Теракт на станции измайловская 1977. Самые известные теракты в ссср, о которых тогда мало кто знал. Степан Затикян и «Национальная объединённая партия Армении»

Во время опытов по радиосвязи между кораблями обнаружил явление отражения радиоволн от корабля. Радиопередатчик был установлен на верхнем мостике транспорта «Европа», стоявшем на якоре, а радиоприёмник - на крейсере «Африка». В отчёте комиссии, назначенной для проведения этих опытов, А. С. Попов писал:

Влияние судовой обстановки сказывается в следующем: все металлические предметы (мачты, трубы, снасти) должны мешать действию приборов как на станции отправления, так и на станции получения, потому что, попадая на пути электромагнитной волны, они нарушают её правильность, отчасти подобно тому, как действует на обыкновенную волну, распространяющуюся по поверхности воды, брекватер , отчасти вследствие интерференции волн, в них возбужденных, с волнами источника, то есть влияют неблагоприятно.
…Наблюдалось также влияние промежуточного судна. Так, во время опытов между «Европой» и «Африкой» попадал крейсер «Лейтенант Ильин», и если это случалось при больших расстояниях, то взаимодействие приборов прекращалось, пока суда не сходили с одной прямой линии.

В ходе операции «Брюневаль» , проведённой английскими коммандос на побережье Франции в провинции Приморская Сена (Верхняя Нормандия), тайна немецких радаров была раскрыта. Для глушения радаров союзники применили передатчики, излучающие помеху в определённой полосе частот при средней частоте 560 мегагерц. Сначала такими передатчиками оснащали бомбардировщики. Когда немецкие летчики научились вести истребители на сигналы помех, словно на радиомаяки, вдоль южного побережья Англии расположили громадные американские передатчики «Туба» (Project Tuba ), разработанные в радиолаборатории Гарвардского университета . От их мощных сигналов истребители немцев «слепли» в Европе, а бомбардировщики союзников, избавившись от преследователей, спокойно летели к дому через Ла-Манш.

В СССР

В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привело к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым , получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя - М. Н. Тухачевского .

В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

Большое внимание в системе ПВО уделяется решению проблемы своевременного обнаружения низколетящих воздушных целей (англ. ) .

Классификация

По сфере применения различают:

  • военные РЛС;
  • гражданские РЛС.

По назначению:

  • РЛС обнаружения;
  • РЛС управления и слежения;
  • панорамные РЛС;
  • РЛС бокового обзора;
  • метеорологические РЛС;
  • РЛС целеуказания;
  • РЛС обзора обстановки.

По характеру носителя:

  • береговые РЛС;
  • морские РЛС;
  • бортовые РЛС;
  • мобильные РЛС.

По типу действия:

  • первичные, или пассивные;
  • вторичные, или активные;
  • совмещённые.

По методу действия:

  • надгоризонтный радиолокатор;

По диапазону волн:

  • метровые;
  • дециметровые;
  • сантиметровые;
  • миллиметровые.

Первичный радиолокатор

Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна (скорость света), становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

В основе устройства радиолокационной станции лежат три компонента: передатчик , антенна и приёмник .

Передатчик (передающее устройство) является источником электромагнитного сигнала высокой мощности. Он может представлять собой мощный импульсный генератор. Для импульсных РЛС сантиметрового диапазона - обычно магнетрон или импульсный генератор, работающий по схеме: задающий генератор - мощный усилитель, использующий в качестве генератора чаще всего лампу бегущей волны (ЛБВ), а для РЛС метрового диапазона часто используют триодную лампу. РЛС, которые используют магнетроны, некогерентны или псевдо-когерентны, в отличие от РЛС на основе ЛБВ. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал.

Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности , а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник, не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала.

Приёмник (приёмное устройство) выполняет усиление и обработку принятого сигнала. В самом простом случае результирующий сигнал подаётся на лучевую трубку (экран), которая показывает изображение, синхронизированное с движением антенны.

Различные РЛС основаны на различных методах измерения отражённого сигнала:

Частотный метод

Частотный метод измерения дальности основан на использовании частотной модуляции излучаемых непрерывных сигналов. В данном методе за период излучается частота, меняющаяся по линейному закону от f1 до f2. Отраженный сигнал придёт промодулированным линейно в момент времени, предшествующий настоящему на время задержки. Т. о. частота отраженного сигнала, принятого на РЛС, будет пропорционально зависеть от времени. Время запаздывания определяется по резкой перемене в частоте разностного сигнала.

Достоинства:

  • позволяет измерять очень малые дальности;
  • используется маломощный передатчик.

Недостатки:

  • необходимо использование двух антенн;
  • ухудшение чувствительности приёмника вследствие просачивания через антенну в приемный тракт излучения передатчика, подверженного случайным изменениям;
  • высокие требования к линейности изменения частоты.

Фазовый метод

Фазовый (когерентный) метод радиолокации основан на выделении и анализе разности фаз отправленного и отражённого сигналов, которая возникает из-за эффекта Доплера , когда сигнал отражается от движущегося объекта. При этом передающее устройство может работать как непрерывно, так и в импульсном режиме. Основным преимуществом данного метода является то, что он «позволяет наблюдать только движущиеся объекты, а это исключает помехи от неподвижных предметов, расположенных между приёмной аппаратурой и целью или за ней» .

Так как при этом используются ультракороткие волны, то однозначный диапазон измерения дальности составляет порядка единиц метра. Поэтому на практике используют более сложные схемы, в которых присутствует две и больше частот.

Достоинства:

  • маломощное излучение, так как генерируются незатухающие колебания;
  • точность не зависит от доплеровского сдвига частоты отражения;
  • достаточно простое устройство.

Недостатки:

  • отсутствие разрешения по дальности;
  • ухудшение чувствительности приёмника вследствие проникновения через антенну в приёмный тракт излучения передатчика, подверженного случайным изменениям.

Импульсный метод

Современные радары сопровождения построены как импульсные радары. Импульсный радар передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве.

Поскольку импульс уходит далеко от радара с постоянной скоростью, между временем, прошедшим с момента посылки импульса до момента получения эхо-ответа, и расстоянием до цели - прямая зависимость. Следующий импульс можно послать только через некоторое время, а именно после того, как импульс придёт обратно (это зависит от дальности обнаружения радара, мощности передатчика, усиления антенны, чувствительности приёмника). Если импульс посылать раньше, то эхо предыдущего импульса от отдалённой цели может быть спутано с эхом второго импульса от близкой цели. Промежуток времени между импульсами называют интервалом повторения импульса (англ. Pulse Repetition Interval, PRI ), обратная к нему величина - важный параметр, который называют частотой повторения импульса (ЧПИ, англ. Pulse Repetition Frequency, PRF ). Радары низкой частоты дальнего обзора обычно имеют интервал повторения в несколько сотен импульсов в секунду. Частота повторения импульсов является одним из отличительных признаков, по которым возможно дистанционное определение модели РЛС.

Достоинства импульсного метода измерения дальности:

  • возможность построения РЛС с одной антенной;
  • простота индикаторного устройства;
  • удобство измерения дальности нескольких целей;
  • простота излучаемых импульсов, длящихся очень малое время, и принимаемых сигналов.

Недостатки:

  • необходимость использования больших импульсных мощностей передатчика;
  • невозможность измерения малых дальностей;
  • большая мёртвая зона.

Устранение пассивных помех

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов: земной поверхности, высоких холмов и т. п. Если, к примеру, самолёт находится на фоне высокого холма, отражённый сигнал от этого холма полностью перекроет сигнал от самолёта. Для наземных РЛС эта проблема проявляется при работе с низколетящими объектами. Для бортовых импульсных РЛС она выражается в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта с радиолокатором.

Методы устранения помех используют, так или иначе, эффект Доплера (частота волны, отражённой от приближающегося объекта, увеличивается, от уходящего объекта - уменьшается).

Самый простой радар, который может обнаружить цель в помехах - радар с селекцией движущихся целей (СДЦ) - импульсный радар, который сравнивает отражения более чем от двух или больше интервалов повторения импульса. Любая цель, которая движется относительно радара, производит изменение в параметре сигнала (стадия в последовательном СДЦ), тогда как помехи остаются неизменными. Устранение помех происходит путём вычитания отражений из двух последовательных интервалов. На практике устранение помех может быть осуществлено в специальных устройствах - черезпериодных компенсаторах или алгоритмами в программном обеспечении.

Неустранимым недостатком СДЦ, работающих с постоянной ЧПИ, является невозможность обнаружения целей со специфическими круговыми скоростями (целей, которые производят изменения фаз точно в 360 градусов). Скорость, при которой цель становится невидимой для радиолокатора, зависит от рабочей частоты станции и от ЧПИ. Для устранения недостатка современные СДЦ излучают несколько импульсов с различными ЧПИ. ЧПИ подбираются такими образом, чтобы число «невидимых» скоростей было минимальным.

Импульсно-доплеровские РЛС , в отличие от РЛС с СДЦ, используют другой, более сложный способ избавления от помех. Принятый сигнал, содержащий информацию о целях и помехах, передаётся на вход блока фильтров Доплера. Каждый из фильтров пропускает сигнал определённой частоты. На выходе из фильтров вычисляются производные от сигналов. Способ помогает находить цели с заданными скоростями, может быть реализован аппаратно или программно, не позволяет (без модификаций) определить расстояния до целей. Для определения расстояний до целей можно разделить интервал повторения импульса на отрезки (называемые отрезками дальности) и подавать сигнал на вход блока фильтров Доплера в течение данного отрезка дальности. Вычислить расстояние удаётся только при многократных повторениях импульсов на разных частотах (цель появляется на различных отрезках дальности при разных ЧПИ).

Важное свойство импульсно-доплеровских РЛС - когерентность сигнала, фазовая зависимость отправленных и полученных (отражённых) сигналов.

Импульсно-доплеровские РЛС, в отличие от РЛС с СДЦ, успешнее обнаруживают низколетящие цели. На современных истребителях эти РЛС используются для воздушного перехвата и управления огнём (радары AN/APG-63, 65, 66, 67 и 70). Современные реализации в основном программные: сигнал оцифровывается и отдаётся на обработку отдельному процессору . Часто цифровой сигнал преобразуется в форму, удобную для других алгоритмов, с помощью быстрого преобразования Фурье . Использование программной реализации по сравнению с аппаратной имеет ряд преимуществ:

  • возможность выбора алгоритмов из числа доступных;
  • возможность изменения параметров алгоритмов;
  • возможность добавления/изменения алгоритмов (путём смены прошивки).

Перечисленные достоинства наряду с возможностью хранения данных в ПЗУ) позволяют, в случае необходимости, быстро приспособиться к технике глушения противника.

Вторичный радиолокатор

Вторичная радиолокация используется в авиации для опознавания. Основная особенность - использование активного ответчика на самолётах.

Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора. В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик , антенна , генераторы азимутальных меток, приёмник , сигнальный процессор , индикатор и самолётный ответчик с антенной .

Передатчик служит для формирования импульсов запроса в антенне на частоте 1030 МГц.

Антенна служит для излучения импульсов запроса и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030 МГц и принимает на частоте 1090 МГц.

Генераторы азимутальных меток служат для генерации азимутальных меток (англ. Azimuth Change Pulse, ACP ) и метки Севера (англ. Azimuth Reference Pulse, ARP ). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток (для старых систем) или 16384 улучшенных малых азимутальных меток (англ. Improved Azimuth Change pulse, IACP - для новых систем), а также одна метка Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник служит для приёма импульсов на частоте 1090 МГц.

Сигнальный процессор служит для обработки принятых сигналов.

Индикатор служит для отображения обработанной информации.

Самолётный ответчик с антенной служит для передачи содержащего дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.

Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2, отвечают запросившей РЛС серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту. Также РЛС может посылать запрос в смешанном режиме, например, Режим А, Режим С, Режим А, Режим С. Азимут воздушного судна определяется углом поворота антенны, который, в свою очередь, определяется путём подсчёта малых азимутальных меток .

Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3

Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

Плюсы вторичной РЛС:

  • более высокая точность;
  • дополнительная информация о воздушном судне (номер борта, высота);
  • малая по сравнению с первичными РЛС мощность излучения;
  • большая дальность обнаружения.

Диапазоны РЛС

Обозначение
/ ITU
Этимология Частоты Длина волны Примечания
HF англ. high frequency 3-30 МГц 10-100 м Радары береговой охраны, «загоризонтные» РЛС
P англ. previous < 300 МГц > 1 м Использовался в первых радарах
VHF англ. very high frequency 50-330 МГц 0,9-6 м Обнаружение на больших дальностях, исследования Земли
UHF англ. ultra high frequency 300-1000 МГц 0,3-1 м Обнаружение на больших дальностях (например, артиллерийского обстрела), исследования лесов, поверхности Земли
L англ. Long 1-2 ГГц 15-30 см наблюдение и контроль над воздушным движением
S англ. Short 2-4 ГГц 7,5-15 см управление воздушным движением, метеорология, морские радары
C англ. Compromise 4-8 ГГц 3,75-7,5 см метеорология, спутниковое вещание, промежуточный диапазон между X и S
X 8-12 ГГц 2,5-3,75 см управление оружием, наведение ракет, морские радары, погода, картографирование среднего разрешения; в США диапазон 10,525 ГГц ± 25 МГц используется в РЛС аэропортов
K u англ. under K 12-18 ГГц 1,67-2,5 см картографирование высокого разрешения, спутниковая альтиметрия
K нем. kurz - «короткий» 18-27 ГГц 1,11-1,67 см использование ограничено из-за сильного поглощения водяным паром, поэтому используются диапазоны K u и K a . Диапазон K используется для обнаружения облаков, в полицейских дорожных радарах (24,150 ± 0,100 ГГц).
K a англ. above K 27-40 ГГц 0,75-1,11 см Картографирование, управление воздушным движением на коротких дистанциях, специальные радары, управляющие дорожными фотокамерами (34,300 ± 0,100 ГГц)
mm 40-300 ГГц 1-7,5 мм миллиметровые волны, делятся на два следующих диапазона
V 40-75 ГГц 4,0-7,5 мм медицинские аппараты КВЧ , применяемые для физиотерапии
W 75-110 ГГц 2,7-4,0 мм сенсоры в экспериментальных автоматических транспортных средствах, высокоточные исследования погодных явлений

Обозначения диапазонов частот, принятые в ВС США и НАТО с г.

Обозначение Частоты, МГц Длина волны, см Примеры
A < 100-250 120 - >300 Радары раннего обнаружения и управления воздушным движением, напр. РЛС 1Л13 «НЕБО-СВ»
B 250 - 500 60 - 120
C 500 −1 000 30 - 60
D 1 000 - 2 000 15 - 30
E 2 000 - 3 000 10 - 15
F 3 000 - 4 000 7.5 - 10
G 4 000 - 6 000 5 - 7.5
H 6 000 - 8 000 3.75 - 5.00
I 8 000 - 10 000 3.00 - 3.75 Бортовые многофункциональные РЛС (БРЛС)
J 10 000 - 20 000 1.50 - 3.00 РЛС наведения и подсвета цели (РПН), напр. 30Н6, 9С32
K 20 000 - 40 000 0.75 - 1.50
L 40 000 - 60 000 0.50 - 0.75
M 60 000-100 000 0.30 - 0.50

См. также

  • Трёхкоординатная РЛС

История радио, которомусто лет, полна драматических событий, в которых переплелись технические достижения и человеческие судьбы.Расскажем об истории появлениянекоторых радиоустройств.

Одна из важнейших задач военного радио состоит в дальнем обнаружении самолетов и ракет противника, в заблаговременном предупреждении об авианалете. С самого начала аспекты этой области техникиобсуждались в очень высоких кабинетах.

Идея создания радиолокатора принадлежит военному инженеру Павлу Кондратьевичу Ощепкову. В 1933 году вышла его статья об «электровидении», в которой предлагалось обнаруживать самолет по отраженному радиоимпульсу. П.К. Ощепков добился обсуждения идеи «электровидения» у начальника вооружений РККА М.Н.Тухачевского. На совещании присутствовалипрезидент АН СССР А.П.Карпинский, академик А.Ф.Иоффе и другие выдающиеся ученые.Одобрение идеи «электровидения» (на современном языке - радиолокации) на таком представительном форумедало возможность быстро создать невиданное устройство - электровизор.

В рассказах об этом совещании осталось«особое мнение» А.Ф.Иоффе, который, одобряя идею «электровизора», считал, что для обнаружения самолетов следует применятьне дециметровые, а более длинные радиоволны, например, метровые. Метровые волны соизмеримы с самолетом.Для метровых волн самолет - рассеивающая неоднородностьс размерами порядка длины волны. Такая неоднородностьрассеивает радиоволну в пространстве равномерно во всех направлениях, в частности, в направлении «назад», обратно, к «электровизору». В этом случае можно принять отраженный от самолета импульс.Для дециметровых и сантиметровых волн детали самолета - отражающие поверхности (плоскости), поэтому пришедшие от «электровизора» к самолету радиоволны отразятся от плоских поверхностей направленно и назад к «электровизору» не попадут.

80 лет назад обсуждались вопросы, которые в дальнейшем исследовались при составлении «радиолокационных портретов» различных летательных аппаратов, а сейчас относятся к технологии «стелс», к созданию самолетов-невидимок!

Решениесовещания быстро воплотилось в жизнь. В 1934 годув присутствии ученых и военноначальников был испытан «электровизор». В связи с этим осталась еще одна «академическая» история.М.Н.Тухачевский перед испытаниями поинтересовался уакадемика М. В. Шулейкина, каково его мнение о новинке, и получил ответ: «Все это чепуха! В этом я уверен больше, чем в том, что стою на земле!».В ходе испытаний П.К. Ощепков попросил академика сесть за пульт «электровизора», после чего М.В Шулейкин сказал: «Я ошибся. Мы присутствуем при рождении совершенно новой техники и нового направления в науке».

После успешных испытанийприбора было создано конструкторскою бюро (КБ УПВО) во главе с П.К. Ощепковым. Деятельность КБ УПВО РККА состояла как в самостоятельных разработках, так и в координации деятельности всех предприятий, занятых созданием «электровизора». КБ разрабатываломощные генераторы и лампы к ним, регистрирующие устройства и т.д. Но еще КБвыдавало НИИ и заводамзаказы на исследования, разработку и изготовление отдельных узлов аппаратуры радиообнаружения. Даже задание на разработку тактико-технических вопросов радиообнаружения выдавало КБ Ощепкова.Кроме того, КБ УПВО было обязано оборудовать новейшей аппаратурой командные пункты ПВО.

Работа шла в КБ ПВО, в Ленинградском физико-техническом институте (ЛФТИ), во Всесоюзном электротехническом институте (ВЭИ), в Ленинградском электрофизическом институте (ЛЭФИ), в Центральной радиолаборатории (ЦРЛ) и других научных и инженерных центрах страны.

Потом настал 1937 год, М.Н.Тухачевский погиб, погибли или пострадали многие его соратники. П.К. Ощепков получил 10 лет лагерей. Свой срок он отсидел полностью и вышел, когда СССР отстал в области радиолокации от США и Великобритании.

Послеареста Ощепкова КБ продолжало работать под руководством Ю.Б.Кобзарева. В результате перед самой войной появился первый советский радиолокатор РУС-2 (радиоулавливатель самолетов).


РУС-2 был принят на вооружение, сыграл определенную роль при обороне Москвы, однако массового использования этого радиолокатора в Великой Отечественной войне не было. Даже фотографию РУС-2 я не смог найти, только рисунок

Можно считать, что первый период истории советской радиолокации закончился в 1941/42 годах. Потом начался новый период, практически, «с нуля»: отзыв с фронта инженеров, организация предприятий, перевод с английского научной литературы (так называемая «массачусетская серия»).