Нетривиальные нули. Что такое гипотеза Римана? Теория Янга - Миллса

1. Фокусные расстояния объектива и окуляра.

= = = 19.6154

= L - = 255 – 19.6154 = 235.3846

2. Диаметр входного зрачка.

D = 2.5 · 12 = 30

Относительное отверстие определяется как:

3. Поле зрение окуляра.

а) Линейное поле зрения окуляра:

235.3846 · tg1.5 = 6.1671

б) Угловое поле зрение окуляра.

Arctg0.3144 = 17.4531

2 = 17.4531 · 2 = 34.9062

4. Цена одной диоптрии.
= 0.3843

V. Аберрационный расчет окуляра

Аберрационный расчет окуляра проводился для 3 длин волн: = 589 нм, = 656 нм, = 486 нм.

1. Поле зрение:

Г · 2 = 12 · 3 = 36 (симметричная)

2. Коэффициент пересчета:

Тогда с учетом данного коэффициента радиусы и толщины линз окуляра имеют соответствующие значения:

Расчет удаления выходного зрачка:

235.3846

1.6346

0.75 · = 14.7116

14.7116 + 1.6346 = 16.3462

d = = = 0.0034

VI. Расчет аберрационной призменной системы

Аберрации призменной системы вычисляют по формулам аберраций 3-го порядка эквивалентной плоскопараллельной пластины:

1) Продольная сферическая аберрация:

d = d si = 0.5 · 84 · · si 3.6448 = 42 · · 0.004 = 0.0636

d’ = arctg = arctg = 3.6448

2) Хроматизм положения:

( - = · = · = 0.3464

3) Меридианная кома:

d = d · si = 126 · · 0.004 · 0.0262 = - 0.00499

Tg1.5 = 0.0262

VII. Расчет объектива

Расчет аберраций объектива.

Для определения аберраций, которыми должен обладать объектив, используют формулы суммирования аберраций.

Продольная сферическая аберрация:

d = - (d + d ) = - (0.0636 – 0.0482) = -0.0154

Хроматизм положения:

d = -(-0.0984 + 0.3464) = -0.284

Меридиональная кома:

d = d - d = 0.0034 + 0.00499 = 0.00839

Определение конструктивных элементов объектива.



Аберрации тонкой оптической системы определяют тремя основными параметрами P,W,C .

Расчет выполняется в следующем порядке:

1. Аберрационные суммы:

7.5122

= - = - = 52.0385

2. Основные параметры системы:

C = = = - 0.0012

P = = = 0.0319

W = = = 0.22107

3. Параметры, также используемые при выборе объектива:

= P – 0.85(W - = 0.0319– 0.85(0.22107 – 0.1 = 0.0319 – 0.3758 =

Для вычисления значений C и по таблице-номограмме была найдена группа комбинаций стекол с наиболее близкими к расчетным показателями C и - №20.

C
-0.0050 0.92 -4.02 1.922
-0.0025 0.11 -4.70 2.140
-1.00 -5.38 2.357
0.0025 -2.44 -6.07 2.574

0.0025 – 1 X = 0.48

1.07 – 1 X = 0.5136

X – 0.48 = -0.3064

0.197 – 1 X = 0.09456

X – 0.48 = 2.0984

0.63 – 1 X = 0.3024

X – 0.48 = -4.6676

4. Дальнейший ход расчета:

Q = ± = - 4.6676 ± = - 4.6676 – 0.1478 = - 4.8154

Q = - = - 4.6676 – = - 4.7401

В дальнейших расчетах будем применять значение: Q = - 4.8154.

5. Значение для первого нулевого луча:

= · Q + = · (-4.8154) + 2.0984 = 0.4924

= · Q + = · (-4.8154) + 2.0984 = 0.2478

6. Радиуса кривизны тонких линз:

235.3846 · = 159.4301

235.3846 · = - 86.6506

235.3846 · = -245.903

7. Конструктивные параметры линз конечной толщины:

б) ∆ = 0.05D = 0.05·30 = 1.5

в) Абсолютные величины стрелок:

г) Толщины:

= + + ∆ = 0.7056 + 1.2983 + 1.5 = 3.5039

д) Высоты:

235.3846 – 0.4124·3.5039 = 233.9396

233.9396 – 0.19901·1.5 = 233.6411

е) Радиусы кривизны:

86.6506 · = - 86.1185

245.904 · = -244.0809

VIII. Оформление результатов расчета окуляра

(аберрации приведены в обратном ходе)

h D
tg ·100 S’ ∆y’ η
1.2500 6.3991 14.7398 -0.0482 -0.0031 -0.0085 -0.0133 -0.1117 -0.0984
1.0825 5.5389 14.7519 -0.0361 -0.0020 -0.0064 -0.0012 -0.0997 -0.0985
0.8839 4.5200 14.7639 -0.0241 -0.0011 -0.0043 0.01092 -0.0877 -0.0768
0.6250 3.1944 14.6676 -0.0120 -0.0004 -0.0021 0.02300 -0.0758 -0.0528
0.0 0.0 14.7880 0.0 0.03510 -0.0639 -0.0288
tg ·100 - y’ ∆y’ -
-17.453 1.76 353.42 0.326 -0.375 -0.049 5.9654 -4.850 0.0116 -0.021 -0.009
-12.333 0.58 750.72 0.107 -0.198 -0.091 4.2524 -2.475 0.0090 -0.017 -0.008
= -17.4531 = -12.3326
m tg ·100 ∆y’ m tg ·100 ∆y’
1.2500 8.1365 0.02274 1.2500 6.9772 0.00450
0.8839 6.2742 0.01586 0.8839 5.1019 0.00402
1.7616 0.5778
-0.8839 -2.7800 -0.01259 -0.8839 -3.9580 -0.00385
-1.2500 -4.6727 -0.01598 -1.2500 -5.8457 -0.00409

IX. Оптический выпуск зрительной трубы

h h’ D
η
15.000 -2.075 106.7225 14.4410 -10.648 5.800 6.128 0.328
12.9904 -1.746 105.1244 12.4218 -8.0635 4.183 4.525 0.342
10.6066 -1.386 103.5971 10.1944 -5.4294 2.656 2.996 0.34
7.5000 -0.953 102.1350 7.1624 -2.7428 1.194 1.533 0.339
-0.209 0.133 0.342
tg ·100 - -
-1.3000 12.140 21.68 0.794 -145.2 -150.8 16.662 -5.6 -0.011 0.0153 0.0263
-1.0338 8.3701 15.15 0.404 -152.4 -157.5 16.961 -5.1 -0.052 0.0129 0.0649
= -1.3000 = -1.0338
m m’ m m’
15.000 -3.497 27.5740 15.4339 15.000 -2.859 23.565 15.195
10.6066 -2.213 23.0532 10.5131 10.6066 -1.824 19.1533 10.383
0.1293 12.1401 -0.045 8.3701
-10.607 1.3075 1.5512 -10.185 -10.607 1.3091 -1.1392 -10.16
-15.000 1.8488 -2.1954 -14.336 -15.000 1.8631 -5.554 -14.32

ЗАКЛЮЧЕНИЕ

Задание на курсовую работу выполнено. Произведен расчет оптической системы зрительной трубы Кеплера по всем указанным в задании пунктам. Результаты представлены в данном отчете.

Основными результатами работы являются параметры системы, полученные после её сквозного просчета. В результате выполнения курсового проекта получаешь практические навыки компоновки и габаритного расчета оптических систем, работы с каталогами, суммирования остаточных аберраций компонентов и аберрационного расчета оптической системы, используя стандартный пакет программ для ЭВМ.

Список использованной литературы

1. http://www.telescope.ru/ Сайт посвящен астрономам-любителям. На сайте рассказывается о любительских телескопах, советы по покупке телескопов, биноклей и подзорных труб, список литературы об астрономии и телескопах и интернет-магазин.

2. Бебчук Л.Г., Богачев Ю.В. и др. Прикладная оптика – М.: Машиностроение, 1988.

3. Павлычева Н.К. Прикладная оптика – Казань: Изд-во КГТУ, 2003.

Если оптическая система имеет малое поле в пространстве предметов, то в такой системе качество изображения определяется в первую очередь состоянием коррекции сферической аберрации. К числу таких систем следует отнести объектив с небольшим угловым полем, конденсор осветительной системы и ряд других. При аберрационном расчете исходного варианта указанных систем, состоящих из положительных линз, в первоначальной стадии расчета делается допущение о том, что все линзы системы бесконечно тонкие. Как в объективе, так и в конденсоре возможны следующие варианты решений: система состоит из линз одинаковой оптической силы и каждая из них рассчитана на минимум сферической аберрации; в системе используются апланатические мениски и одна линза, рассчитанная на минимум сферической аберрации.

Рассмотрим аберрационный расчет каждого варианта объектива и конденсора, используя теорию аберраций III порядка.

Объектив из положительных линз одинаковой оптической силы. Принципиальная схема такого объектива показана на рис. 269. Пусть число линз в объективе Толщину всех линз и расстояния между ними принимаем равными нулю, т. е. Показатели преломления для всех линз будем считать одинаковыми, нечетные показатели преломления равны единице, т. е.

Расчет объектива будем проводить при единичном фокусном расстоянии, поэтому для бесконечно удаленного предмета будут справедливы условия нормировки (258):

Последнее равенство относится к бесконечно тонкой системе.

Если оптические силы отдельных линз одинаковые и их общее число 2, то для приведенной системы имеем:

где приведенная оптическая сила линзы с произвольным номером Для этой линзы принята следующая нумерация углов первого вспомогательного луча: для луча, входящего в линзу; - для луча внутри линзы; Для луча, вышедшего из линзы.

Из формулы углов (52) имеем с учетом (517) при получим

Рис. 269. Бесконечно тонкая система из положительных лииз

Так как при то из последней формулы следует:

Таким образом, формулы (518) определяют нечетные значения углов а бесконечно тонкого объектива, состоящего из линз одинаковой оптической силы.

Для определения четных значений углов а рассмотрим выражение первой суммы Зейделя для линзы с номером Для бесконечно тонкого объектива имеем:

Величина при принятой нумерации углов а согласно (251) будет равна:

Объектив из положительных линз будет иметь минимальную сферическую аберрацию, если каждая линза рассчитана на минимум сферической аберрации. Дифференцируя выражение (519) по и приравнивая производную нулю, с учетом (518) находим выражение для соответствующее минимальной сферической аберрации каждой линзы:

По формулам (518) и (520) определяют углы первого вспомогательного луча бесконечно тонкого объектива, рассчитанного на минимум сферической аберрации. После определения углов и установления толщин линз по формулам (249) находят радиусы кривизны объектива конечной толщины.

Кома объектива зависит от параметра Ниже приведены значения найденные для бесконечно тонкого объектива, рассчитанного на минимум сферической аберрации, при различном числе линз . Все линзы объектива выполнены из стекла с показателем преломления

Таким образом, при увеличении числа линз значение уменьшается и практически равно нулю при Величина практически постоянна и приблизительно равна 0,15.

Рис. 270. Бесконечно тонкая система с апланатнческими менисками

Рис. 271. Конденсор с апланатнческими менисками

Объектив с аплаиатическими менисками. Принципиальная схема бесконечно тонкого объектива с апланатнческими менисками приведена на рис. 270. Все линзы объектива, кроме первой, являются апланатнческими менисками. Эти линзы не вносят сферической аберрации, и в них выполняется условие синусов. Линейное увеличение мениска с текущим номером Если число менисков в объективе и все они изготовлены из стекла одной марки, то общее увеличение менисков Тогда при условии, что имеем:

Объектив будет иметь минимальную сферическую аберрацию, если его первая линза рассчитана на минимум сферической аберрации. Дифференцируя (519) по и приравнивая производную нулю, с учетом (521) и условия определяем значение соответствующее минимальной сферической аберрации всего объектива:

Остальные значения а вычисляют по линейному увеличению каждого мениска.

Ниже приведены значения бесконечно тонкого объектива с апланатнческими менисками при различном числе линз . Все линзы объектива выполнены из стекла с показателем преломления

Сравнивая значения с аналогичными данными для объектива из линз одинаковой оптической силы, можно заключить, что в объективе с аплаиатическими менисками несколько больше сферическая аберрация, но строже выполняется условие синусов

Конденсор из линз одинаковой оптической силы. Пусть линейное увеличение конденсора из бесконечно тонких линз (рис. 271)

будет тогда с учетом условий нормировки для первого вспомогательного луча имеем Если оптическая сила всего конденсора то согласно формуле углов (52)

Полагая конденсор бесконечно тонким и состоящим из линз одинаковой оптической силы, получаем.

  • Фототехника ,
  • Космонавтика
    • Tutorial

    Постановка задачи и исходные данные

    Предположим, что наш будущий объектив будет находиться на геостационарной орбите на высоте 35 786 км. Угловое поле объектива должно быть таким, чтобы в него попадала вся Земля. Ни больше, ни меньше. Приемником будет служить фотодиод с размерами 10мм х 10мм = 100мм2. Диаметр входного зрачка (в данном случае это диаметр первой поверхности первого и единственного оптического элемента) составляет 20 мм.
    Оптическая схема
    Для построения оптической схемы нам нужно определить требуемое угловое поле системы и фокусное расстояние.
    Угловое поле системы
    Нам известно расстояние от поверхности Земли до входного зрачка нашей системы и средний диаметр Земли. Из этих данных можно рассчитать угловое поле системы.

    Среднее значение диаметра Земли D = 12 742 км (R=6 371 км)
    Расстояние от поверхности земли до объектива = 35 786 км

    Угловое поле нашей системы составляет 17,2 градуса.
    Теперь необходимо рассчитать требуемое фокусное расстояние системы:


    Фокусное расстояние из этой формулы составит F" = 33,2 мм.


    Рис. Принципиальная схема
    Отлично! Больше половины работы уже сделано.

    Сбор дополнительных параметров для расчета
    Для начала необходимо проверить имеющиеся данные.

    Мы знаем:
    - количество кривых поверхностей системы,
    - диаметр входного зрачка системы,
    - требуемый фокус системы.

    Мы пока не знаем:
    - толщину оптического компонента,
    - марку стекла оптического компонента,
    - длина волны, на которой будет работать оптическая система.
    Можно выбрать эти данные самостоятельно. Но представим, что мы работаем на каком-то передовом предприятии, которое осваивает космос:-)

    Толщина оптического компонента
    Меня учили в институте, что минимальная толщина оптического компонента по оси должна составлять минимум 10% от величины диаметра. Если рассчитывать оптический компонент с небольшим отрицательным фокусов (скорее всего это двояковогнутая линза), то толщины по оси в 10% от диаметра вполне хватит. В нашем случае мы имеем собирающую линзу формирующую действительное изображение (в рассеивающей линзе изображение мнимое) с положительным фокусом. Соотвественно, необходимо выбрать толщину линзы с учетом стрелок прогиба поверхностей, которые будут увеличивать толщину компонента по оси. Для первого приближения возьмем 20% от диаметра. В нашем случае толщина компонента для расчетов составит:

    Толщина линзы = 20мм х 20% = 4мм

    Выбор марки стекла
    Предположим, что специалист по радиационной стойкости рекомендовал использовать радиационностойкое стекло. А специалист-тепловик рекомендовал использовать материал стекла с наименьшим показателем теплового расширения, так как оправа для линзы будет из титана или суперинвара. Вообщем, они еще не определились.
    Выбор длины волны
    Вроде бы почти все данные ест. Карамба! А как же данные о спектральном диапазоне работы системы?! Мы проявляем инициативу и сами идем к разработчикам и получаем необходимую информацию. После этого выжидаем пару дней и занимаемся другими полезными делами. На третий день приходит разработчик и говорит, что решили изменить основную длину волны для объектива. Сказано-сделано! Рабочая длина волны = 0,644 мкм. Теперь можно продолжать наш оптический расчет.
    Расчет системы с помощью Zemax
    Программное обеспечение Zemax здорово упрощает жизнь расчетчикам оптических систем. Это не значит, что ПО сама спроектирует за вас крутую оптическую систему. Но при проектировании оптических систем, когда необходимо проанализировать достаточное количество вариантов, Zemax помогает значительно сократить время в разработке. Считаю, что программа для расчетчиков незаменимая. Конечно же, с одним условием, что у вас куплена оригинальная лицензия;-)

    Сейчас не буду вдаваться в подробности описания всех прелестей программы, а сразу покажу ее в деле.

    При загрузке программы в первую очередь необходимо ознакомится с окном Lens Data Editor:


    Данное окошко содержит информацию о текущей оптической системе. Набор данных похож на формат оптического выпуска, с которым, лично я, познакомился еще в институте:-)

    Из имеющихся данных на текущий момент мы здесь можем указать пока только количество поверхностей для трассировки лучей, толщины и марку стекла. В качестве марки стекла выберем представление данных в виде модели, в которой необходимо задать коэффициент преломления для выбранной длины волны для нашего стекла. Так как марка выбранного стекла КУ-1 у нас из отечественного ГОСТа, то данные необходимо искать именно в нем (в нашем случае ГОСТ 15130-86 «Стекло кварцевое оптическое»).

    Показатель преломления для стекла КУ-1 для длины волны 0,644 мкм составляет 1,4567. Стоит отметить, что это при температуре +20 градусов по Цельсию. А у нас как раз на борту обогрев до +20 градусов:-)


    Итого, на данный момент имеем:


    В окне General во вкладке Aperture указываем диаметр входного зрачка 20мм:


    Указываем угловое поле системы:

    Настройка автоматической оптимизации
    При расчете системы мы воспользуемся Optimization , которая встроена в Zemax.

    Во-первых, указываем параметры, которые у нас смогут изменяться во время оптимизация. В нашем случае такими являются радиусы кривизны поверхностей линзы:


    Во-вторых, необходимо сформировать оценочную функцию текущей системы (Default Merit Function).

    Сформируем оценочную функцию на основе RMS. Здесь данный параметр показывает среднеквадратичное отклонение лучей волнового фронта при трассировке лучей.


    При оптимизации мы укажем единственный параметр, к которому будем стремиться - требуемое фокусное расстояние. Для этого добавляем параметр EFFL и указываем следующие настройки:

    Теперь, когда все параметры заданы, можно использовать функцию оптимизации.


    В данном окне можно вручную управлять количеством итераций при подборке наиболее лучшего варианта. Либо можно использовать автоматический расчет для нахождения лучшего варианта.

    Оптимизируем. Жмем Exit .

    Теперь можно посмотреть что получилось.

    Вроде бы неплохо:-)
    Но итоговый фокус системы равен 33,67 мм, что немного отличается от заданного - 33,2 мм.

    Как получить требуемый фокус?
    Чем выше будет значение Weight в параметре EFFL, тем выше будет приоритет этого параметра при расчете.
    У меня при параметре Weight = 100 000 оптимизированный фокус получился 33,21 мм. Не привожу последовательность, так как она аналогична вышеуказанной.

    Итог

    Поставленные требования выполняются. Ура! :-)

    P.S. Я еще не успел освоить весь функционал программы. Да и оптических систем я не особо много рассчитал за все время, поэтому извиняйте если что не так. Комментарии и замечания приветствуются:-)

    P.P.S. Это мой первый пост, поэтому не знал в какой топик лучше разместить. Если не прав, то подскажите куда перенести. Спасибо.

    Привет, хабралюди!

    Сегодня я бы хотел затронуть такую тему как «задачи тысячелетия», которые вот уже десятки, а некоторые и сотни лет волнуют лучшие умы нашей планеты.

    После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах? » Пользуясь возможностью, попробую объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.

    Равенство классов P и NP

    Все мы помним из школы квадратные уравнения, которые решаются через дискриминант. Решение этой задачи относится к классу P (P olynomial time) - для нее существует быстрый (здесь и далее под словом «быстрый» подразумевается как выполняющийся за полиномиальное время) алгоритм решения, который и заучивается.

    Также существуют NP -задачи (N on-deterministic P olynomial time) , найденное решение которых можно быстро проверить по определенному алгоритму. Для примера проверка методом перебора компьютером. Если вернуться к решению квадратного уравнения, то мы увидим, что в данном примере существующий алгоритм решения проверяется так же легко и быстро как и решается. Из этого напрашивается логичный вывод, что данная задача относится как к одному классу так и ко второму.

    Таких задач много, но основным вопросом является, все или не все задачи которые можно легко и быстро проверить можно также легко и быстро решить? Сейчас для некоторых задач не найдено быстрого алгоритма решения, и неизвестно существует ли такой вообще.

    На просторах интернета также встретил такую интересную и прозрачную формулировку:

    Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей.

    В данном случае вопрос стоит все тот же, есть ли такой алгоритм действий, благодаря которому даже не имея информации о том, где находится человек, найти его так же быстро, как будто зная где он находится.

    Данная проблема имеет большое значение для самых различных областей знаний, но решить ее не могут уже более 40 лет.

    Гипотеза Ходжа

    В реальности существуют множество как простых так и куда более сложных геометрических объектов. Очевидно, что чем сложнее объект тем более трудоемким становится его изучение. Сейчас учеными придуман и вовсю применяется подход, основная идея которого заключается в том, чтобы вместо самого изучаемого объекта использовать простые «кирпичики» с уже известными свойствами, которые склеиваются между собой и образуют его подобие, да-да, знакомый всем с детства конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта.

    Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков» так и объектов.

    Гипотеза Римана

    Всем нам еще со школы известны простые числа которые делятся только на себя и на единицу (2,3,5,7,11...) . С давних времен люди пытаются найти закономерность в их размещении, но удача до сих пор так никому и не улыбнулась. В результате ученые применили свои усилия к функции распределения простых чисел, которая показывает количество простых чисел меньше или равных определенного числа. Например для 4 - 2 простых числа, для 10 - уже 4 числа. Гипотеза Римана как раз устанавливает свойства данной функции распределения.

    Многие утверждения о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности этой гипотезы.

    Теория Янга - Миллса

    Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения, объединяющие теории электромагнитного, слабого и сильного взаимодействий. Одно время теория Янга-Миллса рассматривалась лишь как математический изыск, не имеющий отношения к реальности. Однако, позже теория начала получать экспериментальные подтверждения, но в общем виде она все еще остается не решенной.

    На основе теории Янга-Миллса построена стандартная модель физики элементарных частиц в рамках которой был предсказан и не так давно обнаружен нашумевший бозон Хиггса.

    Существование и гладкость решений уравнений Навье - Стокса

    Течение жидкостей, воздушные потоки, турбулентность. Эти, а также множество других явлений описываются уравнениями, известными как уравнения Навье - Стокса . Для некоторых частных случаев уже найдены решения, в которых как правило части уравнений отбрасываются как не влияющие на конечный результат, но в общем виде решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать.

    Гипотеза Бёрча - Свиннертон-Дайера

    Для уравнения x 2 + y 2 = z 2 в свое время еще Эвклид дал полное описание решений, но для более сложных уравнений поиск решений становится чрезвычайно трудным, достаточно вспомнить историю доказательства знаменитой теоремы Ферма, чтобы убедиться в этом.

    Данная гипотеза связана с описанием алгебраических уравнений 3 степени - так называемых эллиптических кривых и по сути является единственным относительно простым общим способом вычисления ранга, одного из важнейших свойств эллиптических кривых.

    В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.

    Гипотеза Пуанкаре

    Думаю если не все, то большинство точно о ней слышали. Чаще всего встречается, в том числе и на центральных СМИ, такая расшифровка как «резиновую ленту натянутую на сферу можно плавно стянуть в точку, а натянутую на бублик - нельзя ». На самом деле эта формулировка справедлива для гипотезы Тёрстона, которая обобщает гипотезу Пуанкаре, и которую в действительности и доказал Перельман.

    Частный случай гипотезы Пуанкаре говорит нам о том, что любое трехмерное многообразие без края (вселенная, например) подобно трехмерной сфере. А общий случай переводит это утверждение на объекты любой мерности. Стоит заметить, что бублик, точно так же как вселенная подобна сфере, подобен обычной кофейной кружке.

    Заключение

    В настоящее время математика ассоциируется с учеными, имеющими странный вид и говорящие о не менее странных вещах. Многие говорят о ее оторванности от реального мира. Многие люди как младшего, так и вполне сознательного возраста говорят, что математика ненужная наука, что после школы/института, она нигде не пригодилась в жизни.

    Но на самом деле это не так - математика создавалась как механизм с помощью которого можно описать наш мир, и в частности многие наблюдаемые вещи. Она повсюду, в каждом доме. Как сказал В.О. Ключевский: «Не цветы виноваты, что слепой их не видит».

    Наш мир далеко не так прост, как кажется, и математика в соответствии с этим тоже усложняется, совершенствуется, предоставляя все более твердую почву для более глубокого понимания существующей реальности.

    8 августа 1900 года на 2-м Международном конгрессе математиков в Париже один из величайших математиков современности Давид Гильберт сформулировал двадцать три задачи, которые во многом предопределили развитие математики XX столетия. В 2000 году специалисты из Clay Mathematics Institute решили, что грешно входить в новое тысячелетие, не наметив новую программу развития, -тем более что от двадцати трех проблем Гильберта остались лишь две[Еще две считаются слишком расплывчатыми или нематематическими, еще одна была решена частично, а по поводу еще одной - знаменитой континуум-гипотезы - консенсус пока не достигнут ()].

    В результате появился знаменитый список из семи задач, за полное решение любой из которых обещан миллион долларов из специально учрежденного фонда. Чтобы получить деньги, нужно опубликовать решение и подождать два года; если в течение двух лет никто его не опровергнет (будьте уверены - попытаются), вы получите миллион вожделенных зеленых бумажек.
    Я попытаюсь изложить суть одной из этих задач, а также постараюсь (в меру своих скромных сил) объяснить ее сложность и важность. Настойчиво рекомендую зайти на официальный сайт конкурса www.claymath.org/millennium ; опубликованные там описания проблем полны и интересны, и именно они стали главным источником при написании статьи.

    Гипотеза Римана

    Однажды один из моих научных руководителей, выдающийся петербургский алгебраист Николай Александрович Вавилов, начал занятие своего спецкурса с формулы

    1 + 2 + 3 + 4 + 5 + … = –1/12.

    Нет, занятие не было посвящено гипотезе Римана, и узнал я о ней вовсе не от Николая Александровича. Но формула, тем не менее, имеет к гипотезе самое прямое отношение. И что удивительно - это кажущееся абсурдным равенство действительно верно. Точнее сказать, не совсем оно, но дьявол деталей тоже вскоре будет удовлетворен.

    В 1859 году Бернард Риман (Bernhard Riemann) опубликовал статью (или, как тогда выражались, мемуар), которой была суждена очень долгая жизнь. В ней он изложил совершенно новый метод асимптотической оценки распределения простых чисел. В основе метода лежала функция, связь которой с простыми числами обнаружил еще Леонард Эйлер, но которая все же получила имя математика, продолжившего ее на всю комплексную плоскость: так называемая дзета-функция Римана. Определяется она очень просто:

    ς (s) = 1/1 s + 1/2 s + 1/3 s + 1/3 s + … .

    Любой студент, прослушавший курс математического анализа, тут же скажет, что этот ряд сходится для всякого вещественного s > 1. Более того, он сходится и для комплексных чисел, вещественная часть которых больше единицы. Еще более того, функция ς (s) - аналитическая в этой полуплоскости.

    Рассматривать формулу для отрицательных s кажется дурной шуткой: ну какой смысл складывать, например, все положительные целые числа или, тем более, их квадраты или кубы? Однако комплексный анализ - упрямая наука, и свойства дзета-функции таковы, что ее можно продолжить на всю плоскость. Это и было одной из идей Римана, изложенных в мемуаре 1859 года. У полученной функции только одна особая точка (полюс): s = 1, а, например, в отрицательных вещественных точках функция вполне определена. Именно значение аналитически продолженной дзета-функции в точке –1 и выражает формула, с которой я начал этот раздел.

    (Специально для патриотов и неравнодушных к истории науки людей отмечу в скобках, что, хотя мемуар Бернарда Римана внес в теорию чисел много свежих идей, он не был первым исследованием, в котором распределение простых чисел изучалось аналитическими методами. Впервые это сделал наш соотечественник Пафнутий Львович Чебышёв, 24 мая 1848 года прочитавший в петербургской Академии наук доклад, в котором изложил ставшие классическими асимптотические оценки количества простых чисел.)

    Но вернемся к Риману. Ему удалось показать, что распределение простых чисел - а это центральная проблема теории чисел - зависит от того, где дзета-функция обращается в нуль. У нее есть так называемые тривиальные нули - в четных отрицательных числах (–2, –4, –6, …). Задача состоит в том, чтобы описать все остальные нули дзета-функции.

    Этот орешек вот уже полторы сотни лет не могут разгрызть самые талантливейшие математики планеты.

    Правда, мало кто сомневается в том, что гипотеза Римана верна. Во-первых, численные эксперименты более чем убедительны; о последнем из них рассказывает статья Хавьера Гурдона (Xavier Gourdon), название которой говорит само за себя: «Первые 10 13 нулей дзета-функции Римана и вычисление нулей на очень большой высоте» (вторая часть названия означает, что предложен метод вычисления не только первых нулей, но и некоторых, пусть и не всех, более далеких, вплоть до нулей с номером около 10 24). Эта работа пока венчает более чем столетнюю историю попыток проверки гипотезы Римана для некоторого количества первых нулей. Разумеется, контрпримеров к гипотезе Римана не найдено. Кроме того, строго установлено, что больше 40% нулей дзета-функции гипотезе удовлетворяют.

    Второй аргумент напоминает одно из доказательств существования Бога, опровергнутых еще Иммануилом Кантом. Если Риман все же ошибся, то неверной станет очень много красивой и правдоподобной математики, построенной в предположении, что гипотеза Римана правильна. Да, этот аргумент не имеет научного веса, но все же… математика - это наука, где красота играет ключевую роль. Красивое, но неверное доказательство сплошь и рядом оказывается полезнее, чем верное, но некрасивое. Так, например, из неудачных попыток доказать великую теорему Ферма выросло не одно направление современной алгебры. И еще одно эстетическое замечание: теорема, аналогичная гипотезе Римана, была доказана в алгебраической геометрии. Получившаяся теорема Делиня (Deligne) по праву считается одним из самых сложных, красивых и важных результатов математики XX столетия.
    Итак, гипотеза Римана, по всей видимости, верна - но не доказана. Кто знает, возможно, сейчас этот журнал читает человек, которому суждено войти в историю математики, доказав гипотезу Римана. В любом случае, как и со всеми остальными великими задачами, сразу предупреждаю: не пытайтесь повторить эти трюки дома. Иными словами, не пытайтесь решать великие проблемы, не поняв теории, которая их окружает. Сэкономите нервы и себе, и окружающим.

    На десерт - еще немного интересного о дзета-функции. Оказывается, у нее есть и практические применения, и даже физический смысл. Более того, и гипотеза Римана (точнее говоря, ее обобщение, считающееся столь же сложным, сколь и она сама) имеет прямые практические следствия. Например, одной из важных вычислительных задач является проверка чисел на простоту (дано число, нужно сказать, простое оно или нет). Самый теоретически быстрый на данный момент алгоритм решения этой задачи - тест Миллера-Рабина (Miller-Rabin test) - работает за время O(log 4 n), где n - данное число (соответственно log n - длина входа алгоритма). Однако доказательство того, что он работает так быстро, опирается на гипотезу Римана.

    Впрочем, тест на простоту - не слишком сложная проблема с точки зрения теории сложности (в 2002 году был разработан не зависящий от гипотезы Римана алгоритм, который медленнее теста Миллера-Рабина, но тоже полиномиален). Раскладывать числа на простые сомножители гораздо интереснее (и прямые криптографические приложения налицо - стойкость схемы RSA зависит от того, можно ли быстро разложить число на простые), и здесь гипотеза Римана тоже является необходимым условием для доказательства оценок времени работы некоторых быстрых алгоритмов.

    Обратимся к физике. В 1948 году голландский ученый Хендрик Казимир (Hendrik Casimir) предсказал эффект, носящий теперь его имя[Эффект Казимира долгое время оставался лишь изящной теоретической идеей; однако в 1997 году Стив Ламоро (Steve K. Lamoreaux), Умар Мохидин (Umar Mohideen) и Анушри Руа (Anushri Roy) смогли провести подтверждающие предшествующую теорию эксперименты]. Оказывается, если сблизить две незаряженные металлические пластины на расстояние в несколько атомных диаметров, они притянутся друг к другу за счет флуктуаций расположенного между ними вакуума - постоянно рождающихся пар частиц и античастиц. Этот эффект чем-то напоминает притяжение подплывших слишком близко друг к другу судов в океане (еще больше он напоминает теорию Стивена Хокинга о том, что черные дыры все же излучают энергию, - впрочем, тут трудно сказать, кто кого напоминает). Расчеты физической модели этого процесса показывают, что сила, с которой притягиваются пластины, должна быть пропорциональна сумме частот стоячих волн, возникающих между пластинами. Вы уже догадались - эта сумма сводится к сумме 1+2+3+4+…. И более того - правильным значением этой суммы для расчетов эффекта Казимира является именно –1/12.

    Но и это еще не все. Некоторые исследователи считают, что дзета-функция играет важную роль… в музыке! Возможно[Я пишу «возможно», потому что единственный источник, который мне удалось разыскать, это переписка в usenet-конференции sci.math . Если вы (читатели) сможете найти более авторитетные источники, мне будет очень интересно об этом услышать], максимумы дзета-функции соответствуют значениям частот, которые могут служить хорошей основой для построения музыкальной шкалы (такой, как наш нотный стан). Что ж, Герман Гессе в своей «Игре в бисер» не зря объявил Игру комбинацией математики и музыки: между ними и впрямь много общего…