Теория трех основных цветов юнга гельмгольца. Теория Гельмгольца. Теории функционирования улитки. Резонансная теория Гельмгольца

Свойства спектральных смесей цветов позволяют предположить, что для сетчатки характерны определенные структурные, функциональные и нейронные механизмы. Поскольку все цвета видимого спектра могут быть получены простым смешением в определенном соотношении всего лишь трех цветов с определенными длинами волн, можно предположить, что в сетчатке человеческого глаза присутствуют рецепторы трех соответствующих типов, каждый из которых характеризуется определенной, отличной от других, спектральной чувствительностью.

Основы трехкомпонентной теории цветовосприятия были изложены в 1802 г. английским ученым Томасом Юнгом, известным также участием в расшифровке египетских иероглифов. Дальнейшее развитие эта теория получила в трудах Германа фон Гельмгольца, который высказал предположение о существовании рецепторов трех типов, отличающихся максимальной чувствительностью к синему, зеленому и красному цветам. По мнению Гельмгольца, рецепторы каждого из этих трех типов наиболее чувствительны к определенным длинам волн и соответствующие этим длинам волн цвета воспринимаются глазом как синий, зеленый или красный. Однако избирательность этих рецепторов относительна, ибо все они в той или иной степени способны к восприятию и других компонентов видимого спектра. Иными словами, в известной мере имеет место взаимное перекрывание чув- ствительностей рецепторов всех трех типов.

Суть трехкомпонентной теории цветового зрения, нередко называемой теорией Юнга-Гельмгольца, заключается в следующем: для восприятия всех цветов, присущих лучам видимой части спектра, достаточно рецепторов трех типов. В соответствии с этим наши цветоощущения - результат функционирования трехкомпонентной системы, или рецепторов трех типов, каждый из которых вносит в них свой определенный вклад. (Заметим в скобках, что хотя эта теория в первую очередь связана с именами Юнга и Гельмгольца, не менее существенный вклад в нее внесли ученые, жившие и работавшие до них. Вассерман (Wasserman, 1978) особо подчеркивает роль Исаака Ньютона и физика Джеймса Клерка Максвелла.)

S-, М- и L-колбочки. Тот факт, что на уровне сетчатки существует трехкомпонентная рецепторная система, имеет неопровержимые психологические доказательства. В сетчатке содержатся колбочки трех видов, каждый из которых обладает максимальной чувствительностью к свету с определенной длиной волны. Подобная избирательность связана с тем, что в этих колбочках содержатся фотопигменты трех видов. Маркс и его коллеги изучили абсорбционные свойства фотопигментов, содержащихся в колбочках сетчатки обезьяны и человека, для чего их
выделили из отдельных колбочек и измерили абсорбцию световых лучей с разной длиной волны (Marks, Dobelle, MacNichol, 1964). Чем активнее пигмент колбочки поглощал свет с определенной длиной волны, тем избирательнее колбочка вела себя по отношению к данной длине волны. Результаты этого исследования, графически представленные на рис. 5.9, показывают, что по характеру поглощения спектральных лучей колбочки делятся на три группы: колбочки одной из них лучше всего поглощают коротковолновый свет с длиной волны примерно 445 нм (они обозначены буквой 5, от short)] колбочки второй группы - средневолновый свет с длиной волны примерно 535 нм (они обозначены буквой М, от medium) и, наконец, колбочки третьего типа - длинноволновый свет с длиной волны примерно 570 нм (они обозначены буквой I, от long).

Более поздние исследования подтвердили существование трех фоточувствительных пигментов, каждый из которых был обнаружен в колбочках определенного типа. Эти пигменты максимально адсорбировали световые лучи с теми же длинами волн, что и колбочки, результаты изучения которых представлены на рис. 5,9 (Brown & Wald, 1964; Merbs & Nathans, 1992; Schnapf, Kraft & Baylor, 1987),

Обратите внимание на то, что колбочки всех трех типов поглащают световые лучи с длинами волн, лежащими в весьма широком диапазоне, и что их абсорбционные кривые накладываются друг на друга. Иными словами, многие длины волн активируют колбочки разных видов

Однако рассмотрим взаимное перекрывание абсорбционных кривых, представленных на рис. 5.9. Это перекрывание свидетельствует о том, что каждый фотопигмент поглощает относительно широкую часть видимого спектра. Колбочковце фотопигменты, максимально поглощающие средне- и длинноволновый свет (фотопигменты М- и Z-колбочек), чувствительны по отношению к большей части BI^ димого спектра, а колбочковый пигмент, чувствительный к коротковолновому свету (пигмент 5-колбочек), реагирует меньше чем на половину волн, входящих в спектр. Следствием этого является способность волн разной длины стимулировать более одного вида колбочек. Иными словами, световые лучи с разными длинам» волн активируют колбочки разных видов по-разному. Например, из рис. 5.9 следует, что свет с длиной волны 450 нм, попадая на сетчатку, оказывает сильное влияние
на колбочки, способные абсорбировать коротковолновый свет, и значительно меньшее - на колбочки, селективно абсорбирующие средне- и длинноволновый свет (вызывая ощущение синего цвета), а свет с длиной волны, равной 560 нм, активирует только колбочки, избирательно абсорбирующие средне- и длинноволновый свет, и вызывает ощущение зеленовато-желтого цвета. На рисунке это не показано, но белый луч, спроецированный на сетчатку, одинаково стимулирует колбочки всех трех типов, в результате чего возникает ощущение белого цвета.

Связав все цветоощущения с активностью всего лишь трех не зависящих друг от друга типов колбочек, мы тем самым должны будем признать, что зрительная система основана на том же трехкомпонентном принципе, что и описанное в разделе, посвященном аддитивному смешению цветов, цветное телевидение, но в «обратном» варианте: вместо того, чтобы предъявлять цвета, она их анализирует.

Дальнейшее подтверждение существования трех различных фотопигментов получено из исследований Раштона, использовавшего другой подход (Rushton, 1962; Baker & Rushton, 1965). Он доказал существование зеленого фотопигмента, названного им chlorolabe (что в переводе с греческого означает «ловец зеленого»), красного фотопигмента, названного им erythrolabe («ловец красного»), и высказал предположение о возможности существования третьего - синего - фотопигмента, cyanolabe («ловца синего»). (Обратите внимание на то, что в сетчатке человека есть только три колбочковых фотопигмента, чувствительных к трем разным интервалам длин волн. Многие птицы имеют фотопигменты четырех или пяти видов, что, без сомнения, и объясняет исключительно высокий уровень развития их цветового зрения. Некоторые птицы способны даже видеть коротковолновый ультрафиолетовый свет, недоступный человеку. См., например, Chen et al., 1984.)

Три разных вида колбочек, для каждого из которых характерен свой определенный фотопигмент, отличаются друг от друга и по количеству, и по местоположению в центральной ямке. Колбочек, содержащих синий пигмент и чувствительных к коротковолновому свету, значительно меньше, чем колбочек, чувствительных к средним и длинным волнам: от 5 до 10% всех колбочек, общее количество которых равно 6-8 миллионам (Dacey et al., 1996; Roorda & Williams, 1999). Около двух третей остальных колбочек чувствительны к длинноволновому свету и одна треть - к средневолновому; короче говоря, складывается такое впечатление, что колбочек с пигментом, чувствительным к длинноволновому свету, в два раза больше, чем колбочек, содержащих пигмент, чувствительный к волнам средней длины (Cicerone & Nerger, 1989; Nerger & Cicerone, 1992). Помимо того что в центральной ямке содержится неравное количество колбочек с разной чувствительностью, они еще и распределены в ней неравномерно. Колбочки, содержащие фотопигменты, чувствительные к средне- и длинноволновому свету, сконцентрированы в середине центральной ямки, а колбочки, чувствительные к коротковолновому свету, - на ее периферии, и в центре их очень мало.

Резюмируя все изложенное выше, можно сказать, что колбочки трех типов избирательно чувствительны к определенной части видимого спектра - свету с определенной длиной волны - и что для каждого типа характерен свой абсорбционный пик, т. е. максимально поглощаемая длина волны. Благодаря тому что фотопигменты колбочек этих трех типов избирательно абсорбируют короткие, средние и длинные волны, сами колбочки нередко называются 5,- М- и L-колбочками соответственно.

Упомянутые выше и другие многочисленные исследования наряду со многими результатами изучения смешения цветов подтверждают правильность трехкомяо- нентной теории цветовосприятия, по крайней мере в том, что касается процессов, происходящих на уровне сетчатки. Кроме того, трехкомпонентная теория цветового зрения позволяет нам понять те явления, о которых было рассказано в разделе, посвященном смешению цветов: например, то, что монохроматический луч с длиной волны, равной 580 нм, вызывает то же самое цветоощущение, что и смесь средневолнового зеленого и длинноволнового красного лучей, т. е. и луч, и смесь воспринимаются нами как желтый цвет (аналогичная картина характерна и для экрана цветного телевизора). М- и I-колбочки воспринимают смесь средне- и длинноволнового света так же, как они воспринимают свет с длиной волны 580 нм, вследствие чего эта смесь и оказывает на зрительную систему аналогичное влияние. В этом смысле и монохроматический желтый луч, и смесь средневолнового зеленого и длинноволнового красного лучей одинаково желтые, ни тот, ни другая не могут быть названы «более желтыми». Они одинаково воздействуют на рецептивные пигменты колбочек.

Трехкомпонентная теория цветовосприятия объясняет также и такое явление, как комплементарные последовательные образы. Если принять, что существуют S-, М- и I-колбочки (назовем их для простоты соответственно синими, зелеными и красными), то становится понятно, что при непродолжительном пристальном рассматривании синего квадрата, изображенного на цветной вклейке 10, происходит избирательная адаптация синих колбочек (их пигмент «истощается»). Когда после этого на центральную ямку проецируется изображение хроматически нейтральной белой или серой поверхности, активными оказываются только неистощенные пигменты зеленых и красных колбочек, которые и вызывают дополнительный последовательный образ. Короче говоря, аддитивная «смесь» L- и М-колбочек (красных и зеленых) воздействует на зрительную систему таким образом, что вызывает ощущение комплементарного синему желтого цвета. Аналогичным образом пристальное всматривание в желтую поверхность вызывает адаптацию колбочек, «ответственных» за ощущение желтого цвета, а именно красных и зеленых, при этом активными, неадаптировавшимися остаются синие колбочки, которые и вызывают соответствующий, т. е. синий, комплементарный последовательный образ. Наконец, на основе трехкомпонентной теории цветовосприятия можно объяснить и то, почему при одинаковой стимуляции всех фотопигментов мы видим белый цвет.

Согласно этой теории, в глазу имеются три вида приемников лучистой энергии (колбочек), воспринимающих соответственно красную (длинноволновую), желтую (средневолновую) и голубую (коротковолновую) части видимого спектра.

Все наши ощущения есть не что иное, как результат смешения в различных пропорциях этих трех цветов.

При одинаково сильном возбуждении трех видов колбочек создается ощущение белого цвета, при равном слабом - серого, а при отсутствии раздражения - черного. При этом глаз воспринимает яркость предметов путем суммирования ощущений, получаемых тремя видами колбочек, а цветность - как отношение этих ощущений.

Трехкомпонентная теория цветового зрения в настоящее время является почти общепринятой. Предполагается, что в каждом виде колбочек содержится соответствующий цветочувствительный пигмент (йодопсин), обладающий определенной спектральной чувствительностью (характеристикой поглощения). Химический состав пигментов еще не определен.

Но, рассмотрим вклад ученых разных стран в эту теорию:

Нидерландский механик, физик, математик, астроном и изобретатель Христиан Гюйгенс активно участвовал в современных ему спорах о природе света.

В 1678 году он выпустил «Трактат о свете» - набросок волновой теории света. Другое замечательное сочинение он издал в 1690 году; там он изложил качественную теорию отражения, преломления и двойного лучепреломления в исландском шпате в том самом виде, как она излагается теперь в учебниках физики.

Сформулировал так называемый принцип Гюйгенса, позволяющий исследовать движение волнового фронта, впоследствии развитый Френелем и сыгравший важную роль в волновой теории света, и теории дифракции.

Трёхсоставную теорию цветового зрения впервые высказал в 1756 году Михаил Ломоносов , когда писал «о трёх материях дна ока» в своём труде «О происхождении света».

На основе многолетних исследований и многочисленных опытов Ломоносов разработал теорию света, с помощью которой объяснил физиологические механизмы цветовых явлений. По мысли Ломоносова, цвета вызываются действием трёх родов эфира и трёх видов цветоощущающей материи, составляющей дно глаза.

Теория цвета и цветового зрения, с которой Ломоносов выступил в 1756 году, выдержала проверку временем и заняла должное место в истории физической оптики.

Шотландский физик, математик и астроном Сэр Дэвид Брюстер внес огромный вклад в развитие оптики. Он известен по всему миру, и не только в научных кругах, как изобретатель калейдоскопа.

Оптические исследования Брюстера не имеют теоретического и математического характера; тем не менее он открыл опытным путем точный математический закон, за которым осталось его имя, относящийся к явлениям поляризации света: луч света, косвенно падающий на поверхность стеклянной пластинки, частью преломляется, частью отражается. Луч, отраженный под углом полной поляризации, составляет прямой угол с направлением, которое принимает при этом преломленный луч; это условие приводит к другому, математическому выражению закона Брюстера, а именно - тангенс угла полной поляризации равен показателю преломления.

Он показал, что неравномерное охлаждение сообщает стеклу способность обнаруживать цвета в поляризованном свете - открытие, важное для физики частичных сил; вслед за тем он обнаружил подобные же явления во многих телах животного и растительного происхождения.

В 1816 г. Брюстер объяснил причину образования цветов, играющих на поверхности перламутровых раковин. До его времени алмаз считался представителем самого сильного преломления света, а лед - самого слабого в твердых телах; его измерения расширили эти пределы, показав, что хромо-кислая соль свинца преломляет сильнее алмаза, а плавиковый пшат - слабее льда. Явления поглощения света различными телами, обнаруживающиеся тем, что в спектре (солнечного) света, через них проходящего, обнаруживается множество темных линий, также были предметом исследований Брюстера. Он показал, что многие из линий солнечного спектра происходят от поглощения некоторых частей света земной атмосферой; подробно исследовал поглощение света газом азотноватого ангидрида и показал, что это вещество в жидком виде не образует спектра поглощения. Впоследствии Б. открыл, что некоторые светлые линии спектров искусственных источников света совпадают с темными, фраунгоферовыми, линиями солнечного спектра, и выразил мнение, что и эти последние, может быть, суть линии поглощения в солнечной атмосфере. Сопоставляя высказанные им в различное время мысли об этом предмете, можно видеть, что Брюстер был на пути к великому открытию спектрального анализа; но эта честь во всяком случае принадлежит Бунзену и Кирхгофу.

Брюстер много пользовался поглощающими свет веществами для другой цели, а именно, он старался доказать, что число основных цветов в спектре не семь, как думал Ньютон, а только три: красный, синий и желтый ("New analysis of solar light, indicating three primary colours etc." ("Edinb. Transact.", том XII, 1834). Его громадная экспериментальная опытность дала ему возможность как будто довольно убедительно доказать это положение, но вскоре оно было опровергнуто, в особенности опытами Гельмгольца, неопровержимо доказавшими, что зеленый цвет есть несомненно простой, и что надо принять по меньшей мере пять основных цветов.

Оптические наблюдения привели английского физика, механика, врача, астрона Томаса Юнга (Thomas Young) к мысли, что господствовавшая в то время корпускулярная теория света неверна. Он высказался в пользу волновой теории. Его идеи вызвали возражения английских учёных; под их влиянием Юнг отказался от своего мнения. Однако в трактате по оптике и акустике «Опыты и проблемы по звуку и свету» (1800) учёный вновь пришёл к волновой теории света и впервые рассмотрел проблему суперпозиции волн. Дальнейшим развитием этой проблемы явилось открытие Юнгом принципа интерференции (сам термин был введён Юнгом в 1802 году).

В докладе «Теория света и цветов», прочитанном Юнгом Королевскому обществу в 1801 году (опубликован в 1802 г.), он дал объяснение колец Ньютона на основе интерференции и описал первые опыты по определению длин волн света. В 1803 году в работе «Опыты и исчисления, относящиеся к физической оптике» (опубликована в 1804 г.) он рассмотрел явления дифракции. После классических исследований О. Френеля по интерференции поляризованного света Юнг высказал гипотезу о поперечности световых колебаний. Он разработал также теорию цветного зрения, основанную на предположении о существовании в сетчатой оболочке глаза трёх родов чувствительных волокон, реагирующих на три основных цвета.

Шотландец по происхождению, британский физик, математик и механик Джеймс Максвелл в 1854 году предложению редактора Макмиллана начал писать книгу по оптике (она так и не была закончена).

Однако главным научным интересом Максвелла в это время была работа по теории цветов. Она берёт начало в творчестве Исаака Ньютона, который придерживался идеи о семи основных цветах. Максвелл выступил как продолжатель теории Томаса Юнга, выдвинувшего идею трёх основных цветов и связавшего их с физиологическими процессами в организме человека. Важную информацию содержали свидетельства больных цветовой слепотой, или дальтонизмом. В экспериментах по смешиванию цветов, во многом независимо повторявших опыты Германа Гельмгольца, Максвелл применил «цветовой волчок», диск которого был разделён на окрашенные в разные цвета секторы, а также «цветовой ящик», разработанную им самим оптическую систему, позволявшую смешивать эталонные цвета. Подобные устройства использовались и раньше, однако лишь Максвелл начал получать с их помощью количественные результаты и довольно точно предсказывать возникающие в результате смешения цвета. Так, он продемонстрировал, что смешение синего и жёлтого цветов даёт не зелёный, как часто полагали, а розоватый оттенок.

Опыты Максвелла показали, что белый цвет не может быть получен смешением синего, красного и жёлтого, как полагали Дэвид Брюстер и некоторые другие учёные, а основными цветами являются красный, зелёный и синий. Для графического представления цветов Максвелл, следуя Юнгу, использовал треугольник, точки внутри которого обозначают результат смешения основных цветов, расположенных в вершинах фигуры.

Серьёзный интерес Максвелла к проблеме электричества позволил ему свормулировать волновую теорию света - одну из теорий, объясняющих природу света. Основное положение теории заключается в том, что свет имеет волновую природу, то есть ведёт себя как электромагнитная волна (от длины которой зависит цвет видимого нами света).

Теория подтверждается многими опытами (в частности, опытом Т. Юнга), и данное поведение света (в виде электромагнитной волны) наблюдается в таких физических явлениях, как дисперсия, дифракция и интерференция света. Однако многие другие физические явления, связанные со светом, одной волновой теорией объяснить нельзя.

В июне 1860 года на съезде Британской ассоциации в Оксфорде Максвелл сделал доклад о своих результатах в области теории цветов, подкрепив их экспериментальными демонстрациями с помощью цветового ящика. Позже в том же году Лондонское королевское общество наградило его медалью Румфорда за исследования по смешению цветов и оптике. 17 мая 1861 года на лекции в Королевском институте (Royal Institution ) на тему «О теории трёх основных цветов» Максвелл представил ещё одно убедительное доказательство правильности своей теории - первую в мире цветную фотографию, идея которой возникла у него ещё в 1855 году. Вместе с фотографом Томасом Саттоном (англ. Thomas Sutton ) было получено три негатива цветной ленты на стекле, покрытом фотографической эмульсией (коллодий). Негативы были сняты через зелёный, красный и синий фильтры (растворы солей различных металлов). Освещая затем негативы через те же фильтры, удалось получить цветное изображение. Как было показано спустя почти сто лет сотрудниками фирмы «Кодак», воссоздавшими условия опыта Максвелла, имевшиеся фотоматериалы не позволяли продемонстрировать цветную фотографию и, в частности, получить красное и зелёное изображения. По счастливому совпадению, полученное Максвеллом изображение образовалось в результате смешения совсем иных цветов - волн в синем диапазоне и ближнем ультрафиолете. Тем не менее, в опыте Максвелла содержался верный принцип получения цветной фотографии, использованный спустя многие годы, когда были открыты светочувствительные красители.

Немецкий физик, врач, физиолог и психолог Герман Гельмгольц способствует признанию теории трёхцветового зрения Томаса Юнга.

Теория цветоощущения Гельмгольца (теория цветоощущения Юнга-Гельмгольца, трёхкомпонентная теория цветоощущения) -теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зелёного и синего цветов. Восприятие других цветов обусловлено взаимодействием этих элементов.

В 1959 году теория была экспериментально подтверждена Джорджом Уолдом и Полом Брауном из Гарвардского университета и Эдвардом Мак-Николом и Уильямом Марксом из Университета Джонса Гопкинса, которые обнаружили, что в сетчатке существует три (и только три) типа колбочек, которые чувствительны к свету с длиной волны 430, 530 и 560 нм, т. е. к фиолетовому, зелёному и жёлто-зелёному цвету.

Теория Юнга-Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки и не может объяснить все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

В 1868 году Леонард Гиршман занимался вопросами цветовосприятия, наименьшего угла зрения, ксантопсии при отравлении сантонином (болезнь, при которой человек видит все в желтом свете) и под руководством Гельмгольца защетил диссертацию "Материалы по физиологии цветоощущения".

В 1870 году немецкий физиолог Эвальд Геринг сформулировал так называемую оппонентную гипотезу цветового зрения , известную также как теория обратного процесса или Теория Геринга. Он опирался не только на существование пяти психологических ощущений, а именно ощущение красного, жёлтого, зелёного, синего и белого цветов, но также и на тот факт, что они по-видимому, действуют в противоположных парах, одновременно дополняя и исключая друг друга. Суть её заключается в том, что некоторые «разные» цвета образуют при смешении промежуточные, например зелёный и синий, жёлтый и красный. Другие пары промежуточных цветов образовать не могут, зато дают новые цвета, например красный и зелёный. Красно-зелёного цвета нет, есть жёлтый.

Вместо того, чтобы постулировать три типа реакций колбочек, как в теории Юнга-Гельмгольца, Геринг постулирует наличие трёх типов противоположных пар процессов реакции на чёрный и белый, жёлтый и синий, красный и зелёный цвета. Эти реакции происходят на пострецепторной стадии действия зрительного механизма. Теория Геринга выдвигает на первый план психологические аспекты цветового зрения. Когда три пары реакций идут в направлении диссимиляции, возникают тёплые ощущения белого, жёлтого и красного цветов; когда они протекают ассимилятивно, им сопутствуют холодные ощущения чёрного, синего и голубого цветов. Использование четырёх цветов при синтезе цвета дает больше возможностей, чем использование трёх.

Гуревич и Джеймсон развили теорию противоположных процессов Геринга при цветовом зрении до степени, когда различные явления цветового зрения могут быть количественно объяснены как для наблюдателя с нормальным цветовым зрением, так и аномальным цветовым зрением.

Теория Геринга, развитая Гуревичем и Джеймсоном, известна также как оппонентная теория . В ней сохраняется три системы рецепторов: красно-зеленые, желто-голубые и черно-белые. Предполагается, что каждая система рецепторов функционирует, как антагонистическая пара. Как и в теории Юнга – Гельмгольца, считается, что каждый из рецепторов (или пар рецепторов) чувствителен к свету волн разной длины, но максимально чувствителен к волнам определенной длины.

Герман Людвиг Фердинанд фон Гельмгольц (нем. Hermann von Helmholtz; 31 августа 1821, Потсдам - 8 сентября 1894, Шарлоттенбург) - немецкий физик, физиолог и психолог. В Москве именем Гельмгольца назван НИИ Глазных болезней на Садово-Черногрязской улице.

Родился в семье учителя. Изучал медицину в королевском медицинско-хирургическом институте в Берлине. Обязательной для выпускников этого института была восьмилетняя военная служба, которую Гельмгольц начал в 1843 году в Потсдаме, в качестве военного врача. По рекомендации Александра Гумбольдта ему было разрешено преждевременно оставить военную службу и начать преподавать в 1848 году анатомию в берлинской академии. В 1849 году Гельмгольца приглашают в Кёнигсберг, где он получает звание профессора физиологии и патологии. С 1855 он руководит кафедрой анатомии и физиологии в Бонне, с 1858 - кафедрой физиологии в Гейдельберге. В 1870 году он становится членом Прусской академии наук .

С 1871 года получает звание профессора физики и работает в Берлине. В 1888 году Гельмгольц становится первым президентом Физико-Технического имперского ведомства в Шарлоттенбурге.

В своих первых научных работах при изучении процессов брожения и теплообразования в живых организмах Гельмгольц приходит к формулировке закона сохранения энергии. В его книге "О сохранении силы" (1847) он формулирует закон сохранения энергии строже и детальнее, чем Роберт Майер в 1842 году, и тем самым вносит существенный вклад в признание этого оспариваемого тогда закона. Позже Гельмгольц формулирует законы сохранения энергии в химических процессах и вводит в 1881 году понятие свободной энергии - энергии, которую необходимо сообщить телу для приведения его в термодинамическое равновесие с окружающей средой (F = U - TS, где U есть внутренняя энергия, S - энтропия, T - температура).

С 1842 по 1852 занимается изучением роста нервных волокон. Параллельно Гельмгольц активно изучает физиологию зрения и слуха . Также Гельмгольц создает концепцию "бессознательных умозаключений" , согласно которой актуальное восприятие определяется уже имеющимися у индивида "привычными способами" , за счёт чего сохраняется постоянство видимого мира, при этом существенную роль играют мышечные ощущения и движения. Он разрабатывает математическую теорию для объяснения оттенков звука с помощью обертонов.

Гельмгольц способствует признанию теории трёхцветового зрения Томаса Юнга , изобретает в 1850 году офтальмоскоп для изучения глазного дна, в 1851 году - офтальмометр для определения радиуса кривизны глазной роговицы. Сотрудниками и учениками Гельмгольца были В. Вундт, И. М. Сеченов и Д. А. Лачинов .

Установлением законов поведения вихрей для невязких жидкостей Гельмгольц закладывает основы гидродинамики. Математическими исследованиями таких явлений как атмосферные вихри, грозы и глетчеры Гельмгольц закладывает основы научной метеорологии.

Ряд технических изобретений Гельмгольца носит его имя. Катушка Гельмгольца состоит из двух соосных соленоидов, удалённых на расстояние их радиуса и служит для создания открытого однородного магнитного поля. Резонатор Гельмгольца представляет собой полый шар с узким отверстием и служит для анализа акустических сигналов, а также при строительстве низкочастотных звуковых колонок для усиления низких частот или наоборот используется для подавления нежелательных частот в помещениях.

Много работ посвятил Гельмгольц обоснованию всеобщности принципа наименьшего действия.

Дополнения по работе Гельмгольца в области цвета

Герман фон Гельмгольц (1821-1894) был абсолютным мастером естественных наук своего времени. Он ими владел и понимал. Его первым научным достижением в 1847 году в возрасте 26 лет была формулировка принципов сохранения энергии. Гельмгольц также продемонстрирoвал свой великий практический талант - изобрёл офтальмоскоп и теорию звуковой чувствительности (1862) ; также предложил теорию комбинации тонов и анализ тембра музыкальных инструментов, даже углубляясь в сторону теории гармонии.

Его знаменитый "Учебник физиологической оптики" вышел между 1856 и 1867, который стал всемирно признанным спустя 60 лет в английском переводе. В нём Гельмгольц представляет 3 переменных, которые до сих пор используются для характеристики цвета: тон, насыщенность и яркость . Он первым безошибочно продемонстрировал, что цвета, которые видел Ньютон в спектре отличаются от цветов, наложенных на белую основу с помощью пигментов. Спектральные цвета светят более интенсивно и обладают большей насыщенностью. Они смешиваются аддитивно, в то время как пигменты смешиваются субтрактивно. В любом случае, их сочетания происходят по разным правилам.

Исследования Гельмгольца производились по всегда существующей аналогии между глазом и ухом. Три вышеупомянутые характеристики цветовых ощущений были выбраны с целью соответствовать трём параметрам звука: силе, высоте и тембру. Единственная разница между звуковым явлением и цветовосприятием состоит в том, что глаз не может различать компоненты смешанного цвета , в то время как ухо может легко разделять элементы сложного звука. Как сказал сам Гельмгольц в 1857 году: "Глаз не может разделять комбинированные цвета друг от друга; он видит их как неразрешимое, простое ощущение одного смешанного цвета. Поэтому глазу неважно, какие основные цвета скомбинированны в смешанном цвете: простых или сложных условий вибраций. Нет гармонии в том же значении, как с ухом; нет музыки."

Как и Томас Юнг, Гельмгольц отстаивал трёхцветную систему и продемонстрировал, что каждый цвет может быть составлен как смесь трёх базовых цветов - например, красного, зелёного и сине-фиолетового в качестве таких "простых цветов" . В своём учебнике великий физиолог представляет несколько предложений по расположению этих простых, или чистых, цветов - таким образом охватывающих весь спектр. Он также пытался вмешаться - довольно вскользь, но однако живо сформулированно - между Ньютоном и Максвеллом . Для Гельмгольца треугольник Максвелла слишком мал, чтобы разместить насыщенные спектральные цвета, и круг Ньютона не относится точно к трихроматической теории, которая глубоко проникает в суть вопроса.

Гельмгольц первым располагает спектральные цвета на кривой с целью достичь лучшего понимания их смешивания. Он представляет род силового поля цветов - цветовое поле - с белым посредине , соответствующему ньютоновскому гравитационному центру. Гельмгольц заметил, что для того, чтобы получить белый, ему не нужны были равные части фиолетово-синего и жёлтого, например. Таким образом, он расположил свои цвета таким образом, чтобы те дополнительные цвета, которые требовались в большем количестве, имели больший "рычаг".

Круг Ньютона служит основой для второй конструкции Гельмгольца , в которой два треугольника построены после того, как пропущена та часть, которая пересекается с линией между красным (R) и фиолетовым (V). Это усечение возможно без ущерба только потому, что два рассматриваемых цвета обозначают оба конца спектра (в системе CIE мы вновь встретим эту линию в качестве пурпурного). На рисунке мы видим два треугольника, углы которых определены в каждом случае двумя возможными комбинациями базовых цветов, между которыми колебался Томас Юнг в начале 19 века. Треугольник с фиолетовым, красным и зелёным (VRG) углами таким образом содержит все цвета, которые образуются от смешивания фиолетового, красного и зелёного, то же самое относится к треугольнику с углами красного, жёлтого и циана (RYC). Из рисунка, а также из треугольника Максвелла становится очевидным, что не все цвета могут быть записаны таким образом, и что огромная порция цветового круга остаётся удалённой.

Безусловно, во времена Гельмгольца не было сомнений в правильности трихроматической теории, и это укрепляло веру в то, что должен существовать идеальный треугольник, в котором будет место всем цветам спектра. Со своей оставшейся конструкцией Гельмгольц вернулся к той первой кривой простых цветов, которую он начертил в предположении, что количество света в различных цветах может считаться одинаковым тогда, когда при заданной силе света они кажутся глазу одинаково яркими. На основе чистых базовых цветов красного и фиолетового, без дальнейших пояснений, Гельмгольц сдвигает точку, характеризующую наше восприятие чистого зелёного к точке А, чтобы составить треугольник AVR, который сейчас включает все ощущения цвета.

Впоследствии Гельмгольц приходит к выводу, что, по его мнению, чистый красный и чистый фиолетовый цвета спектра не являются простыми ощущениями базового цвета, и по этой причине нижняя линия должна быть смещена до значений V1 и R1. Цвета, которые могут быть прямо достигнуты посредством света, входящего в нормальный глаз, будут лежать на близкой кривой V1ICGrGR1 (аббревиатура относится к индиго, циану, зелёному и жёлтому). Треугольник иным образом содержит цвета, которые расположены на большем расстоянии от белого, и таким образом более насыщенны, чем все обычные цвета.

Гельмгольц и Максвелл сконцентрировались на выборе наиболее подходящей диаграммы, чтобы объяснить наблюдаемые в отношении цветовых смесей явления. Поскольку трихроматическая теория была действующая и общепринятая, их внимание было направлено на геометрию треугольника, совершенно не принимая во внимание феноменологические аспекты. Вопрос, рассматривающий положение спектральных цветов в каждом треугольнике был окончательно решён в конце 19 века, когда А. Кёниг и К. Дитеричи изучили "основные ощущения в нормальных и аномальных цветовых системах и распределение их интенсивности в спектре" и обозначили направление линии, которую мы построили в треугольнике Максвелла . Это будет научно верным, только если мы представим идеальный треугольник, цвета которого более насыщенны, чем спектральные цвета (Е означает точку равной энергии, и это также может быть интерпретированно как белый цвет). Результаты спектральных смесей иллюстрируют, как Ньютон упростил факты, когда он предположил, что насыщенность смешанных цветов будет меньше, если в порядке следования цветов, их компоненты расположены дальше друг от друга.

Работа Кёнига и Дитеричи появилась в "Журнале о психологии" в 1892 году, и было очевидно, что преимущество цветов было потеряно для современных физиков. Но сила восприятия в итоге будет преобладать; без неё техническая игра с цветами будет слишком загнана в рамки геометрических конструкций, даже если эта игра практикуется такими гениями как Гельмгольц или Максвелл .

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Общий подход Г.Гельмгольца к проблеме восприятия сугубо естественно-научный. Отдавая должное собственно психологическим методам исследования (методу анализа и описаний данныхбсамонаблюдений), он не использовал их в своей работе, «поскольку с этим связана необходимость отхода от методов, основанных на достоверных фактах и общепризнанных и ясных принципах» .

Восприятиями Г.Гельмгольц называл чувственные представления о существовании, форме и положении внешних объектов. Основу восприятий, его чувственный материал составляют ощущения, которые и должны быть основной целью изучения. Методы исследования — методы естественных наук. В качестве одной из общих закономерностей формирования зрительных чувственных образов Г.Гельмгольц выделял первое общее правило: при любых воздействиях на органы чувств, пусть даже необычных, «мы всегда видим объекты в поле зрения так, как видели бы их при обычных условиях, если бы получили то же впечатление » .

Это правило означает, что причиной наших ощущений являются только внешние физические воздействия на соответствующие рецепторы органов чувств. Даже давление на внешний угол глазного яблока (явно неспецифическое для зрения воздействие) приводит к ощущению света, идущего со стороны переносицы, поскольку мы механически раздражаем ту часть сетчатки, на которую в обыч-

ных условиях свет падал бы со стороны переносицы. Сформулированное для зрения, это правило является общим для всех видов чувствительности. Другой пример действия этого же правила Г.Гельмгольц приводил, интерпретируя причину возникновения фантомных болей после ампутации конечности: ощущения от отсутствующей ноги или руки в своей основе имеют раздражение остатков нервных волокон. На основе этого правила Г.Гельмгольц также объяснял причину появления иллюзий восприятия: иллюзии возникают не по причине неправильного функционирования органов чувств, а вследствие неправильной интерпретации содержания чувственных ощущений.

Каким же образом из соответствующих определенным органам ощущений возникают целостные образы восприятия? Ответ Г.Гельмгольца ясен и конкретен: восприятия появляются как результат неосознаваемой психической деятельности и по своей форме напоминают умозаключение. Таким образом, механизмом формирования образа восприятия являются бессознательные умозаключения. С помощью этого психического механизма по результатам возбуждения чувствительных нервов восстанавливаются осо-

бенности внешнего объекта. Бессознательные умозаключения по своей сути не являются произвольными актами, мы не можем никак влиять на их результат — образ восприятия, поэтому Г.Гельмгольц, подчеркивая их непроизвольный характер, писал, что они непреодолимы.

Такой непроизвольный или непреодолимый характер чувственных образов может наводить на мысль о том, что есть строгая и однозначная связь между ощущениями и восприятием некоторого объекта, т.е. в восприятиях нет ничего, чего бы не было в соответствующих ощущениях. Г.Гельмгольц однозначно утверждал: связь ощущений и восприятий «в значительной степени основана на приобретенном опыте, т.е. на психической деятельности». Из этого следовало, что на восприятие большое влияние оказывают

опыт, тренировка, привычка.

Второе общее правило, сформулированное Г.Гельмгольцем, следует из опосредствованности содержания образа восприятия прошлым опытом субъекта. Не все ощущения входят в осознаваемый нами образ восприятия, а только те, которые имеют особое значение для восприятия внешних объектов . В правиле содержится очень важная мысль о том, что образ восприятия — это всегда обобщенный образ внешнего объекта, а не детализированный набор всех ощущений. Из этого правила следует то, что образ восприятия имеет предметный характер, поскольку в нем отражаются существенные свойства объекта. Из него также следует, что далеко не весь субъективный опыт нами осознается, некоторая его часть не входит в образ восприятия.

Таким образом, Г.Гельмгольц достаточно определенно ставил вопрос о двойственности восприятия, о чувственной основе и предметном содержании перцептивного образа. В его работе, пожалуй, впервые была четко сформулирована мысль, что «хотя как будто нет ничего легче осознания своих собственных ощущений, опыт показывает, что для их обнаружения нередко нужен особый талантѕ» . Привлечь свое внимание к ощущениям — особое дело, для этого необходимо отвлечься от предметного содержания чувственного образа, например введя фактор необычности при восприятии чего либо. И Г.Гельмгольц дал прекрасный совет, которым в дальнейшем воспользуются многие психологи-экспериментаторы: чтобы увидеть мир более детально и менее обобщенно, нужно посмотреть на него через линзы, переворачивающие изображение. Например, воспользуемся астрономическим телескопом, направив его на идущих вдали людей. Вместо плавных и слитных движений мы увидим странные скачки и колебания и многие другие особенности индивидуальной походки. «И все это лишь потому, что наблюдение стало необычным» . И наоборот, в перевернутом изображении мы не увидим предметных характеристик зрительного образа — стало «не так легко определить характер походки: легкая она или тяжелая, чинная или грациозная» . Таким образом, в обычных условиях восприятия достаточно трудно определить, что в нашем образе от его чувственной основы — ощущений, а что привнесено опытом.

Характеризуя основные виды образов, Г.Гельмгольц дал определение трем из них, тем самым показав специфику образов восприятия.

Понятие образ в представлении — относится только к впечатлениям, не имеющим текущей чувственной основы, это образ прошлых впечатлений.

Понятие перцептивный образ — относится непосредственно к восприятию, которое сопровождается соответствующими чувственными ощущениями.

Понятие первичный образ — относится к совокупности чувственных впечатлений, формирующихся на основе текущих ощущений и не имеющий в своей основе прежнего опыта.

Таким образом, перцептивный образ образуется в процессе взаимодействия прежнего опыта (большая посылка) и текущих чувственных ощущений (малая посылка), механизм такого взаимодействия аналогизируется с результатом логического вывода — умозаключением, которое по своей форме бессознательное. Именно поэтому, воспринимая окружающую нас реальность, мы не в состоянии осознать, в какой степени содержание наших образов зависит от памяти, а в какой — от их непосредственной чувственной основы.

В заключение остановимся на нескольких мыслях Г.Гельмгольца о природе нашего восприятия, послуживших основой концепций в современной психологии. Подчеркивая роль понимания в

построении образа восприятия в условиях сенсорной неопределенности, Г.Гельмгольц тем самым предвосхитил идеи Дж.Брунера и других психологов о восприятии как процессе проверки перцептивных гипотез.

Из понимания восприятия как синтеза текущих ощущений и прошлого опыта следует представление Г.Гельмгольца об иллюзиях восприятия, причины которых он видит в нарушении нормального восприятия: дефицит опыта, дефицит времени или нарушение нормальных условий наблюдения.

При характеристике процессуального аспекта восприятия Г.Гельмгольц указывал на его активный характер: «Мы не просто пассивно поддаемся потоку впечатлений, а активно наблюдаем, т.е. так настраиваем свои органы чувств, чтобы различать воздействия с максимальной точностью» . Он подчеркивал, что в процессе восприятия мы выбираем такой способ наблюдения, чтобы с его помощью успешно рассматривать и сравнивать. Эти мысли великого ученого подразумевают подход к восприятию как системе перцептивных действий, в которых включены не только афферентные, но и эфферентные звенья.

В понимании вопроса о преимущественной роли врожденных механизмов или приобретаемого субъектом опыта в восприятии Г.Гельмгольц стоял на позиции эмпиризма и критиковал нативистическую точку зрения за излишнее усложнение природы познавательных процессов. На примере формирования пространственных представлений он показал, что гораздо легче и проще предположить, что они формируются в опыте, а не врожденны.

Особое внимание Г.Гельмгольц уделял вопросу о полноте и истинности отражения действительности в перцептивных образах, который решал с позиций практической значимости воспринимаемого предмета в деятельности человека. «Задавать вопрос, верно или неверно мое представление о столе (его форме, твердости, цвете, тяжести и т.д.) само по себе, независимо от возможного его практического использования и совпадает ли оно с реальным предметом или является иллюзией, столь же бессмысленно, как и вопрос о том, какой цвет имеет данный звук — красный, желтый или синий. Представление и его объект принадлежат, очевидно, двум совершенно различным мирам» . Таким образом, он подчеркивал, что истинность чувственного восприятия предмета имеет смысл не сама по себе, а по отношению к практическому использованию этого предмета, а это означает, что в образе восприятия нам открываются те из многочисленных его свойств, которые проявляются в процессе практического взаимодействия человека с миром