Космические программы будущего. Освоение космоса — наше будущее. Корабли Маска всегда возвращаются

Юнона. Межпланетная станция Юнона была запущена в 2011 году и должна выйти на орбиту Юпитера в 2016. Она опишет длинную петлю вокруг газового гиганта, собирая данные о составе атмосферы и магнитном поле, а также выстраивая карту ветров. Юнона — первый аппарат НАСА, не использующий ядро из плутония, а оборудованный солнечными панелями.


Марс-2020. Следующий марсоход, отправляемый на красную планету, во многом будет копией хорошо показавшего себя Кьюриосити. Но его задача будет иной — а именно, поиск любых следов жизни на Марсе. Программа стартует в конце 2020 года.


Космические атомные часы для навигации в дальнем космосе НАСА планирует вывести на орбиту в 2016 году. Это устройство в теории должно работать как GPS для космических кораблей будущего. Космические часы обещают стать в 50 раз точнее, чем любые их аналоги на Земле.


InSight. Один из важных вопросов, связанных с Марсом — существует на нём геологическая активность или нет? Миссия InSight, планируемая на 2016 год, должна ответить на это с помощью марсохода с буром и сейсмометром.


Uranus orbiter. Человечество побывало на Уране и Нептуне лишь однажды, во время миссии Вояджера 2 в 1980 году, но это предполагается исправить в следующем десятилетии. Программа Uranus orbiter задумана как аналог полёта Кассини к Юпитеру. Проблемы состоят в финансировании и нехватке плутония для топлива. Тем не менее, запуск планируется в 2020 году с прибытием аппарата на Уран в 2030.


Europa Clipper. Благодаря миссии Вояджера в 1979 году мы узнали, что подо льдом одного из спутников Юпитера — Европе — находится огромный океан. А там где есть столько жидкой воды, возможна жизнь. Europa Clipper отправится в полёт в 2025 году, оборудованный мощным радаром, способным заглянуть глубоко под лёд Европы.


OSIRIS-REx. Астероид (101955) Бенну — не самый известный космический объект. Но по данным астрономов из Аризонского университета, у него есть вполне реальный шанс врезаться в Землю в районе 2200 года. Аппарат OSIRIS-REx отправится к Бенну в 2019 году, чтобы собрать образцы грунта и вернуться в 2023. Изучение полученных данных может помочь для предотвращении катастрофы в будущем.


LISA — совместный эксперимент НАСА и Европейского космического агентства по изучению гравитационных волн, испускаемых чёрными дырами и пульсарами. Измерения будут проводиться тремя аппаратами, расположенными на вершинах треугольника длиной в 5 млн. км. LISA Pathfinder, первый из трёх спутников, будет отправлен на орбиту в ноябре 2015 года, а полноценный запуск программы запланирован на 2034 год.


BepiColombo. Эта программа получила своё имя в честь итальянского математика XX века Джузеппе Коломбо, разработавшего теорию гравитационного манёвра. BepiColombo — проект космических агентств Европы и Японии, стартует в 2017 году с расчётным прибытием аппарата на орбиту Меркурия в 2024 году.


Космический телескоп имени Джеймса Уэбба должен будет выведен на орбиту в 2018 году, как замена знаменитому Хабблу. Площадью с теннисный корт и размером с четырёхэтажный дом, стоимостью почти в 9 миллиардов долларов, этот телескоп считается главной надеждой современной астрономии.

В основном миссии планируются в трёх направлениях — полёт на Марс в 2020 году, полёт к спутнику Юпитера Европе и, возможно, на орбиту Урана. Но ими список не ограничивается. Давайте взглянем на десять космических программ ближайшего будущего.


Вступительная заставка сериала «Пространство»: схематичное изображение распространения человечества по Солнечной системе

Я подготовил для журнала «Популярная механика» небольшую статью - прогноз развития космонавтики. В материал «5 сценариев будущего» (№ 4, 2016) вошла лишь малая часть статьи - всего один абзац:) Публикую полную версию!

Часть первая: ближайшее будущее — 2020-2030

В начале нового десятилетия человек вернется в окололунное пространство, в ходе осуществления программы NASA «Гибкий путь» (Flexible Path). Новая американская сверхтяжелая ракета Space Launch System (SLS), первый пуск которой запланирован на 2018 год, в этом поможет. Полезная нагрузка — 70 т на первом этапе, до 130 т на последующих. Напомню, у российского «Протона» полезная нагрузка лишь 22 т, у новой «Ангары-А5» — около 24 т. В США также строится государственный космический корабль Orion.

SLS
Источник: NASA

Американские частники обеспечат доставку астронавтов и грузов на МКС. Вначале два корабля — Dragon V2 и CST-100, затем подтянутся и другие (возможно, крылатые — например, Dream Chaser не только в грузовом, но и в пассажирском варианте).

МКС будут эксплуатировать как минимум до 2024 года (возможно и дольше, особенно российский сегмент).

Затем NASA объявит конкурс на новую околоземную базу, в котором победит, вероятно, Bigelow Aerospace с проектом станции с надувными модулями.

Можно прогнозировать к концу 2020-х годов наличие на орбите нескольких частных пилотируемых орбитальных станций различного назначения (от туризма до орбитальной сборки спутников).

С использованием тяжелой ракеты (с грузоподъемностью немного больше 50 т, иногда ее классифицирует как сверхтяжелую) Falcon Heavy и Dragon V2, сделанных в фирме Илона Маска, вполне вероятны туристические полеты на орбиту вокруг Луны — не просто облет, а именно работа на окололунной орбите — ближе к середине 2020-х.

Также ближе к середине-концу 2020-х вероятен конкурс от NASA на создание лунной транспортной инфраструктуры (частные экспедиции и частная лунная база). По недавно опубликованным оценкам частникам потребуется около $10 млрд государственного финансирования, чтобы вернуться на Луну в обозримое (меньше 10 лет) время.

Макет лунной базы частной компании Bigelow Aerospace
Источник: Bigelow Aerospace

Таким образом, «Гибкий путь» ведет NASA на Марс (экспедиция к Фобосу — в начале 30-х, на поверхность Марса — только в 40-х, если не будет мощного ускоряющего импульса от общества), а низкую околоземную орбиту и даже Луну отдадут частному бизнесу.

Кроме того, будут введены в строй новые телескопы, которые позволят найти не только десятки тысяч экзопланет, но и измерить прямым наблюдениям спектры атмосфер ближайших из них. Рискну предположить, что до 30-го года будут получены доказательства существования внеземной жизни (кислородная атмосфера, ИК-сигнатуры растительности и т.д.), и вновь возникнет вопрос о Великом фильтре и парадоксе Ферми.

Состоятся новые полеты зондов к астероидам, газовым гигантам (к спутнику Юпитера Европе, к спутникам Сатурна Титану и Энцеладу, а также к Урану или Нептуну), появятся первые частные межпланетные зонды (Луна, Венера, возможно, и Марс с астероидами).

Разговоры о добычи ресурсов на астроидах до 30-го года так и останутся разговорами. Разве что частники проведут совместно с государственными агентствами небольшие технологические эксперименты.

Начнут массово летать туристические суборбитальные системы — сотни людей побывают на границе космоса.

Китай в начале 20-х построит свою многомодульную орбитальную станцию, а к середине — концу десятилетия осуществит пилотируемый облет Луны. Также запустит множество межпланетных зондов (например, китайский марсоход), но на первое место в космонавтике не выйдет. Хотя и будет находиться на третьем-четвертом — сразу за США и крупными частниками.

Россия в лучшем случае сохранит «прагматичный космос» — связь, навигацию, дистанционное зондирование Земли, а также советское наследие по пилотируемой космонавтике. К российскому сегменту МКС будут летать космонавты на «Союзах», и после выхода США из проекта, вероятно, российский сегмент образует отдельную станцию — намного меньше советского «Мира» и даже меньше китайской станции. Но этого хватит, чтобы сохранить отрасль. Даже по средствам выведения Россия откатится на 3-4 место. Но этого будет хватать, чтобы выполнять задачи народно-хозяйственного значения. В плохом варианте после завершения эксплуатации МКС пилотируемое направление в космонавтике в России будет полностью закрыто, а в наиболее оптимистичном варианте — будет объявлена лунная программа с реальными (а не в середине 2030-х) сроками и четким контролем, что позволит уже в середине 2020-х провести высадки на Луну. Но такой сценарий, увы, маловероятен.

К клубу космических держав присоединятся новые страны, в том числе несколько стран с пилотируемыми программами — Индия, Иран, даже Северная Корея. И это не говоря о частных фирмах: пилотируемых орбитальных частных аппаратов к концу десятилетия будет много — но вряд ли больше десятка.

Множество небольших фирм создаст свои сверхлегкие и легкие ракеты. Причем некоторые из них постепенно будут наращивать полезную нагрузку — и выходить в средние и даже тяжелые классы.

Принципиально новых средств выведения не появится, люди будут летать на ракетах, однако многоразовость первых ступеней или спасение двигателей станут нормой. Вероятно, будут проводиться эксперименты с аэрокосмическими многоразовыми системами, новыми топливами, конструкциями. Возможно, к концу 20-х будет построен и начнет летать одноступенчатый многоразовый носитель.

Часть вторая: превращение человечества в космическую цивилизацию — от 2030 до конца XXI века

На Луне множество баз — как государственных, так и частных. Естественный спутник Земли используется как ресурсная база (энергия, лед, различные составляющие реголита), опытный и научный полигон, где проверяются космические технологии для дальних полетов, в затененных кратерах размещены инфракрасные телескопы, а на обратной стороне — радиотелескопы.

Луна включена в земную экономику — энергия лунных электростанций (поля солнечных батарей и солнечных концентраторов построенных из местных ресурсов) передается как на космические буксиры в околоземном пространстве, так и на Землю. Решена задача доставки вещества с поверхности Луны на низкую околоземную орбиту (торможение в атмосфере и захват). Лунный водород и кислород используется в окололунных и околоземных заправочных станциях. Конечно, все это только первые эксперименты, но уже на них частные фирмы делают состояния. Гелий-3 пока добывается только в небольших количествах для экспериментов связанных с термоядерными ракетными двигателями.

На Марсе — научная станция-колония. Совместный проект «частников» (в основном — Илона Маска) и государств (в основном — США). Люди имеют возможность вернуться на Землю, однако многие улетают в новый мир навсегда. Первые эксперименты по возможному терраформированию планеты. На Фобосе — перевалочная база для тяжелых межпланетных кораблей.

Марсианская база
Источник: Bryan Versteeg

По всей Солнечной системе множество зондов, цель которых — подготовка к освоению, поиск ресурсов. Полеты скоростных аппаратов с ядерными энергодвигательными установками в пояс Койпера к недавно обнаруженному газовому гиганту — девятой планете. Роверы на Меркурии, аэростатные, плавающие, летающие зонды на Венере, изучение спутников планет-гигантов (например, подводные лодки в морях Титана).

Распределенные сети космических телескопов позволяют фиксировать экзопланеты прямым наблюдением и даже составить карты (очень низкого разрешения) планет у ближайших звезд. В фокус гравитационной линзы Солнца отправлены большие автоматические обсерватории.

Развернуты и работают одноступенчатые многоразовые средства выведения, на Луне активно используются не ракетные способы доставки грузов — механические и электромагнитные катапульты.

Летает множество туристических космических станций. Есть несколько станций — научных институтов с искусственной гравитацией (станция-тор).

Тяжелые пилотируемые межпланетные корабли не только достигли Марса и обеспечили развертывание на Красной планете базы-колонии, но и активно исследуют пояс астероидов. Множество экспедиций отправлено к околоземным астероидам, осуществлена экспедиция на орбиту Венеры. Началась подготовка к развертыванию исследовательских баз у планет-гигантов — Юпитера и Сатурна. Возможно, планеты-гиганты станут целью первого испытательного полета межпланетного корабля с термоядерным двигателем с магнитным удержанием плазмы.

Запуск метеозонда на Титане

В этой статье будет затронута такая тема, как космические корабли будущего: фото, описание и технические характеристики. Прежде чем перейти непосредственно к теме, предлагаем читателю короткий экскурс в историю, который поможет оценить современное состояние космической отрасли.

Космос в период холодной войны был одной из арен, на которых велось противостояние между США и СССР. Главным стимулом развития космической отрасли в те годы было именно геополитическое противостояние сверхдержав. Огромные ресурсы были брошены на программы освоения космоса. Например, на реализацию проекта под названием "Аполлон", основная цель которого - высадка на поверхность Луны человека, правительство Соединенных Штатов потратило примерно 25 млрд долларов. Эта сумма для 1970-х годов была просто гигантской. Бюджету Советского Союза лунная программа, которой осуществиться так и не было суждено, обошлась в 2,5 млрд рублей. 16 млн рублей стоила разработка космического корабля "Буран". При этом ему было суждено совершить только один космический полет.

Программа "Спейс шаттл"

Его американскому аналогу повезло намного больше. "Спейс шаттл" совершил 135 запусков. Однако "шаттл" этот оказался не вечен. Последний его запуск состоялся 8 июля 2011 года. Американцы за время осуществления программы выпустили 6 "шаттлов". Один из них являлся прототипом, не осуществлявшим никогда космических полетов. 2 других и вовсе потерпели катастрофу.

Программу "Спейс шаттл" с экономической точки зрения вряд ли можно считать успешной. Гораздо более экономичными оказались корабли одноразового использования. К тому же вызвала сомнения безопасность полетов на "шаттлах". В результате двух катастроф, произошедших в период их эксплуатации, жертвами стали 14 астронавтов. Однако причина таких неоднозначных итогов путешествий заключается не в техническом несовершенстве кораблей, а в сложности самой концепции предназначенных для многоразового использования космических аппаратов.

Значение космических аппаратов "Союз" сегодня

В итоге "Союз", космические корабли одноразового использования из России, которые были разработаны еще в 1960-е годы, стали единственными аппаратами, осуществляющими сегодня пилотируемые полеты на МКС. Следует отметить, что это не означает их превосходства над "Спейс шаттлом". Они обладают рядом существенных недостатков. Например, грузоподъемность их ограничена. Также использование такого рода аппаратов приводит к тому, что накапливается орбитальный мусор, который остается после их эксплуатации. Очень скоро космические полеты на "Союзе" станут историей. На сегодняшний день нет реальных альтернатив. Все еще находятся в стадии разработки космические корабли будущего, фото которых представлены в этой статье. Заложенный в концепции многоразового использования кораблей огромный потенциал зачастую даже в наше время остается технически нереализуемым.

Заявление Барака Обамы

Барак Обама в июле 2011 года заявил о том, что главной целью астронавтов из США на ближайшие десятилетия является полет на Марс. Космическая программа "Созвездие" стала одной из программ, которые NASA осуществляет в рамках полета на Марс и освоения Луны. Для этих целей, конечно, нужны новые космические корабли будущего. Как же обстоит дело с их разработкой?

Космический корабль "Орион"

Основные надежды возлагаются на создание "Ориона" - нового космического корабля, а также ракет-носителей "Арес-5" и "Арес-1" и лунного модуля "Альтаир". В 2010 году правительство Соединенных Штатов решило свернуть программу "Созвездие", но, несмотря на это, NASA все-таки получило возможность дальнейшей разработки "Ориона". В ближайшем будущем планируется осуществить первый испытательный беспилотный полет. Предполагается, что аппарат во время этого полета удалится от Земли на 6 тыс. км. Это примерно в 15 раз больше, чем расстояние, на котором находится от нашей планеты МКС. Корабль после тестового полета возьмет курс на Землю. Новый аппарат в атмосферу может входить, развивая скорость 32 тыс. км/ч. "Орион" по данному показателю превосходит на 1,5 тыс. км/ч легендарный "Аполло". На 2021 год намечено осуществление первого пилотируемого запуска.

В роли ракет-носителей этого корабля, согласно планам NASA, будут выступать "Атлас-5" и "Дельта-4". Было решено отказаться от разработки "Ареса". Для освоения дальнего космоса, кроме того, американцы проектируют SLS - новую ракету-носитель.

Концепция "Ориона"

"Орион" является кораблем частично многоразового использования. Он находится концептуально ближе к "Союзу", чем к "Шаттлу". Большинство космических кораблей будущего являются частично многоразовыми. Данная концепция предполагает то, что жидкую капсулу корабля после посадки на Землю можно будет использовать повторно. Это позволит совместить экономичность эксплуатации "Аполло" и "Союза" с функциональной практичностью многоразовых кораблей. Это решение является переходным этапом. По всей видимости, в далекой перспективе станут многоразовыми все космические корабли будущего. Такова тенденция развития космической отрасли. Поэтому можно сказать, что советский "Буран" - прототип космического корабля будущего, как и американский "Спейс шаттл". Они сильно опередили свое время.

CST-100

Слова "предусмотрительность" и "практичность", похоже, характеризуют американцев как нельзя лучше. Правительство этой страны приняло решение не взваливать на плечи "Ориона" все космические амбиции. Сегодня по заказу NASA сразу несколько частных фирм разрабатывают свои космические корабли будущего, которые призваны заменить аппараты, используемые сегодня. Компания Boeing, например, разрабатывает CST-100 - частично многоразовый и пилотируемый корабль. Он предназначен для коротких путешествий на орбиту Земли. Основной задачей его будет доставка грузов и экипажа на МКС.

Планируемые запуски CST-100

До семи человек может составлять экипаж корабля. Во время разработки CST-100 было уделено особое внимание комфорту астронавтов. Было существенно увеличено жилое пространство его по сравнению с кораблями прошлого поколения. Вероятно, запуск CST-100 будет производиться с использованием ракет-носителей "Фалькон", "Дельта" или "Атлас". "Атлас-5" при этом является самым подходящим вариантом. С помощью воздушных подушек и парашюта будет осуществляться посадка корабля. Согласно планам фирмы Boeing, CST-100 в 2015 году ждет целая серия испытательных запусков. Беспилотными будут первые 2 полета. Основная задача их - вывести на орбиту аппарат и протестировать системы безопасности. Пилотируемая стыковка с МКС планируется во время третьего полета. CST-100 в случае успешных испытаний очень скоро придет на замену "Прогрессу" и "Союзу" - российским кораблям, монопольно осуществляющим сегодня пилотируемые полеты на МКС.

Разработка "Дракона"

Другим частным кораблем, призванным выполнять доставку экипажа и грузов на МКС, будет разработанный фирмой SpaceX аппарат. Это "Дракон" - моноблочный корабль, частично многоразовый. Планируется построить 3 модификации данного аппарата: автономную, грузовую и пилотируемую. Как и у CST-100, экипаж может составлять до семи человек. Корабль в грузовой модификации может брать на борт 4 человека и 2,5 тонны груза.

"Дракон" хотят в будущем использовать также для полета на Марс. Для этого создается специальная версия этого корабля под названием "Рэд драгон". Беспилотный полет этого аппарата на Красную планету состоится, согласно планам космического руководства США, в 2018 году.

Конструктивная особенность "Дракона" и первые полеты

Многоразовость является одной из особенностей "Дракона". Топливные баки и часть энергетических систем после полета будет спускаться вместе с жилой капсулой на Землю. Затем их можно использовать вновь для космических полетов. Данная конструктивная особенность выгодно отличает "Дракон" от большинства других перспективных разработок. "Дракон" и CST-100 в ближайшем будущем будут дополнять друг друга и служить в качестве "подстраховки". Если один из этих типов корабля не сможет по какой-то причине выполнить задачи, поставленные перед ним, то часть его работы возьмет на себя другой.

Впервые "Дракон" был выведен на орбиту в 2010 году. Успешно завершился испытательный беспилотный полет. А в 2012 году, 25 мая, этот аппарат пристыковался к МКС. К тому моменту на корабле системы автоматической стыковки не было предусмотрено, и пришлось для ее осуществления воспользоваться манипулятором космической станции.

"Дрим Чейзер"

"Дрим Чейзер" - еще одно название космических кораблей будущего. Нельзя не упомянуть этот проект компании SpaceDev. Также в его разработке приняли участие 12 партнеров компании, 3 университета США и 7 центров NASA. Данный корабль существенно отличается от других космических разработок. Он напоминает внешне "Спейс шаттл" в миниатюре и может осуществлять посадку так же, как и обычный самолет. Основные его задачи схожи с задачами, стоящими перед CST-100 и "Драконом". Аппарат предназначен для доставки экипажа и грузов на околоземную орбиту, а выводиться туда он будет с помощью "Атласа-5".

А что у нас?

А чем же может ответить Россия? Каковы российские космические корабли будущего? РКК "Энергия" в 2000 году начала проектирование космического комплекса "Клипер", являющегося многоцелевым. Этот космический аппарат многоразовый, напоминающий чем-то внешне "шаттл", уменьшенный в размерах. Он предназначен для решения различных задач, таких как доставка груза, космический туризм, эвакуация экипажа станции, полеты на другие планеты. Определенные надежды возлагались на этот проект.

Предполагалось, что космические корабли будущего России будут вскоре сконструированы. Однако из-за отсутствия финансирования пришлось с этими надеждами распрощаться. Проект закрыли в 2006 году. Технологии, которые были разработаны за эти годы, планируется использовать для проектирования ППТС, известной также как проект "Русь".

Особенности ППТС

Лучшие космические корабли будущего, как полагают специалисты из России, - это ППТС. Именно этой космической системе суждено будет стать новым поколением космических аппаратов. Она будет способна заменить "Прогрессы" и "Союзы", стремительно устаревающие. Разработкой этого корабля, как в прошлом "Клипера", занимается сегодня РКК "Энергия". ПТК НК станет базовой модификацией этого комплекса. Основная задача его, опять же, будет заключаться в доставке экипажа и грузов на МКС. Однако в отдаленной перспективе находится разработка модификаций, которые будут способны летать на Луну, а также выполнять различные исследовательские миссии, продолжительные по времени.

Сам корабль должен стать частично многоразовым. Будет повторно использована жидкая капсула после совершения посадки, а вот двигательно-агрегатный отсек - не будет. Любопытной особенностью данного корабля является возможность его посадки без парашюта. Реактивная система будет применяться для торможения и приземления на земную поверхность.

Новый космодром

В отличие от "Союзов", которые взлетают с расположенного в Казахстане космодрома "Байконур", новые корабли планируется запускать со строящегося в Амурской области космодрома "Восточный". 6 человек составит экипаж. Аппарат может также брать груз весом до 500 кг. Корабль в беспилотной версии может доставлять грузы до 2-х тонн весом.

Проблемы, стоящие перед разработчиками ППТС

Одной из основных проблем, стоящих перед проектом ППТС, является отсутствие ракет-носителей с необходимыми характеристиками. Основные технические моменты космического аппарата сегодня проработаны, однако в весьма затруднительное положение ставит его разработчиков отсутствие ракеты-носителя. Предполагается, что она будет близка по характеристикам к "Ангаре", которая была разработана еще в 90-е годы.

Другой серьезной проблемой, как ни странно, является цель проектирования ППТС. Едва ли Россия сегодня может позволить себе осуществление амбициозных программ по освоению Марса и Луны, аналогичных тем, которые претворяют в жизнь Соединенные Штаты. Даже если космический комплекс будет успешно разработан, скорее всего, единственной его задачей останется доставка экипажа и грузов на МКС. До 2018 года отложено начало испытаний ППТС. Перспективные аппараты из США к этому времени, скорее всего, уже возьмут на себя функции, выполняемые сегодня российскими кораблями "Прогресс" и "Союз".

Туманные перспективы космических полетов

Фактом является то, что мир сегодня остается лишенным романтики космических полетов. Речь, конечно, идет не о космическом туризме и запуске спутников. Можно не беспокоиться за эти сферы космонавтики. Полеты на МКС очень важны для космической отрасли, однако срок пребывания на орбите самой МКС ограничен. В 2020 году планируется ликвидировать эту станцию. А пилотируемые космические корабли будущего являются составной частью конкретной программы. Нельзя разрабатывать новый аппарат в случае отсутствия представлений о стоящих перед ним задачах. Не только для доставки экипажей и грузов МКС проектируются новые космические корабли будущего в США, но также для полетов на Луну и Марс. Однако данные задачи от повседневных земных забот настолько далеки, что нам вряд ли стоит ожидать в ближайшие годы значительных прорывов в сфере космонавтики. Космические угрозы остаются фантастикой, поэтому нет смысла конструировать боевые космические корабли будущего. И, конечно, у держав Земли множество других забот, кроме борьбы друг с другом за место на орбите и других планетах. Строительство таких аппаратов, как военные космические корабли будущего, поэтому также нецелесообразно.


После полета Гагарина люди всерьез думали, что всего через несколько десятилетий Человечество покорит космическое пространство, колонизирует Луну, Марс и, возможно, более отдаленные планеты. Однако прогнозы эти были излишне оптимистичными. Но сейчас сразу несколько государств и частных компаний всерьез работают над тем, чтобы оживить утратившую накал космическую гонку. В нашем сегодняшнем обзоре мы вам расскажет про несколько самых амбициозных подобных проектов современности.



Американский мультимиллионер Деннис Тито, ставший в свое время, первым космическим туристом, создал программу Inspiration Mars, целью которой является запуск частной миссии на Марс в 2018 году. Почему именно в 2018? Дело в том, что при старте корабля 5 января этого года, появляется уникальная возможность осуществить полет по минимальной траектории. В следующий раз такой шанс выпадет лишь через тринадцать лет.




Американское агентство передовых разработок DARPA планирует запустить масштабную космическую программу, разработанную на сто и более лет. Главной ее целью является желание исследовать пространство за пределами Солнечной Системы на предмет потенциальной его колонизации Человечеством. При этом само DARPA планирует потратить на это лишь 100 миллионов долларов, основная же финансовая нагрузка ляжет на плечи частных инвесторов. Подобный режим сотрудничества в агентстве сравнивают с исследовательскими экспедициями 16 века, во время которых их руководители, действуя под флагами разных стран, в итоге получали большую часть доходов от присоединенных к Короне территорий и статус королевского наместника в них.




Известный режиссер Джеймс Кэмерон основал фонд, который займется проблемой использования астероидов в полезных для Человечества целях. Ведь эти космические объекты полны редкоземельных элементов. А той же платины в 500-метровом астероиде может оказаться больше, чем было добыто на Земле за всю ее историю. Так почему бы не попытаться достать эти ресурсы? К начинанию Кэмерона присоединились Google, The Perot Group, Hillwood и некоторые другие компании.




Япония планирует в самом ближайшем будущем построить т.н. «солнечный парус» ESAIL, который, благодаря давлению солнечных лучей на его поверхность, будет двигаться по космическому пространству со скоростью 19 километров в секунду. А это сделает его самым быстрым рукотворным объектом в Солнечной Системе.




В апреле 2015 года Российское Космическое Агентство объявило о своих амбициозных планах, подразумевающими создание обитаемых баз на Луне и Марсе уже к 2050 году. При этом все значимые спуски в ее рамках будут осуществлены не с Байконура, с нового космодрома Восточный, который сейчас строится на Дальнем Востоке.




Предвещая и дальнейшее развитие частных полетов на орбиту Земли, российская компания Орбитальные Технологии совместно с РКК Энергия запустили проект с названием Commercial Space Station по созданию первого отеля для космических туристов. Ожидается, что первый его модуль будет отправлен в Космос уже в 2015-2016 годах.




Одним из самых перспективных направлений по освоению Космоса считается разработка идеи космического лифта, который мог бы поднимать по тросу объекты на орбиту Земли. Создать первый подобный транспорт обещает к 2050 году японская компания Obayashi Corporation. Лифт этот сможет двигаться со скоростью 200 километров в час и нести в себе одновременно 30 человек.




На орбите Земли находится огромное количество старых, отработавших свое спутников, превратившихся в так называемый «космический мусор». И это при том, что запуск одного только килограмма груза туда составляет в среднем 30 тысяч долларов. Вот по этой причине агентство DARPA и решило начать разработку космической станции Phoenix, которая займется отловом старых спутников и сбором из них новых, функционирующих.


Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.