В состав цитоплазматической мембраны не входят. Цитоплазматическая мембрана. Функции клеточной мембраны

Девиз урока.

«Человек должен верить, что непонятное можно понять, иначе он не стал бы размышлять об этом». Сократ.

Задачи урока .

Познавательные:

  • Раскрыть связь строения сердца с его функцией.
  • Дать понятие о сердечном цикле, причине неутомляемости сердца.
  • Рассмотреть причину автоматизма сердца.
  • Раскрыть роль нервно-гуморальной регуляции в работе сердца.

Развивающие:

Оборудование .

  • «Строение сердца».
  • «Круги кровообращения».
  • «Фазы сердечного цикла».

Видеоматериал: «Работа сердца».

Актуализация знаний.

Биологическая разминка.

Что уже знаем, что должны узнать на уроке? - Cообщение целей урока.

Артерии, вены, капилляры.

Эпикард, миокард, эндокард, околосердечная сумка.

Артериальная кровь.

Венозная кровь.

Створчатые клапаны.

Кармановидные клапаны.

Полулунные клапаны.

Автоматизм.

Кровообращение.

Предсердие и желудочки сердца.

Диастола.

Адреналин.

Симпатический и блуждающий нерв.

Повторение домашнего задания.

  1. Где начинается и заканчивается большой круг кровообращения, что происходит с кровью?
  2. Где начинается и заканчивается малый круг кровообращения, что происходит с кровью?
  3. Какая кровь течёт по артериям большого круга, а какая по артериям малого?
  4. Какая кровь течёт по венам большого круга, а какая по венам малого круга?

Изучение нового материала. (C использованием презентации. Приложение .)

В 1628 году Уильям Гарвей предложил схему кровообращения, которая признана в настоящее время. Согласно его схеме сердце служит насосом, прокачивающим кровь по сосудам. Сегодня на уроке мы с вами (по терминам биологической разминки называю задачи урока и эпиграф).

I. Положение сердца в грудной клетке.

Слово «сердце» от слова середина. Расположено в грудной полости за грудиной между правым и левым лёгким, смещено в левую сторону от средней линии груди. По форме сердце напоминает конус. Верхушка сердца направлена вниз, вперёд, влево.

Размеры с кулак человека, средняя масса от 250 г. (у женщины) до 300 г. (у мужчины).

II. Строение сердца.

Эволюция сердца позвоночных животных. Сердце человека почти не отличается по строению от сердца млекопитающих животных и выполняет ту же функцию – функцию насоса.

Сердце 4 камерное. Разделено сплошной перегородкой на правую и левую половину. Каждая половина предсердие и желудочек. Сердце полый мышечный орган. Находится в околосердечной сумке . Внутренняя поверхность околосердечной сумки выделяет жидкость увлажняющую сердце и уменьшающую трение при сокращениях. Эпикард – наружный слой состоит из соединительной ткани. Миокард – это сердечная мышца, обладает способностью сокращаться независимо от воли человека.

Сравните толщину станок всех отделов сердца и сделайте выводы (связь нагрузки и толщины сердечной мышцы).

Изнутри полость сердца выстлана внутренней оболочкойэндокардом. Это эпителиальная ткань.

Сколько слоёв имеет сердце?

Вспомните слои кровеносных сосудов? стр.104 р.50

Какие сосуды от сердца и к сердцу?

Вывод. Сердце имеет те же слои, что и кровеносные сосуды.

III. Сердечные клапаны.

Роль клапанов.

Значение венозных кармановидных клапанов р.50 стр. 104.

На границе предсердия и желудочков имеются створчатые клапаны: в левой части двухстворчатые, а в правой – трехстворчатые.

На стороне клапанов обращенных в полость желудочков имеются специальные сухожильные нити, прикреплённые к сосочковым мышцам. Эти нити удерживают клапаны, не дают им вывернуться в сторону предсердий. При сокращении желудочков створчатые клапаны закрываются и кровь в предсердия подняться не может.

У входа аорты и лёгочной артерии из желудочков сердца, находятся полулунные клапаны, они имеют вид 3 кармашков, расположенных на внутренних стенках кровеносных сосудов. Обеспечивают движение крови в одном направлении из желудочков в артерии.

Кармашки полулунных клапанов направлены свободным краем в просвет сосудов. Если кровь потечёт в обратном направлении, их края плотно сомкнуться, не давая крови вернуться в сердце.

Клапаны эластичны, имеют идеально ровную поверхность, это уменьшает трение, предотвращает возникновение обратного тока крови.

Поражение клапанов инфекцией (осложнения гриппа, ангины) приводит к возникновению воспалительных рубцов, спаек, и клапаны пропускают кровь в обратном направлении – это приобретённые пороки сердца.

Вывод. Клапаны сердца и сосудов обеспечивают движение крови строго в одном направлении: по венам к сердцу, из предсердий в желудочки, по артериям от сердца.

IV. Сердечный цикл.

Проблема.

Сердце – удивительный и надёжный насос, который работает всю жизнь без остановки.

Сердце перекачивает за сутки 10 тонн крови. Суточная работа сердца 170000 = железнодорожный вагон 1 м.

В чём секрет неутомляемости и высокой работоспособности?

Выдвижение гипотез.

Почему не наступает утомление?

Стр. 108 – высокий уровень обмена веществ 10% крови по венечной артерии. – ритмичность.

№91 с. 39 рабочая тетрадь.

Рассмотрим работу сердца на примере одного сердечного цикла.

Сердечный цикл – это последовательность событий, происходящих во время одного сокращения сердца. Длится оно менее 1 с.

Сердечный цикл состоит из трех фаз (рис. 2).

  • Сокращение предсердий – систола предсердий – длится около 0,1 с, при этом желудочки расслаблены, створчатые клапаны открыты, полулунные закрыты.
  • Сокращение желудочков – систола желудочков – длится около 0,3 с, при этом предсердия расслаблены, створчатые клапаны закрыты (сухожильные нити не дают им прогибаться, а крови – затекать в предсердия), кровь устремляется в лёгочную артерию и аорту.
  • Полное расслабление сердца – сердечная пауза, или диастола, - длится около 0,4 с.

Итак, серия событий, образующих один полный цикл прокачивания крови, называется сердечным циклом. Он прослушивается как сердцебиение. Воронежские физики и медики Ю.Д. Сафонов и Л.И. Якименко определи, что в течении одного сердечного цикла клапаны и сердечная мышца участвуют в 40 последовательных движениях.

Оптимальный режим работы сердца: предсердия работают 0,1 с, а 0,7 с. отдыхают; желудочки работают 0,3 с, а 0,5 с отдыхают.

Задача. Человеку 80 лет. Определите, сколько лет отдыхали у него желудочки сердца. В среднем частота биения сердца – 70 ударов в минуту.

В сердце чрезвычайно интенсивно протекают обменные процессы, так как клетки мышечной ткани содержат много митохондрий и ткань хорошо снабжается кровью: масса сердца составляет 0,5% от массы тела, при этом 10% крови, выбрасываемой аортой, идёт в коронарные, или венечные, сосуды, питающие само сердце.

Вывод. Высокая работоспособность сердца обусловлена:

  • Высоким уровнем обменных процессов, происходящих в нём.
  • Усиленным снабжением его мышц кровью.
  • Строгим ритмом его деятельности (фазы работы и отдыха каждого отдела строго чередуются).

V. Регуляция работы сердца. Результат домашних самонаблюдений?

(Схема под таблицу или на обратной стороне доски.)

Количество сокращений в покое и после 10 приседаний. Работа сердца меняется при увеличении физической нагрузки, умственном напряжении, эмоциональном состоянии. Чем объяснить приспособленность работы к потребностям организма. Центральная нервная система постоянно контролирует работу сердца. Нервные импульсы меняют ритм сердечной деятельности. Центр кровообращения в продолговатом мозге, отходят 2 парасимпатическихеских нерва.

Из шейного симпатического узла симпатические.

Двойная иннервация.

Гуморальная регуляция активности сердца обеспечивается веществами циркулирующими в крови.

Вывод. Нервная и гуморальная регуляция – единый механизм регуляции работы сердца. Изменяется интенсивность работы сердца, частота и сила сердечных сокращений под влиянием импульсов ЦНС и поступающих с кровью биологически активных веществ. При этом последовательность фаз сердечного цикла не меняется.

Философы и поэты отожествляют сердце с душой человека, полагая, что именно сердцем человек любит, ненавидит, чувствует и переживает. Так ли уж неправы философы и поэты?

Горе, радость, волнение отражаются на сердечной деятельности. Деятельность сердца связана с психологическими переживаниями.

VI. Автоматизм сердца.

Самостоятельная работа с учебником стр. 112 «Особенности сердечной мышцы».

Иногда можно наблюдать удивительное явление: биение изолированного сердца, т.е. сердца вне организма, в искусственно созданной питательной среде.

Сердце – живучий орган. Русский физиолог А.А. Кулябко (1903 г.) оживил сердце трёхмесячного ребёнка, умершего от пневмонии, через 20 часов после его смерти. С.С. Брюхоненко сумел оживить сердце через 100 часов после наступления смерти.

Почему сердце сокращается даже вне организма? Оно имеет собственный «встроенный» механизм, обеспечивающий сокращение мышечных волокон. Импульсы идут от предсердий к желудочкам. Эту способность сердца ритмично сокращается без внешних раздражений, под влиянием импульсов, возникающих в нём, называют автоматизмом сердца.

Специфическая мускулатура образует в сердце проводящую систему, со скоплениями клеточных узлов – водителей ритма.

Все эти изменения можно зарегистрировать специальной аппаратурой.

Кардиограмма отображает электрические явления в работающем сердце.

Вывод. Автоматизм сердечной деятельности обеспечивает порядок фаз сердечного цикла.

Вывод по уроку.

(Возвращаемся к биологической разминке).

Что нового мы узнали на уроке?

И так, мы сегодня на уроке изучили строение сердца, работу сердца, механизм нервной и гуморальной регуляции.

Выяснили причину удивительной работоспособности сердца в течении всей нашей жизни. Ритмичность работы сердца, чередование работы и отдыха, его обильное кровоснабжение обеспечивает отличную работоспособность.

Закрепление.

  • По таблице камеры, клапаны, сосуды, ведущие от сердца и к сердцу.
  • Назовите фазы сердечного цикла.
  • Действие симпатических и парасимпатических нервов.

Найди ошибку.

Сердце – двигатель крови в организме. Это трёх камерный мышечный орган, расположенный в брюшной полости, массой около 1 кг. И снаружи и внутри сердце выстлано эпителиальной тканью. Внутри – клапанный аппарат, обеспечивающий ток крови в одном направлении. Желудочки разделены неполной перегородкой, артериальная и венозная кровь смешивается. Самая крупная вена, несущая кровь от сердца – аорта – начинается от левого желудочка.

Сердечный цикл длится 0,8 минуты.

Тест

  1. Сердце человека камерного типа. Число камер равно?
    А) 2;
    Б) 3;
    В) 4;
    Г) 5.
  2. В сердечном цикле выделяют несколько фаз. Какая фаза считается началом цикла.
    А) Сокращение желудочков;
    Б) Расслабление;
    В) Сокращение предсердий.
  3. В какой момент открываются створчатые клапаны сердца?
    А) Сокращение желудочков;
    Б) Сокращение предсердий;
    В) Пауза.
  4. Где находятся полулунные клапаны?
    А) Между правым желудочком и правым предсердием;
    Б) На границе левого желудочка и аорты;
    В) Между левым желудочком и левым предсердием.
  5. Выберите из предложенных суждений правильные:
    А) Между сердцем и околосердечной сумкой находится жидкость.
    Б) Между предсердием и желудочками находятся полулунные клапаны.
    В) Стенка левого желудочка сердца развита лучше, чем стенка правого.
    Г) Адреналин тормозит работу сердца.
    Д) Интенсивность работы сердца не зависит от эмоционального состояния.
    Е) Изменение частоты и силы сердечных сокращений не зависит от поступающих в кровь биологически активных веществ.
    Ж) Сердечная мышца состоит из поперечно-полосатых мышц.

Домашнее задание

Параграф 22 задание стр.114. № 88, №89.

Сердечным циклом называется период, охватывающий полное сокращение и расслабление сердца. Цикл сердечной деятельности длится 0,8 с . Предсердия и желудочки сокращаются последовательно. Сокращение мышцы сердца называется систолой, а расслабление - диастолой. Сердечный цикл состоит из трёх фаз: систолы предсердий (0,1 с), систолы желудочков (0,3 с) и общей диастолы! (0,4 с), называемой также паузой. Во время паузы створчатые клапаны открыты, а полулунные закрыты. Кровь притекает из вен в предсердия, а затем в желудочки, и к концу паузы желудочки заполняются кровью на 70%. Систола предсердий начинается с сокращения мускулатуры устьев полых и лёгочных вен, что препятствует обратному току крови. Кровь нагнетается в желудочки до 100%. После этого начинается систола желудочков: захлопываются предсердно-желудочковые клапаны, так как по мере наполнения они оттесняются в сторону предсердий и, когда давление в желудочках превысит давление в предсердиях, клапаны захлопываются полностью (фаза напряжения). Когда давление в желудочках превысит давление в артериях, полулунные клапаны открываются и кровь выбрасывается в аорту и лёгочный ствол (фаза изгнания). Затем снова наступает диастола желудочков, давление в них понижается. Когда оно становится ниже, чем в аорте и лёгочном стволе, полулунные клапаны закрываются. В это время предсердно-желудочковые клапаны под давлением крови предсердий открываются, и цикл повторяется снова.

Механизм образования тонов сердца

Тоны сердца - это звуки, возникающие во время работы сердца. Существует два основных тона. I тон - систолический (низкий, глухой, продолжительный). II тон - диастолический (высокий и короткий).Систолический тон возникает в начале систолы желудочков в результате захлопывания предсердно-желудочковых клапанов, колебания миокарда и сухожильных нитей. Диастолический тон образуется в начале диастолы при захлопывании полулунных клапанов аорты и лёгочного ствола.

Методом определения тонов сердца служит аускультация (выслушивание). Тоны сердца выслушивают в местах проекции клапанов:

митральный клапан - в области верхушки (в пятом межреберье, на 1-2 см медиальнее среднеключичной линии);

аортальный клапан - во втором межреберье справа у края грудины;

клапан лёгочного ствола - во втором межреберье слева у края грудины;

трёхстворчатый клапан - в месте соединения мечевидного отростка с телом грудины.

Шумы сердца можно определить только при патологии, их выслушивают в тех же местах, что и тоны.

Свойства сердечной мышцы

Сердечная мышца, как и скелетные мышцы, обладает свойством возбудимости, способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы (в отличие от скелетной мышцы) относят удлинённый рефрактерный период и автоматизм. Во время возбуждения сердечная мышца утрачивает способность отвечать на повторное раздражение возбуждением. Процессу сокращения и расслабления сердца соответствуют периоды отсутствия возбудимости мышечной ткани: абсолютная и относительная рефрактерность. Периоду рефрактерности соответствует время отсутствия сокращения мышцы. Длительный период невозбудимости предохраняет миокард от слишком быстрого повторного возбуждения. Если сокращения миокарда происходили бы слишком часто, то ухудшилась бы нагнетательная функция сердца, так как при слишком быстрой частоте сокращения кровь не успевала бы заполнить сердце. Миокард не способен к тетанусу - суммации сокращений - в отличие от скелетных мышц. Сократимость миокарда не может изменяться включением дополнительного количества двигательных единиц. Миокард функционально является синцитием (сетью мышечных волокон), поэтому в каждом сокращении участвуют все мышечные волокна по закону «всё или ничего».

Автоматизм - способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нём самом, что обеспечивается проводящей системой сердца.

Проводящая система сердца

Регуляция и координация сократительной функции сердца осуществляется его проводящей системой. В её состав входят атипичные мышечные волокна - сердечные проводящие миоциты, способные генерировать импульсы и проводить их к клеткам миокарда. Проводящие миоциты расположены под эпикардом, в них мало миофибрилл, но много митохондрий (рис. 13.5).

Центры проводящей системы сердца .

Синусно-предсердный узел (узел Киса-Флека), расположенный в стенке правого предсердия у места впадения верхней полой вены.

Предсердно -желудочковый узел (узел Ашоффа-Тавара), лежащий в толще нижнего отдела межпредсердной перегородки.

Книзу предсердно-желудочковый узел переходит в предсердно-желудочковый пучок Гиса, который связывает миокард предсердий с миокардом желудочков.

В мышечной части межжелудочковой перегородки пучок Гиса делится на правую и левую ножки.

Концевые разветвления ножек пучка Гиса - волокна Пуркинье, которые заканчиваются на клетках миокарда желудочков.

Функцию водителя ритма выполняет синусно-предсердный узел, который генерирует ритм с частотой 70 сокращений в минуту. Возбуждение распространяется по предсердию, достигает предсердно-желудочкового узла и тормозит его активность. Если водитель ритма выходит из строя, его функции переходят к предсердно-желудочковому узлу, но частота сокращений миокарда уменьшается вдвое. От предсердно-желудочкового узла импульсы по пучку Гиса распространяются на желудочки, оканчиваясь волокнами Пуркинье. В такой же последовательности сокращаются и расслабляются камеры сердца.


Похожая информация.


Ответ на этот вопрос можно найти в представленной ниже статье. Помимо этого, здесь содержится информация о нарушениях здоровья человека, связанных с названным понятием.

Что такое автоматизм сердца?

Мышечные волокна в организме человека обладают способностью реагировать на раздражающий импульс сокращением и затем последовательно передавать это сокращение по всей мышечной структуре. Доказано, что изолированная сердечная мышца способна самостоятельно генерировать возбуждение и совершать ритмические сокращения. Такая способность называется автоматизмом сердца.

Причины сердечного автоматизма

Понять, в чем заключается автоматизм сердца, можно из нижеследующего. Сердце имеет специфическую способность к генерации электрического импульса с последующим его проведением до мышечных структур.

Синоатриальный узел - скопление пейсмекерских клеток первого типа (содержит около 40 % митохондрий, рыхло расположенные миофибриллы, отсутствует Т-система, содержит большое количество свободного кальция, имеет слаборазвитую саркоплазматическую сеть), располагается в правой стенке верхней полой вены, в месте впадения в правое предсердие.

Атриовентрикулярный узел образован переходными клетками второго типа, которые проводят импульс из синоатриального узла, однако в особых условиях могут самостоятельно генерировать электрический заряд. Переходные клетки содержат меньше митохондрий (20-30 %) и несколько больше миофибрилл, чем клетки первого порядка. Атриовентрикулярный узел расположен в межпредсердной перегородке, по нему возбуждение передается к пучку и ножкам пучка Гиса (содержат 20-15 % митохондрий).

Являются следующим этапом передачи возбуждения. Они отходят приблизительно на уровне середины перегородки от каждой из двух ножек пучка Гиса. Их клетки содержат около 10 % митохондрий, по структуре несколько больше похожи на сердечные мышечные волокна.

Самопроизвольное возникновение электрического импульса происходит в пейсмекерских клетках синоатриального узла, который потенцирует волну возбуждения, стимулирующую 60-80 сокращений в минуту. Он является водителем первого порядка. Затем возникшая волна передается на проводящие структуры второго и третьего уровня. Они способны как проводить волны возбуждения, так и самостоятельно индуцировать сокращения более низкой частоты. Водителем второго уровня после синусового узла является атриовентрикулярный узел, который способен самостоятельно создавать 40-50 разрядов в минуту в отсутствии подавляющей активности синусового узла. Далее возбуждение передается на структуры который воспроизводит 30-40 сокращений в минуту, затем электрический заряд перетекает на ножки пучка Гиса (25-30 импульсов в минуту) и систему волокон Пуркинье (20 импульсов в минуту) и попадает на рабочие мышечные клетки миокарда.

Обычно импульсы из синоатриального узла подавляют самостоятельную способность к электрической активности нижележащих структур. Если нарушается функционирование водителя первого порядка, то его работу на себя берут стоящие ниже звенья проводящей системы.

Химические процессы, обеспечивающие автоматизм сердца

Что такое автоматизм сердца с точки зрения химии? На молекулярном уровне основой для самостоятельного возникновения электрического заряда (потенциала действия) на мембранах пейсмекерских клеток является наличие так называемого импульсатора. Его работа (функция автоматизма сердца) содержит три этапа.

Этапы работы импульсатора:

  • 1-я фаза подготовительная (в результате взаимодействия супероксидного кислорода с положительно заряженными фосфолипидами на поверхности мембраны пейсмекерской клетки она приобретает отрицательный заряд, это нарушает потенциал покоя);
  • 2-я фаза активного транспорта калия и натрия, во время работы которого наружный заряд клетки становится равен +30 мВт;
  • 3-я фаза электрохимического скачка - используется энергия, возникающая при утилизации активных форм кислорода (ионизированного кислорода и перекиси водорода) с помощью ферментов супероксиддисмутазы и каталазы. Возникшие кванты энергии повышают биопотенциал пейсмекера настолько, что он вызывает потенциал действия.

Процессы генерации импульса клетками - пейсмекерами обязательно происходят в условиях достаточного присутствия молекулярного кислорода, который доставляется к ним эритроцитами притекающей крови.

Снижение уровня работы или частичное прекращение функционирования одного или нескольких этапов системы импульсатора нарушает согласованную работу пейсмекерских клеток, что вызывает аритмии. Блокировка одного из процессов этой системы вызывает внезапную остановку сердца. Поняв, что такое автоматизм сердца, можно осознать и этот процесс.

Воздействие автономной нервной системы на работу сердечной мышцы

Помимо собственной возможности генерировать электрические импульсы, работа сердца контролируется сигналами из иннервирующих мышцу симпатических и парасимпатических нервных окончаний, при сбое которых возможно нарушение автоматизма сердца.

Воздействие симпатического отдела ускоряет работу сердца, оказывает стимулирующее действие. Симпатическая иннервация оказывает положительное хронотропное, инотропное, дромотропное действие.

Под преобладающим действием происходит замедление процессов деполяризации пейсмекерских клеток (тормозящее действие), а значит, урежение сердечного ритма (отрицательное хронотропное действие), снижение проводимости внутри сердца (отрицательное дромотропное действие), уменьшение энергии систолического сокращения (отрицательное инотропное действие), но усиливается возбудимость сердца (положительное батмотропное действие). Последнее тоже принимается за нарушение функции автоматизма сердца.

Причины нарушения автоматизма сердца

  1. Ишемия миокарда.
  2. Воспаление.
  3. Интоксикация.
  4. Нарушение баланса натрия, калия, магния, кальция.
  5. Гормональная дисфункция.
  6. Нарушение воздействия автономных симпатических и парасимпатических окончаний.

Типы нарушений ритма вследствие нарушения автоматизма сердца

  1. Синусовая тахи- и брадикардия.
  2. Дыхательная (юношеская) аритмия.
  3. Экстрасистолическая аритмия желудочковая).
  4. Пароксизмальные тахикардии.

Различают аритмии вследствие нарушения автоматизма и проводимости с образованием циркуляции волны возбуждения (волна re-entry) в одном определенном или нескольких отделах сердца, в результате возникает фибрилляция или трепетание предсердий.

Фибрилляция желудочков - одна из наиболее угрожающих для жизни аритмий, следствием которой является внезапная остановка сердца и смерть. Наиболее эффективный метод лечения - электрическая дефибрилляция.

Заключение

Итак, рассмотрев, в чем заключается автоматизм работы сердца, можно понять, какие нарушения возможны в случае заболевания. Это, в свою очередь, дает возможность бороться с болезнью более оптимальными и действенными методами.

Сердце — это полый мышечный орган, который обеспечивает кровообращение. происходят вследствие периодически возникающих в сердечной мышце процессов возбуждения.

Возбуждение в сердце возникает периодически под влиянием процессов, протекающих в нем самом. Эта способность сердца сокращаться под действием импульсов, возникающих в самой ткани без внешних воздействий, получила название автоматии.

Показателем автоматии сердечной мышцы может быть тот факт, что изолированное сердце лягушки, удаленное из организма и помещенное в физиологический раствор, может в течение длительного времени ритмически сокращаться.

Способностью к автоматии обладают определенные участки миокарда, состоящие из специфической (атипической) мышечной ткани, бедной миофибриллами, богатой саркоплазмой и напоминающей эмбриональную мышечную ткань. Специфическая (атипическая) мускулатура образует в сердце проводящую систему.

Помимо специфической ткани, в миокарде сердца есть и неспецифическая (типическая) мышечная ткань. По строению она сходна с поперечно-полосатой скелетной мышечной тканью и образует рабочую часть миокарда.

В клетках специфической ткани находится большое количество межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками атипической ткани и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Представлена тремя узлами — водителями ритма (рис. 1): синусно-предсердный, или синоатриальный, узел расположен в стенке правого предсердия в устье полых вен; предсердно-желудочковый узел, атриовентрикулярный узел, расположенный в нижней трети правого предсердия и межжелудочковой перегородке; от этого узла берет начало предсердно-желудочковый пучок (пучок Гиса ), прободающий предсердно-желудочковую перегородку и делящийся на правую и левую ножки, следующие в межжелудочковой перегородке. В области верхушки сердца ножки пучка Гиса загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокна Пуркинье), погруженных в рабочий (сократительный) миокард желудочков. Проводящая система сердца, как уже говорилось, обладает автоматиеи.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии , выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60-80 в минуту.

Рис. 1. Строение проводящей системы сердца и хронотопография распространения возбуждения: SA — синоатриальный узел. AV- атриовентрикулярный узел. Цифры обозначают охват возбуждением отделов сердца в секундах от момента зарождения импульса в синоатриальном узле

В обычных условиях автоматия всех ниже расположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна пучка Гиса. Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.

Доказательством разной активности водителей ритма является опыт Станниуса с наложением лигатур — перевязок (рис. 2). В опыте на лягушке с помощью лигатуры отделяется часть предсердия вместе с синоатриальным узлом от остальной части сердца. После этого все сердце перестает сокращаться, а отделенный участок предсердия продолжает сокращаться в том же ритме, что и до наложения лигатуры. Это свидетельствует о том, что синоатриальный узел является ведущим, от него зависит частота сердечных сокращений. Станниус назвал этот узел водителем ритма 1-го порядка.

Рис. 2. Лигатуры Станниуса: А — работа сердца без лигатур; Б — лигатура отделяет синусный узел, предсердия и желудочки не сокращаются; В — вторая лигатура, желудочки сокращаются медленно; Г — третья лигатура, верхушка сердца не сокращается, в ней нет атипической ткани

Через 20-30 мин после наложения лигатуры на сердце лягушки проявляется автоматия атриовентрикулярного узла: сердце начинает сокращаться, но в более редком ритме, чем до наложения лигатуры, причем предсердия и желудочки сокращаются одновременно. Атриовентрикулярный узел был назван водителем ритма 2-го порядка. Иногда для включения атриовентрикулярного узла требуется наложить вторую лигатуру, вызвав таким образом механическое раздражение водителя ритма 2-го порядка.

Если на сердце теплокровного животного создать блок между атриовентрикулярным узлов и пучком Гиса, то верхушка сердца будет сокращаться в еще более редком ритме, который зависит от автоматам пучка Гиса или волокон Пуркинье. Наложение третьей лигатуры на верхушку сердца показывает, что в ней отсутствует атипическая ткань, следовательно, она не сокращается, не обладает автоматией.

Биологические мембраны. Цитоплазматическая мембрана: строение, свойства, функции.

Для клеток характерен мембранный принцип строения.

Биологическая мембрана – тонкая пленка, белково-липидная структура, толщиной 7 - 10 нм, расположенная на поверхности клеток (клеточная мембрана), образующая стенки большинства органоидов и оболочку ядра.

В 1972 г. С. Сингером и Г. Николсом была предложена жидкостно-мозаичная модель строения клеточной мембраны. Позднее она была практически подтверждена. При рассмотрении в электронном микроскопе можно увидеть три слоя. Средний, светлый, составляет основу мембраны - билипидный слой, образованный жидкими фосфолипидами («липидное море»). Молекулы мембранных липидов (фосфолипиды, гликолипиды, холестерол и др.) имеют гидрофильные головки и гидрофобные хвосты, поэтому упорядоченно ориентированы в бислое. Два темных слоя – это белки, располагающиеся относительно бислоя липидов по-разному: периферические (прилегающие )- большинство белков, находятся на обеих поверхностях липидного слоя; полуинтегральные (полупогруженные ) – пронизывают только один слой липидов; интегральные (погруженные ) – проходят через оба слоя. У белков имеются гидрофобные участки, взаимодействующие с липидами, и гидрофильные – на поверхности мембраны в контакте с водным содержимым клетки, или тканевой жидкостью.

Функции биологических мембран :

1) отграничивает содержимое клетки от внешней среды и содержимое органоидов, ядра от цитоплазмы;

2) обеспечивают транспорт веществ в клетку и из нее, в цитоплазму из органоидов и наоборот;

3) участвуют в получении и преобразовании сигналов из окружающей среды, узнавании веществ клеток и т.д.;

4) обеспечивают примембранные процессы;

5) участвуют в преобразовании энергии.

Цитоплазматическая мембрана (плазмалемма, клеточная мембрана, плазматическая мембрана) – биологическая мембрана, окружающая клетку; основная, универсальная для всех клеток составная часть поверхностного аппарата. Толщина ее около 10 нм. Имеет характерное для биологических мембран строение. В цитоплазматической мембране гидрофильные головки липидов обращены к наружной и внутренней сторонам мембраны, а гидрофробные хвосты – внутрь мембраны. Периферические белки связаны с полярными головками липидных молекул гидростатическими взаимодействиями. Они не образуют сплошного слоя. Периферические белки связывают плазмалемму с над- или субмембранными структурами поверхностного аппарата. Некоторые молекулы липидов и белков плазмалемма животных клеток имеют ковалентные связи с молекулами олиго- иполисахаридов, которые расположены на наружной поверхности мембраны. Сильно разветвленные молекулы образуют с липидами и белками гликолипиды и гликопротеиды соответственно. Сахаридный слой - гликокаликс (лат. гликис – сладкий и калюм – толстая кожа) покрывает всю поверхность клетки и представляет собой надмембранный комплекс животной клетки. Олигосахаридные и полисахаридные цепи (антенны) выполняют ряд функций: распознавания внешних сигналов; сцепления клеток, их правильной ориентации при образовании тканей; иммунного ответа, где гликопротеиды играют роль иммунного ответа.

Рис. Строение плазмалеммы

Химический состав плазмолеммы: 55% - белки, 35-40% - липиды, 2-10% - углеводы.

Наружная клеточная мембрана образует подвижную поверхность клетки, которая может иметь выросты и выпячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы. Клеточная поверхность неоднородна: структура ее в разных участках неодинакова, неодинаковы и физиологические свойства этих участков. В плазмалемме локализованы некоторые ферменты (около 200), поэтому действие факторов внешней среды на клетку опосредуется ее цитоплазматической мембраной. Поверхность клетки обладает высокой прочностью и эластичностью, легко и быстро восстанавливается после небольших повреждений.

Строение плазматической мембраны определяет ее свойства:

Пластичность (текучесть), позволяет мембране менять свою форму и размеры;

Способность к самозамыканию, дает возможность мембране восстанавливать целостность при разрывах;

Избирательная проницаемость, обеспечивает прохождение различных веществ через мембрану с разной скоростью.

Основные функции цитоплазматической мембраны:

· определяет и поддерживает форму клетки (формообразовательная );

· отграничивает внутренне содержимое клетки (барьерная), играя роль механического барьера ; собственно барьерную функцию обеспечивает билипидный слой, не давая содержимому растекаться и препятствуя проникновению в клетку чужеродных веществ;

· защищает клетку от механических воздействий (защитная) ;

· регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава (регуляторная) ;

· распознает внешние сигналы, «узнает» определенные вещества (например, гормоны) (рецепторная ); некоторые белки плазмалеммы (рецепторы гормонов; рецепторы В-лимфоцитов; интегральные белки, выполняющие специфические ферментативные функции, осуществляющие процессы пристеночного пищеварения) способны узнавать определенные вещества и связываться с ними, таким образом рецепторные беки участвуют в отборе молекул, поступающих в клетку;