Дубне. Позднее этот элемент получил имя "резерфордий". Руководил проектом один из основателей института Георгий Флёров. Его имя тоже вписано в таблицу: флеровий, 114.

Юрий Оганесян был учеником Флёрова и одним из тех, кто синтезировал резерфордий, потом дубний и более тяжёлые элементы. Благодаря успехам советских учёных Россия вырвалась в лидеры трансурановой гонки и сохраняет этот статус до сих пор.

Научный коллектив, работа которого привела к открытию, направляет своё предложение в IUPAC. Комиссия рассматривает аргументы "за" и "против", исходя из следующих правил: "…вновь открытые элементы могут быть названы: (а) по имени мифологического персонажа или понятия (включая астрономический объект), (б) по названию минерала или аналогичного вещества, (в) по названию населённого пункта или географической области, (г) в соответствии со свойствами элемента или (д) по имени учёного".

Названия четырём новым элементам присваивали долго, почти год. Дата объявления решения несколько раз отодвигалась. Напряжение нарастало. Наконец 28 ноября 2016 года, по истечении пятимесячного срока для приёма предложений и возражений общественности, комиссия не нашла причин отвергнуть нихоний, московий, теннессин и оганесон и утвердила их.

Кстати, суффикс "-он-" не очень типичен для химических элементов. Для оганесона он выбран потому, что по химическим свойствам новый элемент аналогичен инертным газам - это сходство подчеркивает созвучие с неоном, аргоном, криптоном, ксеноном.

Рождение нового элемента - событие исторического масштаба. На сегодняшний день синтезированы элементы седьмого периода до 118-го включительно, и это не предел. Впереди 119-й, 120-й, 121-й… Изотопы элементов с атомными номерами более 100 зачастую живут не более тысячной доли секунды. И кажется, чем тяжелее ядро, тем короче его жизнь. Это правило действует до 113-го элемента включительно.

В 1960-х годах Георгий Флёров предположил, что оно не обязано неукоснительно соблюдаться по мере углубления в таблицу. Но как это доказать? Поиск так называемых островов стабильности более 40 лет был одной из важнейших задач физики. В 2006 году коллектив учёных под руководством Юрия Оганесяна подтвердил их существование. Научный мир вздохнул с облегчением: значит, смысл искать всё более тяжёлые ядра есть.

Коридор легендарной Лаборатории ядерных реакций ОИЯИ. Фото: Дарья Голубович/"Кот Шрёдингера"

Юрий Цолакович, что же всё-таки представляют собой острова стабильности, о которых много говорят в последнее время?

Юрий Оганесян: Вы знаете, что ядра атомов состоят из протонов и нейтронов. Но только строго определённое количество этих "кирпичиков" связаны друг с другом в единое тело, которое представляет ядро атома. Комбинаций, которые "не срабатывают", оказывается больше. Поэтому, в принципе, наш мир находится в море нестабильности. Да, есть ядра, которые остались со времён образования Солнечной системы, они стабильны. Водород, например. Участки с такими ядрами будем называть "континентом". Он постепенно уходит в море нестабильности по мере того, как мы идём к более тяжёлым элементам. Но, оказывается, если далеко уйти от суши, возникает остров стабильности, где рождаются ядра-долгожители. Остров стабильности - это открытие, которое уже сделано, признано, но точное время жизни долгожителей на этом острове пока не предсказывается достаточно хорошо.

Как были открыты острова стабильности?

Юрий Оганесян: Мы долго их искали. Когда ставится задача, важно, чтобы был однозначный ответ "да" или "нет". Причин нулевого результата на самом деле две: либо ты не дотянулся, либо того, что ищешь, вообще нет. У нас был "ноль" до 2000 года. Мы думали, что, может быть, теоретики и правы, когда рисуют свои красивые картины, но нам до них не дотянуться. В 90-е мы пришли к выводу, что стоит усложнить эксперимент. Это противоречило реалиям того времени: нужна была новая техника, а средств не хватало. Тем не менее к началу ХХI века мы были готовы опробовать новый подход - облучать плутоний кальцием-48.

Почему для вас так важен именно кальций-48, именно этот изотоп?

Юрий Оганесян: Он имеет восемь лишних нейтронов. А мы знали, что остров стабильности там, где избыток нейтронов. Поэтому тяжёлый изотоп плутония-244 облучали кальцием-48. В этой реакции синтезировали изотоп сверхтяжёлого элемента 114 - флеровия-289, который живёт 2,7 секунды. В масштабах ядерных превращений это время считается достаточно длительным и служит доказательством того, что остров стабильности существует. Мы доплыли до него, и по мере продвижения вглубь стабильность только росла.

Фрагмент сепаратора ACCULINNA-2, на котором изучается структура лёгких экзотических ядер. Фото: Дарья Голубович/"Кот Шрёдингера"

Почему, в принципе, была уверенность, что существуют острова стабильности?

Юрий Оганесян: Уверенность появилась, когда стало понятно, что ядро имеет структуру… Давно, ещё в 1928 году, наш великий соотечественник Георгий Гамов (советский и американский физик-теоретик) высказал предположение, что ядерное вещество похоже на каплю жидкости. Когда эту модель начали проверять, выяснилось, что она удивительно хорошо описывает глобальные свойства ядер. Но потом наша лаборатория получила результат, который коренным образом изменил эти представления. Мы выяснили, что в обычном состоянии ядро не ведёт себя подобно капле жидкости, не является аморфным телом, а имеет внутреннюю структуру. Без неё ядро существовало бы всего 10-19 секунды. А наличие структурных свойств ядерной материи приводит к тому, что ядро живёт секунды, часы, а мы надеемся, что может жить сутки, а может быть даже миллионы лет. Эта надежда, быть может, и слишком смелая, но мы надеемся и ищем трансурановые элементы в природе.

Один из самых волнующих вопросов: есть ли предел разнообразию химических элементов? Или их бесконечно много?

Юрий Оганесян: Капельная модель предсказывала, что их не более ста. С её точки зрения есть предел существования новых элементов. Сегодня их открыто 118. Сколько ещё может быть?.. Надо понять отличительные свойства "островных" ядер, чтобы делать прогноз для более тяжёлых. С точки зрения микроскопической теории, которая учитывает структуру ядра, мир наш не кончается за сотым элементом уходом в море нестабильности. Когда мы говорим о пределе существования атомных ядер, мы должны обязательно это учесть.

Есть ли достижение, которое вы считаете главным в жизни?

Юрий Оганесян: Я занимаюсь тем, что мне на самом деле интересно. Иногда увлекаюсь очень сильно. Иногда получается что-то, и я радуюсь, что получилось. Это жизнь. Это не эпизод. Я не принадлежу к категории людей, которые мечтали быть научными работниками в детстве, в школе, нет. Но просто у меня как-то хорошо получалось с математикой и физикой, и поэтому я пошёл в тот вуз, где надо было сдавать эти экзамены. Ну, сдал. И вообще, я считаю, что в жизни мы все очень сильно подвержены случайностям. Правда, ведь? Очень многие шаги в жизни мы делаем совершенно случайным образом. А потом, когда ты становишься взрослым, тебе задают вопрос: "Почему ты это сделал?". Ну, сделал и сделал. Это моё обычное занятие наукой.

"Мы можем за месяц получить один атом 118-го элемента"

Сейчас ОИЯИ строит первую в мире фабрику сверхтяжёлых элементов на базе ускорителя ионов DRIBs-III (Dubna Radioactive Ion Beams), самого мощного в своей области энергий. Там будут синтезировать сверхтяжёлые элементы восьмого периода (119, 120, 121) и производить радиоактивные материалы для мишеней. Эксперименты начнутся в конце 2017 - начале 2018 года. Андрей Попеко, из лаборатории ядерных реакций им. Г. Н. Флёрова ОИЯИ, рассказал, зачем всё это нужно.

Андрей Георгиевич, как предсказывают свойства новых элементов?

Андрей Попеко: Основное свойство, из которого следуют все остальные, - это масса ядра. Предсказать её очень сложно, но, исходя из массы, уже можно предположить, как ядро будет распадаться. Есть разные экспериментальные закономерности. Вы можете изучать ядро и, скажем, пытаться описать его свойства. Зная что-то о массе, можно говорить об энергии частиц, которые будет испускать ядро, делать предсказания о времени его жизни. Это довольно громоздко и не очень точно, но более-менее надёжно. А вот если ядро делится спонтанно, прогнозирование становится делом гораздо более сложным и менее точным.

Что мы можем сказать о свойствах 118-го?

Андрей Попеко: Он живёт 0,07 секунды и испускает альфа-частицы с энергией 11,7 МэВ. Это измерено. В дальнейшем можно сравнивать экспериментальные данные с теоретическими и поправлять модель.

На одной из лекций вы говорили, что таблица, возможно, заканчивается на 174-м элементе. Почему?

Андрей Попеко: Предполагается, что дальше электроны просто упадут на ядро. Чем больше заряд ядра, тем сильнее оно притягивает электроны. Ядро - плюс, электроны - минус. В какой-то момент ядро притянет электроны настолько сильно, что они должны упасть на него. Наступит предел элементов.

Могут ли такие ядра существовать?

Андрей Попеко: Полагая, что существует 174-й элемент, мы полагаем, что существует и его ядро. Но так ли это? Уран, 92-й элемент, живёт 4,5 млрд лет, а 118-й - меньше миллисекунды. Собственно, раньше считалось, что таблица заканчивается на элементе, время жизни которого пренебрежимо мало. Потом выяснилось, что не всё так однозначно, если двигаться по таблице. Сначала время жизни элемента падает, потом, у следующего, немножко увеличивается, потом опять падает.

Рулоны с трековыми мембранами - наноматериалом для очистки плазмы крови при лечении тяжёлых инфекционных заболеваний, устранении последствий химиотерапии. Эти мембраны разработали в Лаборатории ядерных реакций ОИЯИ ещё в 1970-е годы. Фото: Дарья Голубович/"Кот Шрёдингера"

Когда увеличивается - это и есть остров стабильности?

Андрей Попеко: Это указание на то, что он есть. На графиках это хорошо видно.

Тогда что же такое сам остров стабильности?

Андрей Попеко: Некоторая область, в которой находятся ядра изотопов, бладающие более долгим по сравнению с соседями временем жизни.

Эту область ещё предстоит найти?

Андрей Попеко: Пока только самый краешек зацепили.

Что вы будете искать на фабрике сверхтяжёлых элементов?

Андрей Попеко: Эксперименты по синтезу элементов занимают много времени. В среднем полгода непрерывной работы. Мы можем за месяц получить один атом 118-го элемента. Кроме того, мы работаем с высокорадиоактивными материалами, и наши помещения должны отвечать специальным требованиям. Но когда создавалась лаборатория, их ещё не было. Сейчас строится отдельное здание с соблюдением всех требований радиационной безопасности - только для этих экспериментов. Ускоритель сконструирован для синтеза именно трансуранов. Мы будем, во-первых, подробно изучать свойства 117-го и 118-го элементов. Во-вторых, искать новые изотопы. В-третьих, пробовать синтезировать ещё более тяжёлые элементы. Можно получить 119-й и 120-й.

Планируются эксперименты с новыми материалами для мишеней?

Андрей Попеко: Мы уже начали работать с титаном. На кальций потратили в общей сложности 20 лет - получили шесть новых элементов.

К сожалению, научных областей, где Россия занимает ведущие позиции, не так много. Как нам удаётся побеждать в борьбе за трансураны?

Андрей Попеко: Собственно, здесь лидерами всегда были Соединённые Штаты и Советский Союз. Дело в том, что основным материалом для создания атомного оружия был плутоний - его требовалось как-то получать. Потом задумались: а не использовать ли другие вещества? Из ядерной теории следует, что нужно брать элементы с чётным номером и нечётным атомным весом. Попробовали кюрий-245 - не подошёл. Калифорний-249 тоже. Стали изучать трансурановые элементы. Так получилось, что первыми этим вопросом занялись Советский Союз и Америка. Потом Германия - там в 60-е годы была дискуссия: стоит ли ввязываться в игру, если русские с американцами уже всё сделали? Теоретики убедили, что стоит. В итоге немцы получили шесть элементов: со 107-го по 112-й. Кстати, метод, который они выбрали, разрабатывал в 70-е годы Юрий Оганесян. И он, будучи директором нашей лаборатории, отпустил ведущих физиков помогать немцам. Все удивлялись: "Как это?" Но наука есть наука, здесь не должно быть конкуренции. Если есть возможность получить новые знания, надо участвовать.

Сверхпроводящий ECR-источник - при помощи которого получают пучки высоко-зарядных ионов ксенона, йода, криптона, аргона. Фото: Дарья Голубович/"Кот Шрёдингера"

В ОИЯИ выбрали другой метод?

Андрей Попеко: Да. Оказалось, что тоже удачный. Несколько позже подобные эксперименты стали проводить японцы. И синтезировали 113-й. Мы получили его почти на год раньше как продукт распада 115-го, но не стали спорить. Бог с ними, не жалко. Эта группа японская стажировалась у нас - многих из них мы знаем лично, дружим. И это очень хорошо. В некотором смысле это наши ученики получили 113-й элемент. Они же, кстати, подтвердили наши результаты. Желающих подтверждать чужие результаты немного.

Для этого нужна определённая честность.

Андрей Попеко: Ну да. А как по-другому? В науке, наверное, вот так.

Каково это - изучать явление, которое по-настоящему поймут от силы человек пятьсот во всём мире?

Андрей Попеко: Мне нравится. Я всю жизнь этим занимаюсь, 48 лет.

Большинству из нас невероятно сложно понять, чем вы занимаетесь. Синтез трансурановых элементов - не та тема, которую обсуждают за ужином с семьёй.

Андрей Попеко: Мы генерируем новые знания, и они не пропадут. Если мы можем изучать химию отдельных атомов, значит, обладаем аналитическими методами высочайшей чувствительности, которые заведомо пригодны для изучения веществ, загрязняющих окружающую среду. Для производства редчайших изотопов в радиомедицине. А кто поймёт физику элементарных частиц? Кто поймёт, что такое бозон Хиггса?

Да. Похожая история.

Андрей Попеко: Правда, людей, понимающих, что такое бозон Хиггса, всё же больше, чем разбирающихся в сверхтяжёлых элементах… Эксперименты на Большом адронном коллайдере дают исключительно важные практические результаты. Именно в Европейском центре ядерных исследований появился интернет.

Интернет - любимый пример физиков.

Андрей Попеко: А сверхпроводимость, электроника, детекторы, новые материалы, методы томографии? Всё это побочные эффекты физики высоких энергий. Новые знания никогда не пропадут.

Боги и герои. В честь кого называли химические элементы

Ванадий, V (1801 г.). Ванадис - скандинавская богиня любви, красоты, плодородия и войны (как у неё всё это получается?). Повелительница валькирий. Она же Фрейя, Гефна, Хёрн, Мардёлл, Сюр, Вальфрейя. Это имя дано элементу потому, что он образует разноцветные и очень красивые соединения, а богиня вроде тоже очень красивая.

Ниобий, Nb (1801 г.). Изначально назывался колумбием в честь страны, откуда привезли первый образец минерала, содержащего этот элемент. Но потом был открыт тантал, который практически по всем химическим свойствам совпадал с колумбием. В итоге решено было назвать элемент именем Ниобы, дочери греческого царя Тантала.

Палладий, Pd (1802 г.). В честь открытого в том же году астероида Паллада, название которого тоже восходит к мифам Древней Греции.

Кадмий, Cd (1817 г.). Изначально этот элемент добывали из цинковой руды, греческое название которой напрямую связано с героем Кадмом. Сей персонаж прожил яркую и насыщенную жизнь: победил дракона, женился на Гармонии, основал Фивы.

Прометий, Pm (1945 г.). Да, это тот самый Прометей, который отдал огонь людям, после чего имел серьёзные проблемы с божественными властями. И с печенью.

Самарий, Sm (1878 г.). Нет, это не совсем в честь города Самары. Элемент был выделен из минерала самарскита, который предоставил европейским учёным горный инженер из России Василий Самарский-Быховец (1803-1870). Можно считать это первым попаданием нашей страны в таблицу Менделеева (если не брать в расчёт её название, конечно).

Гадолиний, Gd (1880 г. Назван в честь Юхана Гадолина (1760-1852), финского химика и физика, открывшего элемент иттрий.

Тантал, Ta (1802 г.). Греческий царь Тантал обидел богов (есть разные версии, чем именно), за что в подземном царстве его всячески мучили. Примерно так же страдали учёные, пытаясь получить чистый тантал. На это ушло больше ста лет.

Торий, Th (1828 г.). Первооткрывателем был шведский химик Йёнс Берцелиус, который и дал элементу имя в честь сурового скандинавского бога Тора.

Кюрий, Cm (1944 г.). Единственный элемент, названный в честь двух человек - нобелевских лауреатов супругов Пьера (1859-1906) и Марии (1867-1934) Кюри.

Эйнштейний, Es (1952 г.). Тут всё понятно: Эйнштейн, великий учёный. Правда, синтезом новых элементов никогда не занимался.

Фермий, Fm (1952 г). Назван в честь Энрико Ферми (1901-1954), итало-американского учёного, внёсшего большой вклад в развитие физики элементарных частиц, создателя первого ядерного реактора.

Менделевий, Md (1955 г.). Это в честь нашего Дмитрия Ивановича Менделеева (1834-1907). Странно только, что автор периодического закона попал в таблицу не сразу.

Нобелий, No (1957 г.). Вокруг названия этого элемента долго шли споры. Приоритет в его открытии принадлежит учёным из Дубны, которые назвали его жолиотием в честь ещё одного представителя семейства Кюри - зятя Пьера и Марии Фредерика Жолио-Кюри (тоже нобелевского лауреата). Одновременно с этим группа физиков, работавших в Швеции, предложила увековечить память Альфреда Нобеля (1833-1896). Довольно долго в советской версии таблицы Менделеева 102-й значился как жолиотий, а в американской и европейской - как нобелий. Но в итоге ИЮПАК, признавая советский приоритет, оставил западную версию.

Лоуренсий, Lr (1961 г.). Примерно та же история, что и с нобелием. Учёные из ОИЯИ предложили назвать элемент резерфордием в честь "отца ядерной физики" Эрнеста Резерфорда (1871-1937), американцы - лоуренсием в честь изобретателя циклотрона физика Эрнеста Лоуренса (1901-1958). Победила американская заявка, а резерфордием стал 104-й элемент.

Резерфордий, Rf (1964 г.). В СССР он назывался курчатовием в честь советского физика Игоря Курчатова. Окончательное название было утверждено ИЮПАК только в 1997 году.

Сиборгий, Sg (1974 г.). Первый и единственный до 2016 года случай, когда химическому элементу присвоили имя здравствующего учёного. Это было исключение из правила, но уж больно велик вклад Гленна Сиборга в синтез новых элементов (примерно десяток клеток в таблице Менделеева).

Борий, Bh (1976 г.). Тут тоже была дискуссия о названии и приоритете открытия. В 1992 году советские и немецкие учёные договорились назвать элемент нильсборием в честь датского физика Нильса Бора (1885-1962). ИЮПАК утвердил сокращённое название - борий. Это решение нельзя назвать гуманным по отношению к школьникам: им приходится запомнить, что бор и борий - это совершенно разные элементы.

Мейтнерий, Mt (1982 г.). Назван в честь Лизы Мейтнер (1878-1968), физика и радиохимика, работавшей в Австрии, Швеции и США. Кстати, Мейтнер была одним из немногих крупных учёных, отказавшихся участвовать в Манхэттенском проекте. Будучи убеждённой пацифисткой, она заявила: "Я не стану делать бомбу!".

Рентгений, Rg (1994 г.). В этой клеточке увековечен открыватель знаменитых лучей, первый в истории нобелевский лауреат по физике Вильгельм Рентген (1845-1923). Элемент синтезировали немецкие учёные, правда, в исследовательскую группу входили и представители Дубны, в том числе Андрей Попеко.

Коперниций, Cn (1996 .). В честь великого астронома Николая Коперника (1473-1543). Как он оказался в одном ряду с физиками XIX-XX века, не совсем понятно. И уж совсем непонятно, как называть элемент по-русски: коперниций или коперникий? Допустимыми считаются оба варианта.

Флеровий, Fl (1998 г.). Утвердив это название, международное сообщество химиков продемонстрировало, что ценит вклад российских физиков в синтез новых элементов. Георгий Флёров (1913-1990) руководил лабораторией ядерных реакций в ОИЯИ, где были синтезированы многие трансурановые элементы (в частности, от 102-го до 110-го). Достижения ОИЯИ увековечены также в названиях 105-го элемента (дубний ), 115-го (московий - в Московской области расположена Дубна) и 118-го (оганесон ).

Оганесон, Og (2002 г.). Первоначально о синтезе 118-го элемента заявили американцы в 1999 году. И предложили назвать его гиорсий в честь физика Альберта Гиорсо. Но их эксперимент оказался ошибочным. Приоритет открытия признали за учёными из Дубны. Летом 2016 года ИЮПАК рекомендовал дать элементу название оганесон в честь Юрия Оганесяна.

Границы применения:

Законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны.

Основной принцип:

Основным принципом геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Законы геометрической оптики:

«Закон прямолинейного распространения света» - в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет.

«Закон независимого распространения лучей» - второй закон геометрической оптики, который утверждает, что световые лучи распространяются независимо друг от друга.

«Закон отражения света» - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части.

«Закон преломления света (Закон Снеллиуса, или Снелла)» - когда свет достигает поверхности раздела двух прозрачных сред, часть его отражается, а остальная проходит сквозь границу. Преломлением света называют изменение направления распространения света при его прохождении через границу раздела двух сред.

«Закон обратимости светового луча» - согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

называется

5.2. ЗАКОН ПРЕЛОМЛЕНИЯ СВЕТА. АБСОЛЮТНЫЙ И ОТНОСИТЕЛЬНЫЙ ПОКАЗАТЕЛИ ПРЕЛОМЛЕНИЯ. ПОЛНОЕ И ВНУТРЕННЕЕ ОТРАЖЕНИЕ Зак.преломления-при прохождении света из одной прозрачной среды в другую прозрачную на границе раздела сред, световые лучи отклоняются от своего направления, причем отношение синуса падения к синусу угла преломления, является постоянной величиной для этих сред и

называетсяв точке падения, и эта нормаль делит угол между лучам на две равные части Угол падения=угол отражения, зеркально, идеально гладкая поверхность) Диффузное-(Если поверхность не гладкая-индикатриса рассеивания, свет рассеивается в разные стороны)

Геометри́ческая о́птика - раздел оптики, который изучает распространение света в прозрачных средах и вырабатывает правила построения изображений при прохождении лучей света в оптических системах (без учёта волновых свойств света).Свет рассматривается как луч. В случае излучения с длинами волн малыми по сравнению с размерами препятствий и деталями оптической системы и характерными расстояниями свет может рассматриваться как корпускулярное движение- предельный случай волнового.

Главным упрощением геометрической оптики является понятие светового луча. Принимается, что направление потока света не зависит от поперечных размеров пучка света.

Основной закон геометрической оптики : «Свет при распространении из одной точки в другую выбирает такой путь, которому соответствует экстремальное(минимальное или экстремальное) время на распространение между двумя точками среди бесконечного множества всевозможных ближайших путей ».(основной принцип геометрической оптики сформировался французским физиком Ферма )

Законы геометрической оптики:

1)закон прямолинейного распространения света(В оптически однородной среде (вакууме) лучи света распространяются прямолинейно).

2)закон независимости световых лучей.

3)закон преломления (Луч падающий, луч преломлённый и перпендикуляр к поверхности раздела лежат в одной плоскости. При прохождении света из одной прозрачной среды в другую на границе раздела сред световые лучи отклоняются от своего направления. Причём отношение sin угла падения к sin угла преломления является постоянным для 2 сред и наз. относит. показателем преломления).

Обратимость световых лучей:

Абсолютный показатель преломления- показатель преломления, полученный в том случае, если свет из вакуума падает на какую-либо среду.

Относительный показатель преломления - отношение абсолютных показателей преломления второй и первой сред.

Наоборот, при переходе из второй среды в первую:

Среда обладающая большим показателем, называется оптически более плотной

4)закон отражения(закон отражения(На границе двух сред возникает отражённый луч,лежащий в плоскости падения,т.е. в плоскости содержащей падающий луч и нормаль границы двух сред, восстановленную в точке падения, причём угол падения равен углу отражения).

Границы применимости геометрической оптики:
законы геометрической оптики выполняются достаточно точно, лишь в том случае,если размеры препятствия на пути распространения света много больше длины световой волны.

Закон преломления света

Преломление света - явление, при котором луч света, переходя из одной среды в другую, изменяет направление на границе этих сред.

Преломление света происходит по следующему закону:
Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
,
где α - угол падения,
β - угол преломления,
n - постоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения, тем больше угол преломления.
Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения: β < α.
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

абсолютный показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n = c/v
Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.

Величина n есть относительный показатель преломления среды В по отношению к среде А, а n" = 1/n есть относительный показатель преломления среды А по отношению к среде В.

Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая.

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления.

(Абсолютный - относительно вакуума.
Относительный - относительно любого другого вещества (того же воздуха, например).
Относительный показатель двух веществ есть отношение их абсолютных показателей.)

Полное внутреннее отражение

Свет,распространяющийся в какой-либо среде, падает на границу раздела этой среды со средой менее плотной (т.е. абсолютный показатель преломления меньше).Возрастание доли отражённой энергии также происходит по мере увеличения угла падения, НО:

Начиная с некоторого угла падения вся световая энергия отражается от границы раздела. Угол падения,начиная с которого вся световая энергия отражается от границы раздела, называется предельным углом полного внутреннего отражения.

При падении света на границу раздела под предельным углом угол преломления равен 90 градусов:

sin угла преломления = 1/n

При углах падения, больших угла преломления,преломлённого луча не существует.

Пример: полное внутреннее отражение можно наблюдать на границе воздушных пузырьков в воде. Они блестят потому, что падающий на них солнечный свет полностью отражается,не проходя внутрь пузырьков.

Виды отражений:

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное отражение

Зеркальное отражение света отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения; 2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n 2 и n 1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

В важном частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

Полное внутреннее отражение

Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При некотором критическом значении интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления равным 90°:

Диффузное отражение света

Рассеяние света по всевозможным направлениям. Различают две осн. формы Д. о.: рассеяние света на микронеровностях поверхности (поверхностное рассеяние) и рассеяние в объёме тела, связанное с присутствием мелкодисперсных частиц (объёмное рассеяние). Свойства диффузно отражённого света зависят от условий освещения, оптич. свойств рассеивающего вещества и микрорельефа отражающей поверхности (см. Отражение света). Идеально рассеивающая поверхность имеет яркость во всех направлениях одинаковую, не зависящую от условий освещения. Для оценок светорассеивающих характеристик реальных объектов вводится коэф. Д. о., к-рый определяется как отношение светового потока, отражённого от данной поверхности, к потоку, отражённому идеальным рассеивателем. Спектральный состав, коэф. Д. о. и индикатриса яркости Д. о. света реальных объектов зависят от обеих форм рассеяния - поверхностного и объёмного.

Свет

1) Если предмет встречает прозрачное тело, то он проходит через него,а меньше отразится и поглотится.

2) Если предмет непрозрачный - отражение и поглощение света.

1. Коэффициент отражения- безразмерная физическая величина, характеризующая способность тела отражать падающее на него излучение. В качестве буквенного обозначения используется греческая или латинская .

Количественно коэффициент отражения равен отношению потока излучения, отраженного телом, к потоку, упавшему на тело:

2.Коэффициент пропускания - безразмерная физическая величина, равная отношению потока излучения , прошедшего через среду, к потоку излучения , упавшего на её поверхность:

3. Коэффициент поглощения - безразмерная физическая величина, характеризующая способность тела поглощать падающее на него излучение. В качестве буквенного обозначения используется греческая [

Численно коэффициент поглощения равен отношению потока излучения , поглощенного телом, к потоку излучения , упавшего на тело :

4.Коэффициент рассеяния - безразмерная физическая величина, характеризующая способность тела рассеивать падающее на него излучение. В качестве буквенного обозначения используется греческая .

Количественно коэффициент рассеяния равен отношению потока излучения , рассеянного телом, к потоку , упавшему на тело :

Вывод : Сумма коэффициента поглощения и коэффициентов отражения, пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

Оптическая плотность - мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т. д.).

Вычисляется как десятичный логарифм отношения потока излучения падающего на объект, к потоку излучения прошедшего через него (отразившегося от него), то есть это есть логарифм от величины, обратной к коэффициенту пропускания (отражения):

(D = - lg T = lg (1/ T)

БИЛЕТ № 6

Белый свет и цветовая температура

6.1. БЕЛЫЙ СВЕТ. ЗАВИСИМОСТЬ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ОТ СКОРОСТИ РАСПРОСТРАНЕНИЯ ИЗЛУЧЕНИЯ(ДИСПЕРСИЯ СВЕТА) РАЗЛОЖЕНИЕ БЕЛОГО СВЕТА В СПЕКТР. Зависимость показателя преломления в прозрачной среде от длинны волны проходящего света-дисперсия света. Мера дисперсии-разность показателей преломления длинны волн. Свет проходит через призму Ньютона....... красного цвета-скорость распространения в среде максимальна, а степень преломления - минимальна, у света фиолетового цвета скорость распространения в среде минимальна, а степень преломления - максимальна.

Дисперсия света - Зависимость показателя преломления от частоты колебаний (или длины световой волны) называют дисперсией света. В подавляющем большинстве случаев с увеличением длины волны показатель преломления уменьшается. Такую дисперсию называют нормальной.

Белый свет - электромагнитное излучение видимого диапазона, которое вызывает в нормальном человеческом глазе световое ощущение, нейтральное по отношению к цвету.(или же когда все цвета спектра собираются воедино). Дисперсия света– зависимость показателя преломления в прозрачной среде от длинны волны. Луч белого света проходя через кристалл преломляется. Преломление происходит из за разных плотностей 2х сред, благодаря чему свет изменяется.

Дисперсия света (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее. из -за зависимости преломления света от скорости ее распространения луч белого света (так как он сложный), проходя через кристалл преломляется, так как он проходит из 1 среды в другую с разными плотностями и скорость света изменяется. Разложение белого света в спектр. Луч белого света, проходя через трехграннуюпризму, не только отклоняется, но и разлагается на составляющие цветные лучи. Это явление установил Исаак Ньютон. Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму. Попадая на призму, луч преломлялся и давал на противоположной стене спектр.

6.2. ЦВЕТОВОЙ ТРЕУГОЛЬНИК. ОСНОВНЫЕ И ДОПОЛНИТЕЛЬНЫЕ ЦВЕТА. ТРЕХКОМПОНЕНТНОСТЬ ЗРЕНИЯ. (По часовой стрелке расположение цветов с 12 часов: к,ж,з,г,с,п) Основные цвета: Синий, зеленый, красный-образуют белый цвет Дополнительные цвета: желтый, пурпурный, голубой. К+Г=Б;з+п=Б;с+ж=Б. К+З=Ж, З+С=Г, С+К=п Трехк.зрен.-глаз имеет три вида приемников лучистой энергии (колбочек), воспринимающих красную (длинноволновую), желтую (средневолновую) и голубую (коротковолновую) части видимого спектра. Красный воспринимает лучше,чем фиолетовый 6.3. АБСОЛЮТНО ЧЕРНОЕ ТЕЛО. ЕГО ЭТАЛОН И СПЕКТР ИЗЛУЧЕНИЯ. ЦВЕТОВАЯ ТЕМПЕРАТУРА. ЕДИНИЦА ИЗМЕРЕНИЯ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ. А. Модель идеального источника излучения, не поглощает и не пропускает ничего при данной t. Испускает большое кол-во любого монохроматического излучения нежели какого либо др. источника. Б. Спектр излучения абсолютно чёрного тела определяется только его температурой. В этом случае тело полностью поглощает все падающее на него излучение. Если коэффициент поглощения равен единице(мах) для всех длин волн то такое тело называют абсолютно черным телом. Абсолютно черное тело излучает в любой области спектра больше энергии, чем всякое другое тело, имеющее ту же бтемпературу. Для довольно большой области спектра - от инфракрасного до ультрафиолетового излучения свойства ми абсолютно черного тела обладает поверхность, по крытая слоем копоти (раскаленный метал вольфрама) В. Цвет.t-t абсолют.черного тела,при котором относительный спектральный состав,его излуч.в определенном отношении подобен спектральному составу излуч.рассматриваемого реального тела. Измеряется в кельвах и миредах.

6.4 ВАЖНОСТЬ ПОНЯТИЯ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ В ФОТОГРАФИИ. ИЗЛУЧЕНИЕ СЕРОГО ТЕЛА. РЕАЛЬНЫЕ ИСТОЧНИКИ ИЗЛУЧЕНИЯ, ИМЕЮЩИЕ РАСПРЕДЕЛЕНИЕ СПЕКТРАЛЬНОЙ ЭНЕРГИИ, ТОЖДЕСТВЕННОЕ ИЗЛУЧЕНИЮ ЧЕРНОГО ТЕЛА. ИСТОЧНИКИ ИЗЛУЧЕНИЯ, К КОТОРЫМ ПОНЯТИЕ ЦВЕТОВОЙ Т НЕ ПРИМЕНИМО. Для выбора бб. Серое тело, излучение тождественно серому телу, близко к черному телу. Тело, поглощения коэффициент которого меньше 1 и не зависит от длины волны излучения и абс. t. Серого излучения - теплового излучения, одинакового по спектр. составу с излучением абсолютно чёрного тела, но отличающегося от него меньшей энергетич. яркостью.

(Серые тела: пламя свечи, лампы накаливания, раскаленный метал). Понятие не применимо: лазер, светодиод, пары, люминесцентные, газоразрядная трубка. Фотоприемники

7.1 ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ. ЗАКОНЫ ФОТОЭФФЕКТА. ЭФФЕКТ ВНЕШНИЙ И ВНУТРЕННИЙ. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ - выбивание светом электронов с поверхности токопроводящих материалов.

Зак.фотоэффекта 1.зависимость фотоизлучения. Сила фото тока излучения прямо пропорциональна падающему потоку излучения (освещенность) 2. Скорость тока излуч. Прямо пропорциональна падающему потоку излучения (освещенность) Скорость освобождаемых под действием электронов, скорость вылетающих электронов не зависит от освещенности, а определяется частотой излучения. (Синие отпечатки быстрее регистрируются) Чем больше частота, тем короче длинна волны, тем скорее полетит электрон 3. Красная граница-соответствует предельной длине волны, способной вызвать фотоэффект. E=h*v -полная энергия. Получение от электрона с частотой v, равняется произведению этой частоты на пост.Планка-6,6*10 в 36ой =h

Внешним фотоэффектом (фотоэлектронной эмиссией ) называется испускание электронов веществом под действием электромагнитных излучений. Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твёрдых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Полупроводники в матрице из кремния, углерода, селен (не металл) SiO2(песок,поликристаллический кремний) Ток не течет,потенциальный барьер не преодолен,если нагретьмпроводник, то проводимость будет/доп.возникновение зарядов. Pтипа-больше дырок Nтипа-больше электронов Но если у нас будет не+-, а -+,то если мы нагреем ток преодолеет барьер. + протоны - электроны Галогенид серебра (желтый)

На улице начинает темнеть, буреть, пахнуть хлором

Геометрическая оптика использует представление о световых лучах, распространяющихся независимо друг от друга, прямолинейных в однородной среде, отражающихся и преломляющихся на границах сред с разными оптическими свойствами. Вдоль лучей происходит перенос энергии световых колебаний.

Показатель преломления среды. Оптические свойства прозрачной среды характеризуются показателем преломления который определяет скорость (точнее, фазовую скорость) световых волн:

где с - скорость света в вакууме. Показатель преломления воздуха близок к единице (пвозд воды его значение равно 1,33, а у стекла в зависимости от сорта может составлять от 1,5 до 1,95. Особенно велик показатель преломления алмаза - приблизительно 2,5.

Значение показателя преломления, вообще говоря, зависит от длины волны Я (или от частоты : Эту зависимость называют дисперсией света. Например, у хрусталя (свинцового стекла) показатель преломления плавно меняется от 1,87 для красного света с длиной волны до 1,95 для синего света с

Показатель преломления связан с диэлектрической проницаемостью среды (для данной длины волны или частоты) соотношением Среда с большим значением показателя преломления называется оптически более плотной.

Законы геометрической оптики. Поведение световых лучей подчиняется основным законам геометрической оптики.

1. В однородной среде световые лучи прямолинейны (закон прямолинейного распространения света).

2. На границе двух сред (или на границе среды с вакуумом) возникает отраженный луч, лежащий в плоскости, образуемой падающим лучом и нормалью к границе, т. е. в плоскости падения, причем угол отражения равен углу падения (рис. 224):

(закон отражения, света).

3. Преломленный луч лежит в плоскости падения (при падении света на границу изотропной среды) и образует с нормалью к границе угол (угол преломления), определяемый соотношением

(закон преломления света или закон Снеллиуса).

При переходе света в оптически более плотную среду луч приближается к нормали Отношение называют относительным показателем преломления двух сред (или показателем преломления второй среды относительно первой).

Рис. 224. Отражение и преломление спета на плоской границе двух сред

При падении света из вакуума на границу среды с показателем преломления закон преломления принимает вид

Для воздуха показатель преломления близок к единице поэтому и при падении света из воздуха на некоторую среду можно пользоваться формулой (4).

При переходе света в оптически менее плотную среду угол падения не может превышать предельного значения так как угол преломления не может превышать (рис. 225):

Если угол падения происходит полное отражение, т. е. вся энергия падающего света возвращается в первую, оптически более плотную, среду. Для границы стекло - воздух

Рис. 225. Предельный угол полного отражения

Принцип Гюйгенса и законы геометрической оптики. Законы геометрической оптики были установлены задолго до выяснения природы света. Эти законы могут быть выведены из волновой теории на основе принципа Гюйгенса. Их применимость ограничена явлениями дифракции.

Остановимся подробнее на переходе от волновых представлений о распространении света к представлениям геометрической оптики. С помощью принципа Гюйгенса по заданной волновой поверхности падающей волны можно построить волновые поверхности преломленной и отраженной волн. При этом следует учесть, что световые лучи перпендикулярны волновым поверхностям.

Рассмотрим плоскую световую волну, падающую из среды 1 (с показателем преломления на плоскую границу раздела со средой 2 (с показателем преломления под углом (рис. 226). Угол падения - это угол между падающим лучом и нормалью к границе раздела.

Рис. 226. Построение Гюйгенса для отражения и преломления света

В то же время - это угол между границей раздела и волновой поверхностью падающей волны. Пусть в некоторый момент эта волновая поверхность занимает положение Спустя время она достигнет точки В границы раздела. За это же время вторичная волна из точки А, распространяющаяся в среде X, расширится до радиуса Подставляя сюда получаем Отсюда ясно, что волновая поверхность отраженной волны, представляющая собой огибающую всех вторичных сферических волн с центрами на отрезке наклонена к границе раздела на угол который равен (равенство углов и следует из равенства прямоугольных треугольников и имеющих общую гипотенузу и равные катеты и Таким образом, отраженный луч перпендикулярный фронту отраженной волны, образует с нормалью угол равный углу падения

Аналогично из этого построения Гюйгенса можно получить и закон преломления. В среде 2 вторичные волны распространяются со скоростью и поэтому выходящая из точки А сферическая волна спустя время имеет радиус Подставляя сюда находим Разделив обе части этого равенства на приходим к соотношению

которое, очевидно, совпадает с законом преломления (3), так как угол наклона волновой поверхности волны в среде 2 есть в то же время и угол между преломленным лучом и нормалью к границе раздела (угол преломления, рис. 226).

Отражение и преломление на искривленной поверхности. Плоская волна характеризуется тем свойством, что ее волновые поверхности представляют собой неограниченные плоскости, а направление ее распространения и амплитуда везде одинаковы. Часто электромагнитные волны, не являющиеся плоскими, можно приближенно рассматривать как плоские на небольшом участке пространства. Для этого необходимо, чтобы амплитуда и направление распространения волны почти не менялись на протяжении расстояний порядка длины волны. Тогда также можно ввести понятие лучей, т. е. линий, касательная к которым в каждой точке совпадает с направлением распространения волны. Если при этом граница раздела двух сред, например поверхность линзы, может считаться приблизительно плоской на расстояниях порядка длины волны, то поведение лучей света на такой границе будет описываться теми же законами отражения и преломления.

Изучение законов распространения световых волн в этом случае составляет предмет геометрической оптики, поскольку в этом приближении оптические законы можно сформулировать на языке геометрии. Многие оптические явления, такие, как, например, прохождение света через оптические системы, формирующие изображение, можно рассматривать исходя из представления о световых лучах, совершенно отвлекаясь от волновой природы света. Поэтому представления геометрической оптики справедливы лишь в той степени, в какой можно пренебречь явлениями дифракции световых волн. Дифракция сказывается тем слабее, чем меньше длина волны. Это значит, что геометрическая оптика соответствует предельному случаю малых длин волн:

Физическую модель пучка световых лучей можно получить, если пропустить свет от источника пренебрежимо малого размера через небольшое отверстие в непрозрачном экране. Выходящий из отверстия свет заполняет некоторую область, и если длина волны пренебрежимо мала по сравнению с размерами отверстия, то на небольшом расстоянии от него можно говорить о пучке световых лучей с резкой границей.

Интенсивность отраженного и преломленного света. Законы отражения и преломления позволяют определить только направление соответствующих световых лучей, но ничего не говорят об их интенсивности. Между тем опыт показывает, что соотношение интенсивностей отраженного и преломленного лучей, на которые расщепляется исходный луч на границе раздела, сильно зависит от угла падения. Например, при нормальном падении света на поверхность стекла отражается около 4% энергии падающего светового пучка, а при падении на поверхность воды - только 2 %. Но при скользящем падении поверхности стекла и воды отражают почти все падающее излучение. Благодаря этому мы можем любоваться зеркальными отражениями берегов в спокойной прозрачной воде горных озер.

Рис. 227. У естественного спета колебания сектора Е происходят по всевозможных направлениях в плоскости, перпендикулярной лучу

Естественный свет. Световая волна, как и любая электромагнитная волна, поперечна: вектор Е лежит в плоскости, перпендикулярной направлению распространения. Испускаемый обычными источниками (например, раскаленными телами) свет неполяризован. Это значит, что в световом луче колебания вектора Е происходят во всевозможных направлениях в плоскости, перпендикулярной направлению луча (рис. 227). Такой неполяризованный свет называется естественным. Его можно представить как некогерентную смесь двух световых волн одинаковой интенсивности, линейно поляризованных в двух взаимно перпендикулярных направлениях. Эти направления можно выбрать произвольно.

Поляризация света при отражении. При изучении отражения неполяризованного света от границы раздела сред удобно выбрать одно из двух независимых направлений вектора Е в плоскости падения, а второе - перпендикулярно ей. Условия отражения этих двух волн оказываются различными: волна, у которой вектор Е перпендикулярен плоскости падения (т. е. параллелен границе раздела) при всех углах падения (кроме 0 и 90°), отражается сильнее. Поэтому отраженный свет оказывается частично поляризованным, а при отражении под некоторым определенным углом (для стекла около 56°) - полностью поляризованным.

Этим обстоятельством пользуются для устранения бликов, например при фотографировании пейзажа с водной поверхностью. Подбирая должным образом ориентацию поляризационного светофильтра, пропускающего световые колебания только определенной поляризации, можно практически полностью устранить блики на фотографии.

Принцип Ферма. Основные законы геометрической оптики - закон прямолинейного распространения света в однородной среде, законы отражения и преломления света на границе раздела двух сред - могут быть получены с помощью принципа Ферма. Согласно этому принципу действительный путь распространения монохроматического луча света есть путь, для прохождения которого свету требуется экстремальное (как правило, минимальное) время по сравнению с любым другим близким к нему мыслимым путем между теми же точками.

Рис. 228. К выводу закона отражения света из принципа Ферма

Возьмем для примера закон отражения света. Сразу видно, что он непосредственно следует из принципа Ферма. Пусть луч света, вышедшего из точки А, отражается от зеркала в некоторой точке С и приходит в заданную точку В (рис. 228). Согласно принципу Ферма, проходимый светом путь должен быть короче любого другого пути по близкой траектории, например Чтобы найти положение точки отражения С, отложим на опущенном из точки А перпендикуляре к зеркалу отрезок равный и соединим точки А и В отрезком прямой.

Пересечение этого отрезка с поверхностью зеркала и дает положение точки С. Действительно, легко видеть, что и потому путь света из точки А в точку В равен отрезку Путь света из А в В через любую другую точку равный будет длиннее, так как прямая - это кратчайшее расстояние между двумя точками А и В. Из рис. 228 сразу видно, что именно такое положение точки С соответствует равенству углов падения и отражения:

Рис. 229. Мнимое изображение точки А в плоском зеркале

Изображение в плоском зеркале. Точка А, расположенная симметрично точке А относительно поверхности плоского зеркала, представляет собой изображение точки А в этом зеркале. В самом деле, узкий пучок лучей, выходящих из

А, отражающихся в зеркале и попадающих в глаз наблюдателя (рис. 229), будет казаться выходящим из точки А. Создаваемое плоским зеркалом изображение называется мнимым, так как в точке А пересекаются не сами отраженные лучи, а их продолжения назад. Очевидно, что изображение протяженного предмета в плоском зеркале будет равным по размерам самому предмету.

Что такое световые лучи? Как это понятие соотносится с понятием волновой поверхности? Какое отношение имеют лучи к направлению распространения световых колебаний?

В каких условиях можно использовать представление о световых лучах?

Что такое показатель преломления среды? Как он связан со скоростью распространения света?

Сформулируйте основные законы геометрической оптики. Что такое плоскость падения? Объясните на основе соображений симметрии, почему луч как при отражении, так и при преломлении не выходит из этой плоскости.

При каких условиях отражение света на границе раздела будет полным? Что такое предельный угол полного отражения?

Поясните, как можно получить законы прямолинейного распространения, отражения и преломления на основе принципа Гюйгенса.

Почему законы отражения и преломления света, сформулированные для плоской границы раздела, можно применять и в случае искривленных поверхностей (линзы, капли воды и др.)?

Приведите примеры наблюдавшихся вами явлений, свидетельствующих о зависимости интенсивности отраженного света от угла падения.

Почему при отражении естественного света получается частично поляризованный свет?

Сформулируйте принцип Ферма и покажите, что из него следует закон отражения света.

Докажите, что изображение предмета в плоском зеркале равно по размерам самому предмету.

Принцип Ферма и формула линзы. Скорость света в среде с показателем преломления равна Поэтому принцип Ферма можно сформулировать как требование минимальности оптической длины луча при распространении света между двумя заданными точками. Под оптической длиной луча понимается произведение показателя преломления на длину пути луча. В неоднородной среде оптическая длина складывается из оптических длин на отдельных участках. Использование этого принципа позволяет рассмотреть некоторые задачи с несколько иной точки зрения, чем при непосредственном применении законов отражения и преломления. Например, при рассмотрении фокусирующей оптической системы вместо применения закона преломления можно просто потребовать равенства оптических длин всех лучей.

Получим с помощью принципа Ферма формулу тонкой линзы, не прибегая к закону преломления. Для определенности будем рассматривать двояковыпуклую линзу со сферическими преломляющими поверхностями, радиусы кривизны которых равны (рис. 230).

Хорошо известно, что с помощью собирающей линзы можно получить действительное изображение точки. Пусть предмет, его изображение. Все лучи, исходящие из и прошедшие через линзу, собираются в одной точке Пусть лежит на главной оптической оси линзы, тогда изображение также лежит на оси. Что значит получить формулу линзы? Это значит установить связь между расстояниями от предмета до линзы и от линзы до изображения и величинами, характеризующими данную линзу: радиусами кривизны ее поверхностей и показателем преломления

Из принципа Ферма следует, что оптические длины всех лучей, выходящих из источника и собирающихся в точке, являющейся его изображением, одинаковы. Рассмотрим два из этих лучей: один, идущий вдоль оптической оси, второй - через край линзы (рис. 230а).

Рис. 230. К вьшоду формулы тонкой линзы

Несмотря на то, что второй луч проходит большее расстояние, его путь в стекле короче, чем у первого, так что время распространения света для них одинаково. Выразим это математически. Обозначения величин всех отрезков указаны на рисунке. Приравняем оптические длины первого и второго лучей:

Выразим по теореме Пифагора:

Теперь воспользуемся приближенной формулой которая справедлива при с точностью до членов порядка Считая малым по сравнению с с точностью до членов порядка имеем

Аналогично для получаем

Подставляем выражения (8) и (9) в основное соотношение (7) и приводим подобные члены:

В этой формуле в случае тонкой линзы можно пренебречь величинами в знаменателях правой части по сравнению с и очевидно, что в левой части выражения следует сохранить, ибо этот член стоит множителем.

С той же точностью, что и в формулах (8) и (9), с помощью теоремы Пифагора можно представить в виде (рис. 230б)

Теперь остается только подставить эти выражения в левую часть формулы (10) и сократить обе части равенства на :

Это и есть искомая формула тонкой линзы. Вводя обозначение

ее можно переписать в виде

Фокусное расстояние линзы. Из формулы (12) нетрудно понять, что есть фокусное расстояние линзы: если источник находится на бесконечности (т.е. на линзу падает параллельный пучок лучей), его изображение находится в фокусе. Полагая получаем

Аберрации. Полученное свойство фокусировки параллельного пучка монохроматических лучей является, как видно из проделанного вывода, приближенным и справедливо лишь для узкого пучка, т. е. для лучей, не слишком сильно отстоящих от оптической оси. Для широких пучков лучей имеет место сферическая аберрация, проявляющаяся в том, что далекие от оптической оси лучи пересекают ее не в фокусе (рис. 231). В результате изображение бесконечно удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается несколько размытым.

Кроме сферической аберрации, линза как оптический прибор, формирующий изображение, обладает рядом других недостатков.

Например, даже узкий параллельный пучок монохроматических лучей, образующий некоторый угол с оптической осью линзы, после преломления не собирается в одну точку. При использовании немонохроматического света у линзы проявляется еще и хроматическая аберрация, связанная с тем, что показатель преломления зависит от длины волны. В результате, как видно из формулы (11), узкий параллельный пучок лучей белого света пересекается после преломления в линзе не в одной точке: лучи каждого цвета имеют свой фокус.

При конструировании оптических приборов удается в большей или меньшей степени устранить эти недостатки путем применения специально рассчитанных сложных многолинзовых систем. Однако одновременно устранить все недостатки невозможно. Поэтому приходится идти на компромисс и, рассчитывая оптические приборы, предназначенные для определенной цели, добиваться устранения одних недостатков и мириться с присутствием других. Например, объективы, предназначенные для наблюдения объектов малой яркости, должны пропускать возможно больше света, что вынуждает мириться с некоторыми аберрациями, неизбежными при использовании широких пучков света.

Рис. 231. Сферическая аберрация линзы

Для объективов телескопов, где изучаемыми объектами являются звезды - точечные источники, расположенные вблизи оптической оси прибора, особенно важно устранить сферическую и хроматическую аберрацию для широких пучков, параллельных оптической оси. Устранить хроматическую аберрацию проще всего путем использования в оптической системе отражения вместо преломления. Так как лучи всех длин волн отражаются одинаково, то телескоп-рефлектор, в отличие от рефрактора, полностью лишен хроматической аберрации. Если при этом еще надлежащим образом выбрать форму поверхности отражающего зеркала, то можно полностью избавиться и от сферической аберрации для пучков, параллельных оптической оси. Для получения точечного осевого изображения зеркало должно быть параболическим.

Возводя обе части в квадрат и приводя подобные члены, найдем

Это уравнение параболы.

Рис. 232. Все параллельные лучи после отражения от параболического зеркала собираются в точке

Параболические зеркала используются во всех крупнейших телескопах. В этих телескопах устранены сферическая и хроматическая аберрации; однако параллельные пучки, идущие даже под небольшими углами к оптической оси, после отражения не пересекаются в одной точке и дают сильно искаженные внеосевые изображения. Поэтому пригодное для работы поле зрения оказывается очень небольшим, порядка нескольких десятков угловых минут,

Поясните, почему применительно к фокусирующей оптической системе принцип Ферма формулируется как условие равенства оптических длин всех лучей от точки предмета до ее изображения.

Выведите с помощью принципа Ферма закон преломления света на границе раздела двух сред.

Сформулируйте приближения, при выполнении которых справедлива формула тонкой линзы.

В чем проявляются сферическая и хроматическая аберрации линзы?

Какие преимущества и какие недостатки имеет параболическое зеркало по сравнению со сферическим?

Покажите, что эллиптическое зеркало отражает все лучи, вышедшие из одного фокуса эллипсоида, в другой фокус.

Некоторые оптические законы были уже известны до установления природы света. Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно. Этот закон является приближенным, так как при прохождении света через очень малые отверстия наблюдаются отклонения от прямолинейности, тем большие, чем меньше отверстие.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Пересечения лучей не мешают каждому из них распространяться независимо друг от друга. Разбивая световой пучок на отдельные световые пучки, можно показать, что действие выделенных световых пучков независимо. Этот закон справедлив лишь при не слишком больших интенсивностях света. При интенсивностях, достигаемых с помощью лазеров, независимость световых лучей перестает соблюдаться.

Закон отражения: отраженный от границы раздела двух сред луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела в точке падения; угол отражения равен углу падения.

Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред

sini 1 /sini 2 = n 12 = n 2 / n 1 , очевидно sini 1 /sini 2 = V 1 / V 2 , (1)

где n 12 – относительный показатель преломления второй среды относительно первой. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления n 12 = n 2 / n 1 .

Абсолютным показателем преломления среды наз. величина n, равная отношению скорости С электромагнитных волн в вакууме к их фазовой скорости V в среде:

Среда с большим оптическим показателем преломления наз. оптически более плотной.

Из симметрии выражения (1) вытекает обратимость световых лучей , сущность которой состоит в том, что если направить световой луч из второй среды в первую под углом i 2 , то преломленный луч в первой среде выйдет под углом i 1 . При переходе света из оптически менее плотной среды в более плотную получается, что sini 1 > sini 2 , т.е. угол преломления меньше угла падения света, и наоборот. В последнем случае при увеличении угла падения угол преломления увеличивается в большей мере, так что при некотором предельном угле падения i пр угол преломления становится равным π/2. С помощью закона преломления можно рассчитать значение предельного угла падения:

sin i пр /sin(π/2) = n 2 /n 1 , откуда i пр = arcsin n 2 /n 1 . (2)

В этом предельном случае преломленный луч скользит по границе раздела сред. При углах падения i > i пр свет не проникает в глубь оптически менее плотной среды, имеет место явление полного внутреннего отражения. Угол i пр называется предельным углом полного внутреннего отражения.

Явление полного внутреннего отражения используется в призмах полного отражения, которые применяются в оптических приборах: биноклях, перископах, рефрактометрах (приборах, позволяющих определять оптические показатели преломления), в световодах, представляющих собой тонкие, гнущиеся нити (волокна) из оптически прозрачного материала. Свет, падающий на торец световода под углами, большими предельного, претерпевает на границе раздела сердцевины и оболочки полное внутреннее отражение и распространяется только по световедущей жиле. С помощью световодов можно как угодно искривлять путь светового пучка. Для передачи изображений используются многожильные световоды. Рассказать о применении световодов.

Для объяснения закона преломления и искривления лучей при прохождении их через оптически неоднородные среды вводится понятие оптической длины пути луча

L = nS или L = ∫ndS,

соответственно для однородной и неоднородной сред.

В 1660 году французский математик и физик П. Ферма установил принцип экстремальности (принцип Ферма) для оптической длины пути луча, распространяющегося в неоднородных прозрачных средах: оптическая длина пути луча в среде между двумя заданными точками минимальна, или другими словами, свет распространяется по такому пути, оптическая длина которого минимальна.

Фотометрические величины и их единицы. Фотометрия – раздел физики, занимающийся вопросами измерения интенсивности света и его источников. 1.Энергетические величины :

Поток излучения Ф е – величина, численно равная отношению энергии W излучения ко времени t, за которое излучение произошло:

Ф е = W / t, ватт (Вт).

Энергетическая светимость (излучательность) R е – величина, равная отношению потока излучения Ф е, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:

R е = Ф е / S, (Вт/м 2)

т.е. представляет собой поверхностную плотность потока излучения.

Энергетическая сила света (сила излучения) I e определяется с помощью понятия о точечном источнике света – источнике, размерами которого по сравнению с расстоянием до места наблюдения можно пренебречь. Энергетическая сила света I e величина, равная отношению потока излучения Ф е источника к телесному углу ω, в пределах которого это излучение распространяется:

I e = Ф е /ω, (Вт/ср)- ватт на стерадиан.

Сила света часто зависит от направления излучения. Если она не зависит от направления излучения, то такой источник называется изотропным . Для изотропного источника сила света равна

I e = Ф е /4π.

В случае протяженного источника можно говорить о силе света элемента его поверхности dS.

Энергетическая яркость (лучистость) В е – величина, равная отношению энергетической силы света ΔI e элемента излучающей поверхности к площади ΔS проекции этого элемента на плоскость, перпендикулярную направлению наблюдения:

В е = ΔI e / ΔS. (Вт/ср.м 2)

Энергетическая освещенность (облученность) Е е характеризует степень освещенности поверхности и равна величине потока излучения, падающего на единицу освещаемой поверхности. (Вт/м 2 .

2.Световые величины . При оптических измерениях пользуются различными приемниками излучения, спектральные характеристики чувствительности которых к свету различных длин волн различны. Относительная спектральная чувствительность человеческого глаза V(λ) приведена на рис. V(λ)

400 555 700 λ, нм

Поэтому световые измерения, являясь субъективными, отличаются от объективных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является сила света – кандела (кд), которая равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Определение световых единиц аналогично энергетическим. Для измерения световых величин используют специальные приборы – фотометры.

Световой поток . Единицей светового потока является люмен (лм). Он равен световому потоку, излучаемому изотропным источником света с силой в 1 кд в пределах телесного угла в один стерадиан (при равномерности поля излучения внутри телесного угла):

1 лм = 1 кд·1ср.

Опытным путем установлено, что световому потоку в 1 лм, образованному излучением с длиной волны λ = 555 нм соответствует поток энергии в 0,00146 Вт. Световому потоку в 1 лм, образованному излучением с другой λ, соответствует поток энергии

Ф е = 0,00146/V(λ), Вт.

1 лм = 0,00146 Вт.

Освещенность Е - величина, раная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:

Е = Ф/S, люкс (лк).

1 лк – освещенность поверхности, на 1 м 2 которой падает световой поток в 1 лм (1лк = 1 лм/м 2).

Яркость R C (светимость) светящейся поверхности в некотором направлении φ есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:

R C = I/(Scosφ). (кд/м 2).

В основе разработки практически всех оптических приборов и систем лежат законы распространения света. Некоторые из них учитывают двойственную природу света, некоторые - нет. Наиболее общие законы распространения света, не связанные с его природой, рассматриваются именно в геометрической оптике. С этими законами вам и предстоит познакомиться на этом уроке.

Тема: Оптика

Урок: Законы геометрической оптики

Геометрическая оптика является самой древней частью оптики как науки.

Геометрическая оптика - это раздел оптики, в котором рассматривают вопросы распространения света в различных оптических системах (линзах, призмах и т. д.) без рассмотрения вопроса о природе света.

Одним из основных понятий в оптике и, в частности, в геометрической оптике, является понятие луча.

Световой луч - линия, вдоль которой распространяется световая энергия.

Световой луч - это пучок света, толщина которого много меньше расстояния, на которое он распространяется. Такое определение близко, например, к определению материальной точки, которое дается в кинематике.

Первый закон геометрической оптики (Закон о прямолинейном распространении света): в однородной прозрачной среде свет распространяется прямолинейно.

По теореме Ферма: свет распространяется по такому направлению, время распространения по которому будет минимально.

Второй закон геометрической оптики (Законы отражения):

1. Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром к границе раздела двух сред.

2. Угол падения равен углу отражения (см. Рис. 1).

∟α = ∟β

Рис. 1. Закон отражения

Третий закон геометрической оптики (Закон преломления) (см. Рис. 2)

1. Преломленный луч лежит в одной плоскости с падающим лучом и перпендикуляром, восстановленным в точку падения.

2. Отношение синуса угла падения к синусу угла преломления есть величина, постоянная для данных двух сред, которая называется показателем преломления ( n).

Интенсивность отраженного и преломленного луча зависит от того, какова среда и что собой представляет граница раздела.

Рис. 2. Закон преломления

Физический смысл показателя преломления:

Показатель преломления является относительным, так как измерения проводятся относительно двух сред.

В том случае, если одна из сред - это вакуум:

С - скорость света в вакууме,

n - абсолютный показатель преломления, характеризующий среду относительно вакуума.

Если свет переходит из оптически менее плотной среды в оптически более плотную среду, то скорость света уменьшается.

Оптически более плотная среда - среда, в которой скорость света меньше.

Оптически менее плотная среда - среда, в которой скорость света больше.

Существует предельный угол преломления - наибольший угол падения луча, при котором еще имеет место преломление при переходе луча в менее плотную среду. При углах падения больше предельного происходит полное внутреннее отражение (см. Рис. 3).

Рис. 3. Закон полного внутреннего отражения

Границы применимости геометрической оптики заключаются в том, что необходимо учитывать размер препятствий для света.

Свет характеризуется длиной волны, равной примерно 10 -9 метра

Если препятствия больше длины волны, то можно использовать размеры геометрической оптики.

  1. Физика. 11 класс: Учебник для общеобразоват. учреждений и шк. с углубл. изучением физики: профильный уровень / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др. Под ред. А.А. Пинского, О.Ф. Кабардина. Рос. акад. наук, Рос. акад. образования. - М.: Просвещение, 2009.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Санкт-Петербургская Школа ().
  2. AYP.ru ().
  3. Техническая и учебно-методическая документація ().

Рымкевич А.П. Физика. Задачник. 10-11 кл. - М.: Дрофа, 2010. - № 1023, 1024, 1042, 1054.

  1. Зная скорость света в вакууме, найдите скорость света в алмазе.
  2. Почему, сидя у костра, мы видим предметы, расположенные напротив, колеблющимися?
  3. Прокомментируйте опыт: положите монетку на стол и поставьте на нее пустую стеклянную банку (см. Рис. 4). Посмотрите на монетку сбоку сквозь стенку банки (или попросите кого-нибудь смотреть на монетку). Налейте воды полную банку и посмотрите вновь сбоку на дно банки. Куда исчезла монетка?