Представьте в стандартном виде многочлен 8p. Учимся приводить многочлены к стандартному виду. Стандартный вид многочлена

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

Начнём с того, что же, собственно, понимать под словом "множество". На интуитивном уровне под множеством понимают некую совокупность объектов, именуемых элементами множества . Например, можно говорить о множестве груш на столе, множестве букв в слове "множество" и так далее. Георг Кантор (немецкий математик, основатель современной теории множеств) писал, что под "множеством я понимаю вообще всё то многое, которое возможно мыслить как единое, т.е. такую совокупность определённых элементов, которая посредством одного закона может быть соединена в одно целое". Некоторое время понятие множества, введённое Кантором, полагалось довольно очевидным и не требующим дополнительных пояснений. Казалось, что появление работ Больцано, а затем и Кантора в конце 19 - начале 20 века, положит конец многим вопросам (например, окончательно разрешит апории Зенона, разрешит проблему бесконечности и т.д.) и станет началом новой математики. Гениальный немецкий математик Давид Гильберт отмечал, что "Никто не изгонит нас из рая, созданного Кантором".

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец "канторовскому раю". Одна из формулировок парадокса Рассела, известная под названием "парадокс брадобрея" звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, - а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей - вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали "наивной". Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая "аксиома выбора". Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

$$\{а, е, ё, и, о, у, ы, э, ю, я \} $$

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

$$\{9,10,11,12,13,14 \} $$

Множество может вообще не содержать ни одного элемента. В этом случае его именуют пустым множеством и обозначают как $\varnothing$.

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

$$A=\{0, 5, 6, -9 \},\; B=\{\Delta, +, -5, 0\}.$$

Есть и устоявшиеся обозначения определённых множеств. Например, множество натуральных чисел принято обозначать буквой $N$; множество целых чисел - буквой $Z$; множество рациональных чисел - буквой $Q$; множество всех действительных чисел - буквой $R$. Есть и иные устоявшиеся обозначения, но к ним мы станем обращаться по мере необходимости.

Множество, которое содержит конечное количество элементов, именуют конечным множеством . Если множество содержит бесконечное количество элементов, его называют бесконечным .

Например, указанное выше множество $A=\{0, 5, 6, -9 \}$ - конечное множество, ибо содержит 4 элемента (т.е. конечное число элементов). Множество натуральных чисел $N$ является бесконечным. Вообще говоря, мы не всегда можем сразу с уверенностью сказать, бесконечно некое множество или нет. Например, пусть $F$ - множество простых чисел.

Что такое простое число : показать\скрыть

Простыми числами именуют такие натуральные числа большие 1, которые делятся лишь на 1 или на самое себя. Например, 2, 3, 5, 7 и так далее. Для сравнения: число 12 не является простым числом, так как оно делится не только на 12 и 1, а ещё и на иные числа (например, на 3). Число 12 является составным.

Возникает вопрос: бесконечно множество $F$ или нет? Существует ли наибольшее простое число? Для ответа на этот вопрос понадобилась целая теорема, доказанная Эвклидом, о том, что множество простых чисел - бесконечно.

Под мощностью множества для конечных множеств понимают количество элементов данного множества. Мощность множества $A$ обозначается как $|A|$.

Например, так как конечное множество $A=\{0, 5, 6, -9 \}$ содержит 4 элемента, то мощность множества $A$ равна 4, т.е. $|A|=4$.

Если нам известно, что некий объект $a$ принадлежит множеству $A$, то записывают это так: $a\in A$. Например, для вышеуказанного множества $A$ можно записать, что $5\in A$, $-9\in A$. Если же объект $a$ не принадлежит множеству $A$, то обозначается это следующим образом: $a\notin A$. Например, $19\notin A$. Кстати, сказать, элементами множеств могут быть и иные множества, например:

$$ M=\{-9,1,0, \{ a, g\}, \varnothing \} $$

Элементами множества $M$ являются числа -9, 1, 0, а также множество $ \{ a,\; g\}$ и пустое множество $\varnothing$. Вообще, для упрощения восприятия множество можно представлять как портфель. Пустое множество - пустой портфель. Эта аналогия пригодится чуть далее.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

Множество $A$ называют подмножеством множества $B$, если все элементы множества $A$ являются также элементами множества $B$. Обозначение: $A\subseteq B$.

Например, рассмотрим множества $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$. Каждый элемент множества $K$ (т.е. -9 и 5) является также элементом множества $T$. Следовательно, множество $K$ есть подмножество множества $T$, т.е. $K\subseteq T$.

Так как все элементы любого множества $A$ принадлежат самому множеству $A$, то множество $A$ является подмножеством самого множества $A$. Пустое множество $\varnothing$ является подможеством любого множества. Т.е. для произвольного множества $A$ верно следующее:

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение - универсальное множество.

Универсальное множество (универсум) $U$ обладает тем свойством, что все иные множества, рассматриваемые в данной задаче, являются его подмножествами.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

$$ Vasilij=\{MTC, Life \} $$

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Множества $A$ и $B$ называются равными , если они состоят из одних и тех же элементов. Иными словами, если каждый элемент множества $A$ является также элементом множества $B$, и каждый элемент множества $B$ является также элементом множества $A$, то $A=B$.

Определение равенства множеств можно записать и по-иному: если $A\subseteq B$ и $B\subseteq A$, то $A=B$.

Рассмотрим пару множеств: первое будет $\{\Delta, k \}$, а второе - $\{k, \Delta\}$. Каждый элемент первого множества (т.е. $\Delta$ и $k$) является также элементом второго множества. Каждый элемент второго множества (т.е. $k$ и $\Delta$) является также элементом второго множества. Вывод: $\{\Delta, k \}=\{k, \Delta\}$. Как видите, порядок записи элементов в множестве роли не играет.

Рассмотрим ещё пару множеств: $X=\{k, \Delta, k, k,k \}$ и $Y=\{\Delta, k \}$. Каждый элемент множества $X$ является также элементом множества $Y$; каждый элемент множества $Y$ является также элементом множества $X$. Следовательно, $\{k, \Delta, k, k, k \}=\{\Delta, k \}$. С учётом подобных равенств в теории множеств принято одинаковые элементы не повторять в записи дважды. Например, множество цифр числа 1111111555559999 будет таким: $\{1,5,9\}$. Есть, конечно, исключения: так называемые мультимножества . В записи мультимножеств элементы могут повторяться, однако в классической теории множеств повторения элементов не допускаются.

Используя понятие равенства множеств, можно классифицировать подмножества.

Если $A\subseteq B$, при этом $A\neq B$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$.

Если же некое подмножество множества $A$ совпадает с самим множеством $A$, то это подмножество называют несобственным . Иными словами, множество $A$ является несобственным подмножеством самого множества $A$.

Например, для рассмотренных выше множеств $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$ имеем: $K\subseteq T$, при этом $K\neq T$. Следовательно, множество $K$ является собственным подмножеством множества $T$, что записывается как $K\subset T$. Можно сказать и так: множество $K$ строго включено в множество $T$. Запись $K\subset T$ более конкретна, нежели $K\subseteq T$. Дело в том, что записывая $K\subset T$ мы гарантируем, что $K\neq T$. В то время как запись $K\subseteq T$ не исключает случая равенства $K=T$.

Примечание относительно терминологии : показать\скрыть

Вообще говоря, тут есть некая путаница в терминологии. Приведённое выше определение несобственных множеств принято в американской и части отечественной литературы. Однако в другой части отечественной литературы есть несколько иная трактовка понятия несобственных множеств.

Если $A\subseteq B$, при этом $A\neq B$ и $A\neq \varnothing$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$. Множества $B$ и $\varnothing$ именуются несобственными подмножествми множества $B$.

Иными словами, пустое множество в такой трактовке исключается из собственных подмножеств и переходит в разряд несобственных. Выбор терминологии - дело вкуса.

Множество всех подмножеств некоего множества $A$ называют булеаном или степенью множества $A$. Обозначается булеан как $P(A)$ или $2^A$.

Пусть множество $A$ содержит $n$ элементов. Булеан множества $A$ содержит $2^n$ элементов, т.е.

$$ \left| P(A) \right|=2^{n},\;\; n=|A|. $$

Рассмотрим пару примеров на использование введённых выше понятий.

Пример №1

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

  1. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \} $;
  2. $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $;
  3. $\{-3,5, 9 \}\in \{-3, 9, 8, 5, 4, 6 \} $;
  4. $\varnothing \subseteq \varnothing$;
  5. $\varnothing=\{\varnothing \}$;
  6. $\varnothing \in \varnothing$;
  7. $A=\{9, -5, 8 \{7, 6 \} \};\; |A|=5$.
  1. Нам заданы два множества: $\{-3,5, 9 \}$ и $\{-3, 9, 8, 5, 4, 6 \}$. Каждый элемент первого множества является также элементом второго множества. Следовательно, первое множество есть подмножество второго, т.е. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. Утверждение первого пункта - верное.
  2. В первом пункте мы выяснили, что $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. При этом данные множества не равны между собой, т.е. $\{-3,5, 9 \}\neq \{-3, 9, 8, 5, 4, 6 \}$. Значит, множество $\{-3,5, 9 \}$ является собственным (в иной терминологии строгим) подмножеством множества $\{-3, 9, 8, 5, 4, 6 \}$. Этот факт записывается как $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $. Итак, утверждение второго пункта истинно.
  3. Множество $\{-3,5, 9 \}$ не является элементом множества $\{-3, 9, 8, 5, 4, 6 \}$. Утверждение третьего пункта ложно. Для сравнения: утверждение $\{-3,5, 9 \}\in \{9, 8, 5, 4, \{-3,5,9\}, 6 \}$ истинно.
  4. Пустое множество является подможеством любого множества. Поэтому утверждение $\varnothing \subseteq \varnothing$ истинно.
  5. Утверждение ложно. Множество $\varnothing$ не содержит элементов, а множество $\{\varnothing \}$ содержит один элемент, посему равенство $\varnothing=\{\varnothing \}$ неверно. Чтобы это было нагляднее, можно обратиться к той аналогии, что я описал выше. Множество - это портфель. Пустое множество $\varnothing$ - пустой портфель. Множество $\{\varnothing \}$ - портфель, внутри которого лежит пустой портфель. Естественно, что пустой портфель и непустой портфель, внутри которого нечто есть - разные портфели:)
  6. Пустое множество не содержит элементов. Ни единого. Поэтому утверждение $\varnothing \in \varnothing$ ложно. Для сравнения: утверждение $\varnothing\in\{\varnothing \}$ истинно.
  7. Множество $A$ содержит 4 элемента, а именно: 9, -5, 8 и $\{7, 6 \}$. Поэтому мощность множества $A$ равна 4, т.е. $|A|=4$. Следовательно, утверждение о том, что $|A|=5$ - ложно.

Ответ : Утверждения в пунктах №1, №2, №4 - истинны.

Пример №2

Записать булеан множества $A=\{-5,10,9\}$.

Множество $A$ содержит 3 элемента. Иными словами: мощность множества $A$ равна 3, $|A|=3$. Следовательно, множество $A$ имеет $2^3=8$ подмножеств, т.е. булеан множества $A$ будет состоять из восьми элементов. Перечислим все подмножества множества $A$. Напомню, что пустое множество $\varnothing$ является подмножеством любого множества. Итак, подмножества таковы:

$$ \varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} $$

Напомню, что подмножество $\{-5, 10, 9 \}$ является несобственным, так как совпадает с множеством $A$. Все остальные подмножества - собственные. Все записанные выше подмножества являются элементами булеана множества $A$. Итак:

$$ P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\} $$

Булеан найден, остаётся лишь записать ответ.

Ответ : $P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\}$.

Способы задания множеств.

Первый способ - это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$ \{1,2,3\} $$

Часто в литературе можно встретить обозначения такого характера: $T=\{0,2,4,6,8, 10, \ldots \}$. Здесь множество задаётся не перечислением элементов, как кажется на первый взгляд. Перечислить все чётные неотрицательные числа, которые и составляют множество $T$, невозможно, ибо этих чисел бесконечно много. Запись вида $T=\{0,2,4,6,8, 10, \ldots \}$ допускается только тогда, когда не вызывает разночтений.

Второй способ - задать множество с помощью так называемого характеристического условия (характеристического предиката) $P(x)$. В этом случае множество записывается в таком виде:

$$\{x| P(x)\}$$

Запись $\{x| P(x)\}$ читается так: "множество всех элементов $x$, для которых высказывание $P(x)$ истинно". Что именно значит словосочетание "характеристическое условие" проще пояснить на примере. Рассмотрим такое высказывание:

$$P(x)="x\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Подставим в это высказывание вместо $x$ число 27. Мы получим:

$$P(27)="27\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это истинное высказывание, так как 27 действительно является натуральным числом, последняя цифра которого равна 7. Подставим в это высказывание число $\frac{2}{5}$:

$$P\left(\frac{2}{5}\right)="\frac{2}{5}\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это высказывание ложно, так как $\frac{2}{5}$ не является натуральным числом. Итак, для некоторых объектов $x$ высказывание $P(x)$ может быть ложно, для некоторых - истинно (а для некоторых вообще не определено). Нас будут интересовать лишь те объекты, для которых высказывание $P(x)$ будет истинно. Именно эти объекты и образуют множество, заданное с помощью характеристического условия $P(x)$ (см. пример №3).

Третий способ - задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

Пример №3

Записать множество $A=\{x| x\in Z \wedge x^2 < 10\}$ перечислением элементов.

Множество $A$ задано с помощью характеристического условия. Характеристическое условие в данном случае выражено записью "$x\in Z \wedge x^2 < 10$" (знак "$\wedge$" означает "и"). Расшифровывается эта запись так: "$x$ - целое число, и $x^2 < 10$". Иными словами, в множество $A$ должны входить лишь целые числа, квадрат которых меньше 10. Таких чисел всего 7, т.е.

$$ A=\{0,-1,1,-2,2,-3,3\} $$

Множество $A$ теперь задано с помощью перечисления элементов.

Ответ : $A=\{0,-1,1,-2,2,-3,3\}$.

Пример №4

Описать элементы множества $M$, которое задано такой порождающей процедурой:

  1. $3\in M$;
  2. Если элемент $x\in M$, то $3x\in M$.
  3. Множество $M$ - является подмножеством любого множества $A$, удовлетворяющего условиям №1 и №2.

Давайте пока оставим в покое условие №3 и посмотрим, какие элементы входят в множество $M$. Число 3 туда входит согласно первому пункту. Так как $3\in M$, то согласно пункту №2 имеем: $3\cdot 3\in M$, т.е. $9\in M$. Так как $9\in M$, то согласно пункту №2 получим: $3\cdot 9\in M$, т.е. $27\in M$. Так как $27\in M$, то по тому же пункту №2 имеем: $81\in M$. Короче говоря, построенное множество 3, 9, 27, 81 и так далее - это натуральные степени числа 3.

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Итак, кажется, что искомое множество задано. И выглядит оно так: $\{3,9,27,81,\ldots \}$. Однако действительно ли условия №1 и №2 определяют только это множество?

Рассмотрим множество всех натуральных чисел, т.е. $N$. Число 3 - натуральное, посему $3\in N$. Вывод: множество $N$ удовлетворяет пункту №1. Далее, для любого натурального числа $x$ множество $N$ содержит также и число $3x$. Например, 5 и 15, 7 и 21, 13 и 39 и так далее. Значит, множество $N$ удовлетворяет условию №2. И, кстати сказать, не только множество $N$ удовлетворяет условиям №1 и №2. Например, множество всех нечётных натуральных чисел $N_1=\{1,3,5,7,9,11, \ldots\}$ тоже подходит под условия пунктов №1 и №2. Как же указать, что нам нужно именно множество $\{3,9,27,81,\ldots \}$?

Множество - одно из основных понятий современной математики. Это понятие не сводится к другим понятиям и не определяется. Объекты, составляющие множество, называют его Элементами . Множества обозначают заглавными латинскими буквами: A , B , C , X , …, их элементы - прописными буквами: A , B , C , X , … или буквами с индексами A 1, A 2, A 3, ... Множество, не содержащее ни одного элемента, называют Пустым и обозначают Æ.

Чтобы задать множество, необходимо знать, какие объекты принадлежат множеству, а какие нет. Если множество содержит немного элементов, то его можно задать, перечислив все его элементы. Если множество задано списком, то его элементы записывают в фигурных скобках через точку с запятой. Множество цифр можно записать следующим образом: A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 0}; множество простых чисел, меньших 20, - B = {2; 3; 5; 7; 11; 13; 17; 19}; множество дней недели - С = {понедельник; вторник; среда; четверг; пятница; суббота; воскресенье}.

Однако задать множество списком можно только тогда, когда оно содержит конечное число элементов (но и это неудобно, если число элементов множества велико). Существует универсальный способ задания множеств. Множество может быть задано с помощью Характеристического свойства , то есть такого свойства, которым обладают все элементы множества, и не обладают объекты, не принадлежащие множеству. Задание множества с помощью характеристического свойства записывают следующим образом: А = {Х | P (Х )}, где P (X ) - характеристическое свойство.

Приведем несколько примеров:

1. Если , то .

2. Пусть B - множество остатков от деления натуральных чисел на 7. Тогда .

3. Если D - множество действительных чисел, не меньших двух и не больших семи, то D - отрезок .

Рассмотрим два множества A и B . Если каждый элемент множества B является элементом множества A , то говорят, что B - Подмножество множества A . Этот факт записывают так: В Ì А . Считают, что пустое множество является подмножеством любого множества. Каждое непустое множество А имеет хотя бы два подмножества - само множество А и пустое множество.

Пусть даны два множества А и В .

Пересечением (Произведением ) множеств А и В называется множество, состоящее из всех элементов, принадлежащих одновременно и множеству А , и множеству В . Обозначают пересечение множеств A Ç B :

A Ç B = { Х | Х Î A и Х Î B }.

Объединением (Суммой ) множеств А и В называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А или В . Обозначают объединение множеств A È B :

A È B = { Х | Х Î A или Х Î B }.

Разностью множеств А и В называется множество, состоящее из всех элементов множества А , не принадлежащих множеству В . Обозначают разность множеств A \ B :

A \ B = { Х | Х Î A и Х Ï B }.

Элементами множества могут быть различные объекты - числа, слова, геометрические фигуры, функции и т. д. В математике особую роль играют Числовые множества , то есть множества, элементами которых являются числа.

Например: ¥ - множество натуральных чисел, ¢ - множество целых чисел, ¤ - множество рациональных чисел, ¡ - множество действительных чисел.

Напомним, что натуральными называют числа, используемые при счете предметов, то есть . Целыми считают натуральные числа, противоположные им отрицательные числа и число ноль. Таким образом, . Рациональные числа - это обыкновенные дроби с целым числителем и натуральным знаменателем: . Любое рациональное число может быть записано в виде конечной или бесконечной периодической десятичной дроби.

Все десятичные дроби (в том числе и бесконечные непериодические) образуют множество действительных чисел. Действительные числа изображают точками на координатной прямой (числовой оси). Точка О , соответствующая числу 0, разбивает координатную прямую на два луча: положительный и отрицательный. Число, изображением которого на координатной прямой является точка М , называется Координатой точки М . Если , то точка с координатой лежит левее точки с координатой .

Особое значение в математике имеют подмножества множества ¡, называемые числовыми промежутками: Отрезок [A ; B ] - множество точек Х , удовлетворяющих условию ; Интервал (A ; B ) - множество точек Х , удовлетворяющих условию ; Полуинтервалы [A ; B ) и (A ; B ] - множества точек Х , удовлетворяющих условиям и соответственно; бесконечные промежутки (A ; +¥), (- ¥; B ), [A ; +¥), (-¥; B ] - множества точек Х , удовлетворяющих условиям , , , соответственно.

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

Множества. Операции над множествами.
Отображение множеств. Мощность множества

Приветствую вас на первом уроке по высшей алгебре, который появился… в канун пятилетия сайта, после того, как я уже создал более 150 статей по математике, и мои материалы начали оформляться в завершённый курс. Впрочем, буду надеяться, что не опоздал – ведь многие студенты начинают вникать в лекции только к государственным экзаменам =)

Вузовский курс вышмата традиционно зиждется на трёх китах:

математическом анализе (пределы , производные и т.д.)

– и, наконец, сезон 2015/16 учебного года открывается уроками Алгебра для чайников , Элементы математической логики , на которых мы разберём основы раздела, а также познакомимся с базовыми математическими понятиями и распространёнными обозначениями. Надо сказать, что в других статьях я не злоупотребляю «закорючками» , однако то лишь стиль, и, конечно же, их нужно узнавать в любом состоянии =). Вновь прибывшим читателям сообщаю, что мои уроки ориентированы на практику, и нижеследующий материал будет представлен именно в этом ключе. За более полной и академичной информацией, пожалуйста, обращайтесь к учебной литературе. Поехали:

Множество. Примеры множеств

Множество – это фундаментальное понятие не только математики, но и всего окружающего мира. Возьмите прямо сейчас в руку любой предмет. Вот вам и множество, состоящее из одного элемента.

В широком смысле, множество – это совокупность объектов (элементов), которые понимаются как единое целое (по тем или иным признакам, критериям или обстоятельствам). Причём, это не только материальные объекты, но и буквы, цифры, теоремы, мысли, эмоции и т.д.

Обычно множества обозначаются большими латинскими буквами (как вариант, с подстрочными индексами: и т.п.) , а его элементы записываются в фигурных скобках, например:

– множество букв русского алфавита;
– множество натуральных чисел;

ну что же, пришла пора немного познакомиться:
– множество студентов в 1-м ряду

… я рад видеть ваши серьёзные и сосредоточенные лица =)

Множества и являются конечными (состоящими из конечного числа элементов), а множество – это пример бесконечного множества. Кроме того, в теории и на практике рассматривается так называемое пустое множество :

– множество, в котором нет ни одного элемента.

Пример вам хорошо известен – множество на экзамене частенько бывает пусто =)

Принадлежность элемента множеству записывается значком , например:

– буква «бэ» принадлежит множеству букв русского алфавита;
– буква «бета» не принадлежит множеству букв русского алфавита;
– число 5 принадлежит множеству натуральных чисел;
– а вот число 5,5 – уже нет;
– Вольдемар не сидит в первом ряду (и тем более, не принадлежит множеству или =)).

В абстрактной и не очень алгебре элементы множества обозначают маленькими латинскими буквами и, соответственно, факт принадлежности оформляется в следующем стиле:

– элемент принадлежит множеству .

Вышеприведённые множества записаны прямым перечислением элементов, но это не единственный способ. Многие множества удобно определять с помощью некоторого признака (ов) , который присущ всем его элементам . Например:

– множество всех натуральных чисел, меньших ста.

Запомните : длинная вертикальная палка выражает словесный оборот «которые», «таких, что». Довольно часто вместо неё используется двоеточие: – давайте прочитаем запись более формально: «множество элементов , принадлежащих множеству натуральных чисел, таких, что » . Молодцы!

Данное множество можно записать и прямым перечислением:

Ещё примеры:
– и если и студентов в 1-м ряду достаточно много, то такая запись намного удобнее, нежели их прямое перечисление.

– множество чисел, принадлежащих отрезку . Обратите внимание, что здесь подразумевается множество действительных чисел (о них позже) , которые перечислить через запятую уже невозможно.

Следует отметить, что элементы множества не обязаны быть «однородными» или логически взаимосвязанными. Возьмите большой пакет и начните наобум складывать в него различные предметы. В этом нет никакой закономерности, но, тем не менее, речь идёт о множестве предметов. Образно говоря, множество – это и есть обособленный «пакет», в котором «волею судьбы» оказалась некоторая совокупность объектов.

Подмножества

Практически всё понятно из самого названия: множество является подмножеством множества , если каждый элемент множества принадлежит множеству . Иными словами, множество содержится во множестве :

Значок называют значком включения .

Вернёмся к примеру, в котором – это множество букв русского алфавита. Обозначим через – множество его гласных букв. Тогда:

Также можно выделить подмножество согласных букв и вообще – произвольное подмножество, состоящее из любого количества случайно (или неслучайно) взятых кириллических букв. В частности, любая буква кириллицы является подмножеством множества .

Отношения между подмножествами удобно изображать с помощью условной геометрической схемы, которая называется кругами Эйлера .

Пусть – множество студентов в 1-м ряду, – множество студентов группы, – множество студентов университета. Тогда отношение включений можно изобразить следующим образом:

Множество студентов другого ВУЗа следует изобразить кругом, который не пересекает внешний круг; множество студентов страны – кругом, который содержит в себе оба этих круга, и т.д.

Типичный пример включений мы наблюдаем при рассмотрении числовых множеств. Повторим школьный материал, который важно держать на заметке и при изучении высшей математики:

Числовые множества

Как известно, исторически первыми появились натуральные числа, предназначенные для подсчёта материальных объектов (людей, кур, овец, монет и т.д.). Это множество уже встретилось в статье, единственное, мы сейчас чуть-чуть модифицируем его обозначение. Дело в том, что числовые множества принято обозначать жирными, стилизованными или утолщёнными буквами. Мне удобнее использовать жирный шрифт:

Иногда к множеству натуральных чисел относят ноль.

Если к множеству присоединить те же числа с противоположным знаком и ноль, то получится множество целых чисел :

Рационализаторы и лентяи записывают его элементы со значками «плюс минус» :))

Совершенно понятно, что множество натуральных чисел является подмножеством множества целых чисел:
– поскольку каждый элемент множества принадлежит множеству . Таким образом, любое натуральное число можно смело назвать и целым числом.

Название множества тоже «говорящее»: целые числа – это значит, никаких дробей.

И, коль скоро, целые, то сразу же вспомним важные признаки их делимости на 2, 3, 4, 5 и 10, которые будут требоваться в практических вычислениях чуть ли не каждый день:

Целое число делится на 2 без остатка , если оно заканчивается на 0, 2, 4, 6 или 8 (т.е. любой чётной цифрой) . Например, числа:
400, -1502, -24, 66996, 818 – делятся на 2 без остатка.

И давайте тут же разберём «родственный» признак: целое число делится на 4 , если число, составленное из двух его последних цифр (в порядке их следования) делится на 4.

400 – делится на 4 (т.к. 00 (ноль) делится на 4) ;
-1502 – не делится на 4 (т.к. 02 (двойка) не делится на 4) ;
-24, понятно, делится на 4;
66996 – делится на 4 (т.к. 96 делится на 4) ;
818 – не делится на 4 (т.к. 18 не делится на 4) .

Самостоятельно проведите несложное обоснование данного факта.

С делимость на 3 чуть сложнее : целое число делится на 3 без остатка, если сумма входящих в него цифр делится на 3.

Проверим, делится ли на 3 число 27901. Для этого просуммируем его цифры:
2 + 7 + 9 + 0 + 1 = 19 – не делится на 3
Вывод: 27901 не делится на 3.

Просуммируем цифры числа -825432:
8 + 2 + 5 + 4 + 3 + 2 = 24 – делится на 3
Вывод: число -825432 делится на 3

Целое число делится на 5 , если оно заканчивается пятёркой либо нулём:
775, -2390 – делятся на 5

Целое число делится на 10 , если оно заканчивается на ноль:
798400 – делится на 10 (и, очевидно, на 100) . Ну и, наверное, все помнят – для того, чтобы разделить на 10, нужно просто убрать один ноль: 79840

Также существуют признаки делимости на 6, 8, 9, 11 и т.д., но практического толку от них практически никакого =)

Следует отметить, что перечисленные признаки (казалось бы, такие простые) строго доказываются в теории чисел . Этот раздел алгебры вообще достаточно интересен, однако его теоремы… прямо современная китайская казнь =) А Вольдемару за последней партой и того хватило…, но ничего страшного, скоро мы займёмся живительными физическими упражнениями =)

Следующим числовым множеством идёт множество рациональных чисел :
– то есть, любое рациональное число представимо в виде дроби с целым числителем и натуральным знаменателем .

Очевидно, что множество целых чисел является подмножеством множества рациональных чисел:

И в самом деле – ведь любое целое число можно представить в виде рациональной дроби , например: и т.д. Таким образом, целое число можно совершенно законно назвать и рациональным числом.

Характерным «опознавательным» признаком рационального числа является то обстоятельство, что при делении числителя на знаменатель получается либо
– целое число,

либо
конечная десятичная дробь,

либо
– бесконечная периодическая десятичная дробь (повтор может начаться не сразу) .

Полюбуйтесь делением и постарайтесь выполнять это действие как можно реже! В организационной статье Высшая математика для чайников и на других уроках я неоднократно повторял, повторяю, и буду повторять эту мантру:

В высшей математике все действия стремимся выполнять в обыкновенных (правильных и неправильных) дробях

Согласитесь, что иметь дело с дробью значительно удобнее, чем с десятичным числом 0,375 (не говоря уже о бесконечных дробях) .

Едем дальше. Помимо рациональных существует множество иррациональных чисел, каждое из которых представимо в виде бесконечной НЕпериодической десятичной дроби. Иными словами, в «бесконечных хвостах» иррациональных чисел нет никакой закономерности:
(«год рождения Льва Толстого» дважды)
и т.д.

О знаменитых константах «пи» и «е» информации предостаточно, поэтому на них я не останавливаюсь.

Объединение рациональных и иррациональных чисел образует множество действительных (вещественных) чисел :

– значок объединения множеств.

Геометрическая интерпретация множества вам хорошо знакома – это числовая прямая:


Каждому действительному числу соответствует определённая точка числовой прямой, и наоборот – каждой точке числовой прямой обязательно соответствует некоторое действительное число. По существу, сейчас я сформулировал свойство непрерывности действительных чисел, которое хоть и кажется очевидным, но строго доказывается в курсе математического анализа.

Числовую прямую также обозначают бесконечным интервалом , а запись или эквивалентная ей запись символизирует тот факт, что принадлежит множеству действительных чисел (или попросту «икс» – действительное число) .

С вложениями всё прозрачно: множество рациональных чисел – это подмножество множества действительных чисел:
, таким образом, любое рациональное число можно смело назвать и действительным числом.

Множество иррациональных чисел – это тоже подмножество действительных чисел:

При этом подмножества и не пересекаются – то есть ни одно иррациональное число невозможно представить в виде рациональной дроби.

Существуют ли какие-нибудь другие числовые системы? Существуют! Это, например, комплексные числа , с которыми я рекомендую ознакомиться буквально в ближайшие дни или даже часы.

Ну а пока мы переходим к изучению операций над множествами, дух которых уже материализовался в конце этого параграфа:

Действия над множествами. Диаграммы Венна

Диаграммы Венна (по аналогии с кругами Эйлера) – это схематическое изображение действий с множествами. Опять же предупреждаю, что я рассмотрю не все операции:

1) Пересечение И и обозначается значком

Пересечением множеств и называется множество , каждый элемент которого принадлежит и множеству , и множеству . Грубо говоря, пересечение – это общая часть множеств:

Так, например, для множеств :

Если у множеств нет одинаковых элементов, то их пересечение пусто. Такой пример нам только что встретился при рассмотрении числовых множеств:

Множества рациональных и иррациональных чисел можно схематически изобразить двумя непересекающимися кругами.

Операция пересечения применима и для бОльшего количества множеств, в частности в Википедии есть хороший пример пересечения множеств букв трёх алфавитов .

2) Объединение множеств характеризуется логической связкой ИЛИ и обозначается значком

Объединением множеств и называется множество , каждый элемент которого принадлежит множеству или множеству :

Запишем объединение множеств :
– грубо говоря, тут нужно перечислить все элементы множеств и , причём одинаковые элементы (в данном случае единица на пересечении множеств) следует указать один раз.

Но множества, разумеется, могут и не пересекаться, как это имеет место быть с рациональными и иррациональными числами:

В этом случае можно изобразить два непересекающихся заштрихованных круга.

Операция объединения применима и для бОльшего количества множеств, например, если , то:

При этом числа вовсе не обязательно располагать в порядке возрастания (это я сделал исключительно из эстетических соображений) . Не мудрствуя лукаво, результат можно записать и так:

3) Разностью и не принадлежит множеству :

Разность читаются следующим образом: «а без бэ». И рассуждать можно точно так же: рассмотрим множества . Чтобы записать разность , нужно из множества «выбросить» все элементы, которые есть во множестве :

Пример с числовыми множествами:
– здесь из множества целых чисел исключены все натуральные, да и сама запись так и читается: «множество целых чисел без множества натуральных».

Зеркально: разностью множеств и называют множество , каждый элемент которого принадлежит множеству и не принадлежит множеству :

Для тех же множеств
– из множества «выброшено» то, что есть во множестве .

А вот эта разность оказывается пуста: . И в самом деле – если из множества натуральных чисел исключить целые числа, то, собственно, ничего и не останется:)

Кроме того, иногда рассматривают симметрическую разность , которая объединяет оба «полумесяца»:
– иными словами, это «всё, кроме пересечения множеств».

4) Декартовым (прямым) произведением множеств и называется множество всех упорядоченных пар , в которых элемент , а элемент

Запишем декартово произведение множеств :
– перечисление пар удобно осуществлять по следующему алгоритму: «сначала к 1-му элементу множества последовательно присоединяем каждый элемент множества , затем ко 2-му элементу множества присоединяем каждый элемент множества , затем к 3-му элементу множества присоединяем каждый элемент множества »:

Зеркально: декартовым произведением множеств и называется множество всех упорядоченных пар , в которых . В нашем примере:
– здесь схема записи аналогична: сначала к «минус единице» последовательно присоединяем все элементы множества , затем к «дэ» – те же самые элементы:

Но это чисто для удобства – и в том, и в другом случае пары можно перечислить в каком угодно порядке – здесь важно записать все возможные пары.

А теперь гвоздь программы: декартово произведение – это есть не что иное, как множество точек нашей родной декартовой системы координат .

Задание для самостоятельного закрепления материала:

Выполнить операции , если:

Множество удобно расписать перечислением его элементов.

И пунктик с промежутками действительных чисел:

Напоминаю, что квадратная скобка означает включение числа в промежуток, а круглая – его невключение , то есть «минус единица» принадлежит множеству , а «тройка» не принадлежит множеству . Постарайтесь разобраться, что представляет собой декартово произведение данных множеств. Если возникнут затруднения, выполните чертёж;)

Краткое решение задачи в конце урока.

Отображение множеств

Отображение множества во множество – это правило , по которому каждому элементу множества ставится в соответствие элемент (или элементы) множества . В том случае если в соответствие ставится единственный элемент, то данное правило называется однозначно определённой функцией или просто функцией .

Функцию, как многие знают, чаще всего обозначают буквой – она ставит в соответствие каждому элементу единственное значение , принадлежащее множеству .

Ну а сейчас я снова побеспокою множество студентов 1-го ряда и предложу им 6 тем для рефератов (множество ):

Установленное (добровольно или принудительно =)) правило ставит в соответствие каждому студенту множества единственную тему реферата множества .

…а вы, наверное, и представить себе не могли, что сыграете роль аргумента функции =) =)

Элементы множества образуют область определения функции (обозначается через ), а элементы множества – область значений функции (обозначается через ).

Построенное отображение множеств имеет очень важную характеристику: оно является взаимно-однозначным или биективным (биекцией). В данном примере это означает, что каждому студенту поставлена в соответствие одна уникальная тема реферата, и обратно – за каждой темой реферата закреплён один и только один студент.

Однако не следует думать, что всякое отображение биективно. Если на 1-й ряд (к множеству ) добавить 7-го студента, то взаимно-однозначное соответствие пропадёт – либо один из студентов останется без темы (отображения не будет вообще) , либо какая-то тема достанется сразу двум студентам. Обратная ситуация: если к множеству добавить седьмую тему, то взаимнооднозначность отображения тоже будет утрачена – одна из тем останется невостребованной.

Уважаемые студенты на 1-м ряду, не расстраивайтесь – остальные 20 человек после пар пойдут прибирать территорию университета от осенней листвы. Завхоз выдаст двадцать голиков, после чего будет установлено взаимно-однозначное соответствие между основной частью группы и мётлами…, а Вольдемар ещё и в магазин сбегать успеет =)).области определения соответствует свой уникальный «игрек», и наоборот – по любому значению «игрек» мы сможем однозначно восстановить «икс». Таким образом, это биективная функция.

! На всякий случай ликвидирую возможное недопонимание: моя постоянная оговорка об области определения не случайна! Функция может быть определена далеко не при всех «икс», и, кроме того, может быть взаимно-однозначной и в этом случае. Типичный пример:

А вот у квадратичной функции не наблюдается ничего подобного, во-первых:
– то есть, различные значения «икс» отобразились в одно и то же значение «игрек»; и во-вторых: если кто-то вычислил значение функции и сообщил нам, что , то не понятно – этот «игрек» получен при или при ? Что и говорить, взаимной однозначностью здесь даже не пахнет.

Задание 2 : просмотреть графики основных элементарных функций и выписать на листок биективные функции. Список для сверки в конце этого урока.

Мощность множества

Интуиция подсказывает, что термин характеризует размер множества, а именно количество его элементов. И интуиция нас не обманывает!

Мощность пустого множества равна нулю.

Мощность множества равна шести.

Мощность множества букв русского алфавита равна тридцати трём.

И вообще – мощность любого конечного множества равно количеству элементов данного множества.

…возможно, не все до конца понимают, что такое конечное множество – если начать пересчитывать элементы этого множества, то рано или поздно счёт завершится. Что называется, и китайцы когда-нибудь закончатся.

Само собой, множества можно сравнивать по мощности и их равенство в этом смысле называется равномощностью . Равномощность определяется следующим образом:

Два множества являются равномощными, если между ними можно установить взаимно-однозначное соответствие .

Множество студентов равномощно множеству тем рефератов, множество букв русского алфавита равномощно любому множеству из 33 элементов и т.д. Заметьте, что именно любому множеству из 33 элементов – в данном случае имеет значение лишь их количество. Буквы русского алфавита можно сопоставить не только с множеством номеров
1, 2, 3, …, 32, 33, но и вообще со стадом в 33 коровы.

Гораздо более интересно обстоят дела с бесконечными множествами. Бесконечности тоже бывают разными! ...зелёными и красными Самые «маленькие» бесконечные множества – это счётные множества. Если совсем просто, элементы такого множества можно пронумеровать. Эталонный пример – это множество натуральных чисел . Да – оно бесконечно, однако у каждого его элемента в ПРИНЦИПЕ есть номер.

Примеров очень много. В частности, счётным является множество всех чётных натуральных чисел . Как это доказать? Нужно установить его взаимно-однозначное соответствие с множеством натуральных чисел или попросту пронумеровывать элементы:

Взаимно-однозначное соответствие установлено, следовательно, множества равномощны и множество счётно. Парадоксально, но с точки зрения мощности – чётных натуральных чисел столько же, сколько и натуральных!

Множество целых чисел тоже счётно. Его элементы можно занумеровать, например, так:

Более того, счётно и множество рациональных чисел . Поскольку числитель – это целое число (а их, как только что показано, можно пронумеровать) , а знаменатель – натуральное число, то рано или поздно мы «доберёмся» до любой рациональной дроби и присвоим ей номер.

А вот множество действительных чисел уже несчётно , т.е. его элементы пронумеровать невозможно. Данный факт хоть и очевиден, однако строго доказывается в теории множеств. Мощность множества действительных чисел также называют континуумом , и по сравнению со счётными множествами это «более бесконечное» множество.

Поскольку между множеством и числовой прямой существует взаимно-однозначное соответствие (см. выше) , то множество точек числовой прямой тоже несчётно . И более того, что на километровом, что на миллиметровом отрезке – точек столько же! Классический пример:


Поворачивая луч против часовой стрелки до его совмещения с лучом мы установим взаимно-однозначное соответствие между точками синих отрезков. Таким образом, на отрезке столько же точек, сколько и на отрезке и !

Данный парадокс, видимо, связан с загадкой бесконечности… но мы сейчас не будем забивать голову проблемами мироздания, ибо на очереди

Задание 2 Взаимно-однозначные функции на иллюстрациях урока

Определение. Множество - это совокупность некоторых объектов, объединенных по какому-либо признаку.

Элементы, составляющие множество, обычно обозначаются малыми латинскими буквами, а само множество - большой латинской буквой. Знак ∈ используется для обозначения принадлежности элемента множеству. Запись a∈A означает, что элемент a принадлежит множеству A. Если некоторый объект x не является элементом множества A, пишут x∉A. Например, если A - это множество четных чисел, то 2∈A, а 1∉A. Множества A и B считаются равными (пишут A = B), если они состоят из одних и тех же элементов.

Если множество содержит конечное число элементов, его называют конечным; в противном случае множество называется бесконечным. Если множество A конечно, символом |A| будет обозначаться число его элементов. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом ∅. Очевидно, |∅|=0.

Пример . Пусть A - множество действительных решений квадратного уравнения x 2 + px + q = 0. Множество A конечно, |A|≤2. Если дискриминант D = p 2 -4q отрицателен, множество A пусто. Множество действительных решений квадратичного неравенства x 2 +px+q≤0 конечно, если D≤0, и бесконечно, если D>0.

Конечное множество может быть задано перечислением всех его элементов,

либо описываются их свойства. Если множество A состоит из элементов x, y, z, пишут A ={x, y, z,}. Например, A = {0, 2, 4, 6, 8} - множество четных десятичных цифр или - множество натуральных чисел, удовлетворяющих условию х + 2 = 1.

Введем используемое в дальнейшем понятие индексированного семейства множеств. Пусть I - некоторое множество, каждому элементу которого i сопоставлено однозначно определенное множество A i . Элементы множества I называют индексами, а совокупность множеств A i называют индексированным семейством множеств и обозначают через (A i) i ∈ I .

Говорят, что множество B является подмножеством множества A и пишут B⊂A, если всякий элемент множества B является элементом множества A. Например, множество натуральных чисел N является подмножеством множества целых чисел Z, а последнее в свою очередь является подмножеством множества рациональных чисел Q, то есть N⊂Z и Z⊂Q, или, короче, N⊂Z⊂Q. Легко видеть, что если B⊂A и A⊂B, то множества A и B состоят из одних и тех же элементов, и, значит, A=B, в противном случае . Наряду с обозначением B⊂A используется также A⊃B, имеющее тот же смысл.

Подмножества множества A, отличные от ∅ и A, называются собственными. Пустое множество и множество А называются несобственными подмножествами множества А. Совокупность всех подмножеств множества А называется его булеаном , или множеством-степенью , и обозначается через Р(А) или 2 А.


Пример . Пусть A = {a, b, c}. Тогда множество 2 A состоит из следующих элементов:

{∅}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}.

Если множество A конечно и содержит n элементов, то это множество имеет 2 n подмножеств, то есть |2 A |=2 | A | .

Все операции над множествами можно иллюстрировать с помощью диаграмм Эйлера-Венна. Если некоторое универсальное множество, содержащее как подмножества все другие множества, обозначить U и изобразить его в виде всей плоскости, то любое множество можно изобразить в виде части плоскости, т.е. в виде некоторой фигуры, лежащей на плоскости.

Объединением или суммой множеств А и В называют такое множество С, которое состоит из элементов множества А, или элементов множества В, или из элеметов обоих этих множеств, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∪B = {1, 2, 3, 4}.

Пересечением или произведением двух множеств А и В называется такое множество С, которое состоит из элементов, принадлежащих одновременно обоим множествам, т.е. . Например, если A = {1, 2, 3} и B = {2, 3, 4}, то A∩B = {2, 3}.

Разностью двух множеств А и В называется множество, состоящее из тех и только тех элементов, которые входят в А и одновременно не входят в В, т.е.

Например, если A = {1, 2, 3} и B ={2, 3, 4}, то A\B = {1}.

Если, в частности, А - подмножество U, то разность U \ A обозначается и называется дополнением множества А.

Симметрической разностью (кольцевой суммой) множеств А и В называется множество , т.е. . Например, если A ={1, 2, 3} и B = {2, 3, 4}, то AΔB = {1, 4}.

Законы алгебры множеств:

1. Коммутативный закон : .

2. Ассоциативный закон : .

3. Дистрибутивный закон :

4. Законы идемпотентности : , в частности

5. Законы поглощения :

6. Законы де Моргана (двойственности) :

7. Закон двойного дополнения :

8. Закон включения :

9. Закон равенства :

Пример 1. Проверим первый из законов де Моргана. Покажем сначала, что. Предположим, что . Тогда x∉A∩B, так что x не принадлежит хотя бы одному из множеств A и B. Таким образом, x∉A или x∉B, то есть или .

Это означает, что. Мы показали, что произвольный элемент множества является элементом множества. Следовательно, . Обратное включение доказывается аналогично. Достаточно повторить все шаги предыдущего рассуждения в обратном порядке.

Пример 2. Доказать включения

Решение. Легче всего это сделать по диаграмме Эйлера-Венна

Из любой пары элементов a и b (не обязательно различных) можно составить новый элемент - упорядоченную пару (a,b). Упорядоченные пары (a,b) и (c,d) считают равными и пишут (a,b) = (c,d), если a = c и b = d. В частности, (a,b) = (b,a) лишь в том случае, когда a=b. Элементы a и b называют координатами упорядоченной пары (a,b) .

Прямым (декартовым) произведением множеств A и B называется множество всех упорядоченных пар (a,b), где a∈A и b∈B. Прямое произведение множеств A и B обозначается через A×B. В соответствии с определением имеем

A×B = {(a,b)| a∈A, b∈B}. Произведение называется декартовым квадратом.

Пример 3. Даны множества А = {1; 2}; B = {2; 3}. Найти .

Решение.

Таким образом, декартово произведение не подчиняется коммутативному закону.

Пример 4. Пусть Из каких элементов состоят множества ?

Решение. Запишем множества А; В; С, перечислив их элементы:

А = {3; 4; 5; 6}; B = {2; 3}; C = {2}. Тогда Подобно парам, можно рассматривать упорядоченные тройки, четверки и, вообще, упорядоченные наборы элементов произвольной длины. Упорядоченный набор элементов длины n обозначается через (a 1 , a 2 , a n). Для таких наборов используется также название кортеж длины n. Допускаются в том числе и кортежи длины 1 - это просто одноэлементные множества. Кортежи (a 1 , a 2 , a n) и (b 1 , b 2 , b n) считаются равными, если a 1 = b 1 , a 2 = b 2 , a n = b n .

По аналогии с произведением двух множеств определим прямое произведение множеств A 1 , A 2 , A n как множество всех кортежей (a 1 , a 2 , a n) таких, что a 1 ∈A 1 , a 2 ∈A 2 , a n ∈A n . Обозначается прямое произведение через A 1 × A 2 × A n .

Понятие прямого произведения может быть обобщено на случай произвольного семейства множеств (A i) i ∈ I . Назовем I-кортежем набор элементов (A i) i ∈ I такой, что a i ∈A i для каждого i∈I. Прямое произведение семейства множеств (A i) i ∈ I - это множество, состоящее из всех I-кортежей. Для обозначения этого множества используется символ Π i ∈ I A i и его разновидности, подобные тем, которые применяются для обозначения пересечения и объединения семейства множеств.

В случае, когда множество A умножается само на себя, произведение называют (декартовой) степенью и используют экспоненциальные обозначения. Так, в соответствии с определением A × A = A 2 , A × A × A = A 3 и т. д. Считается, что A 1 = A и A 0 = ∅.

Непосредственно из определений следует справедливость следующих соотношений (A∪B) × C = (A × C) ∪ (B × C);

(A∩B) × C = (A × C) ∩ (B × C);

(A\B) × C = (A × C)\(B × C).

1. Судоплатов С.В., Овчинникова Е.В. Элементы дискретной математики. М.:ИНФРА-М, Новосибирск, 2002.

2. Асеев Г.Г., Абрамов О.М., Ситников Д.Э. Дискретная математика. Харьков, «Торсинг», 2003.

3. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.:Наука, 1973.

4. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.:ФИЗМАТЛИТ, 2001.