Электризация тел при соприкосновении примеры. Электризация тел, взаимодействие зарядов. Шерстяная и шелковая ткани

Части речи – это строительный материал языка, причем каждая из них имеет свои особенности и функции, которые помогают человеку связно и красиво выражать свои мысли. Существует специальная наука, которая изучает части речи в русском языке – она называется морфологией. Каждый ученик 4 класса должен понимать, что это такое.

Что такое части речи и какие они бывают

Части речи – это такие классы слов, которые выделяются по общности их грамматических свойств. То есть, те слова, свойства которых одинаковые, относятся к одной части речи. У них общие морфологические характеристики и синтаксические признаки.

В русском языке выделено всего десять частей речи. Шесть из них самостоятельные (второе их название – знаменательные), три – служебные и еще одна – особая, это междометие.

Самостоятельные части речи в обязательном порядке являются членами предложения, они могут обозначать как сами предметы, так и их признаки. К этой категории относятся имена прилагательное, числительное и существительное, глагол, наречие, местоимение.

Служебные части речи называются так потому, что они не имеют своего значения, а только обслуживают самостоятельные, помогают им соединяться друг с другом.

При этом междометие не относится ни к одной из этих двух категорий, выделяясь в морфологической структуре языка на особое место.

Современная частиречная классификация в русском языке опирается еще на античную традицию, хотя там частей речи было восемь. В разное время в русских грамматиках выделялось от восьми до четырнадцати частей речи.

Лучше понять тему поможет таблица частей речи с примерами:

Междометие частью таблицы не является . Примеры слов, относящихся к этой части речи – ау, тпру, ну .

Части речи в русском языке делятся также по признаку изменяемости. Так, все служебные слова, междометие и наречие – это неизменяемые части речи. Остальные относятся к категории изменяемых, то есть они имеют формы словоизменения. Таким образом, по признаку изменяемости части речи делятся на две равные группы – по пять в каждой.

Все национальности в русском языке относятся к такой части речи, как существительное, и только “русский” – это прилагательное.

Что мы узнали?

Части речи – это классы, на которые слова делятся по определенным признакам. Всего их в русском языке пять. Существует также внутренняя классификация их по нескольким признакам. Первый – наличие или отсутствие значения. Слова могут быть самостоятельными и служебными, отдельно идет междометие. Второй признак – изменяемость, то есть части речи делятся, соответственно, на изменяемые и неизменяемые.

1. Все слова русского языка можно разделить на группы, которые называют частями речи .

Вместе с синтаксисом морфология составляет раздел науки о языке, называемый грамматикой .

2. Каждая часть речи имеет признаки, которые можно объединить в три группы:

3. Все части речи делятся на две группы - самостоятельные (знаменательные) и служебные . Особое положение в системе частей речи занимают междометия.

4. Самостоятельные (знаменательные) части речи включают слова, называющие предметы, их действия и признаки. К самостоятельным словам можно задать вопросы, а в предложении знаменательные слова являются членами предложения.

К самостоятельным частям речи в русском языке относятся следующие:

Часть речи Вопросы Примеры
1 Имя существительное кто? что? Мальчик, дядя, стол, стена, окно.
2 Глагол что делать? что сделать? Пилить, распилить, знать, узнать.
3 Имя прилагательное какой? чей? Хороший, синий, мамин, дверной.
4 Имя числительное сколько? который? Пять, пятеро, пятый.
5 Наречие как? когда? где? и др. Весело, вчера, близко.
6 Местоимение кто? какой? сколько? как? и др. Я, он, такой, мой, столько, так, там.
7 Причастие какой? (что делающий? что сделавший? и др.) Мечтающий, мечтавший.
8 Деепричастие как? (что делая? что сделав?) Мечтая, решив.

Примечания.

1) Как уже отмечалось, в лингвистике нет единой точки зрения на положение в системе частей речи причастия и деепричастия. Одни исследователи относят их к самостоятельным частям речи, другие считают их особыми формами глагола. Причастие и деепричастие действительно занимают промежуточное положение между самостоятельными частями речи и формами глагола. В данном пособии мы придерживаемся точки зрения, отражённой, например, в учебнике: Бабайцева В.В., Чеснокова Л.Л. Русский язык. Теория. 5-9 классы. М., 2001.

2) В лингвистике нет единой точки зрения на состав такой части речи, как числительные. В частности, в «академической грамматике» принято рассматривать порядковые числительные как особый разряд прилагательных. Однако школьная традиция относит их к числительным. Этой позиции будем придерживаться и мы в настоящем пособии.

3) В разных пособиях по-разному характеризуется состав местоимений. В частности, слова там, туда, нигде и др. в одних школьных учебниках относят к наречиям, в других - к местоимениям. В данном пособии мы рассматриваем такие слова как местоимения, придерживаясь точки зрения, отражённой в «академической грамматике» и в учебнике: Бабайцева В.В., Чеснокова Л.Л. Русский язык. Теория. 5-9 классы. М., 2001.

5. Служебные части речи - это слова, которые не называют ни предметов, ни действий, ни признаков, а выражают только отношения между ними.

    К служебным словам нельзя поставить вопрос.

    Служебные слова не являются членами предложения.

    Служебные слова обслуживают самостоятельные слова, помогая им соединяться друг с другом в составе словосочетаний и предложений.

    К служебным частям речи в русском языке относятся следующие:

    предлог (в, на, об, из, из-за );

    союз (и, а, но, однако, потому что, чтобы, если );

    частица (бы, ли, же, не, даже, именно, только ).

6. занимают особое положение среди частей речи.

    Междометия не называют ни предметов, ни действий, ни признаков (как самостоятельные части речи), не выражают отношений между самостоятельными словами и не служат для связи слов (как служебные части речи).

    Междометия передают наши чувства. Для выражения изумления, восторга, страха и др., мы используем такие междометия, как ах, ох, ух ; для выражения чувства холода - бр-р , для выражения страха или боли - ой и т.д.

7. Как отмечалось, одни слова в русском языке могут изменяться, другие - нет.

    К неизменяемым относятся все служебные части речи, междометия, а также такие знаменательные части речи, как:

    наречия (вперёд, всегда );

    деепричастия (уходя, уйдя, приняв ).

    Не изменяются также некоторые:

    существительные (пальто, такси, жалюзи );

    прилагательные (пальто цвета беж , костюм цвета электрик );

    местоимения (тогда, там ).

    с помощью окончания ;

    Ср.: сестра - сестры ; читал - читала .

    с помощью окончания и предлога ;

    Сестра - к сестре, у сестры, с сестрой.

    с помощью вспомогательных слов .

электризация тел.

2. Электризация тел.

Эти явления были обнаружены еще в глубокой древности. Древнегреческие ученые заметили, что янтарь (окаменевшая смола хвойных деревьев, которые росли на Земле много сотен тысяч лет назад) при натирании его шерстью начинает притягивать к себе различные тела. По-гречески янтарь - электрон, отсюда произошло название “электричество”.

Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано или что ему сообщен электрический заряд.

Электризоваться могут тела, сделанные из разных веществ. Легко наэлектризовать натиранием о шерсть палочки из резины, серы, эбонита, пластмассы, капрона.

Электризация тел происходит при соприкосновении и последующем разделении тел. Трут тела друг о друга лишь для того, чтобы увеличить площадь их соприкосновения.

В электризации всегда участвуют два тела: в рассмотренных выше опытах стеклянная палочка соприкасалась с листом бумаги, кусочек янтаря - с мехом или шерстью, палочка из плексигласа - с шелком. При этом электризуются оба тела. Например, при соприкосновении стеклянной палочки и куска резины электризуются и стекло, и резина. Резина, как и стекло начинает притягивать к себе легкие тела.

Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Чтобы убедиться, что и второе тело наэлектризовано, нужно поднести к нему мелкие листочки бумаги и посмотреть, будут ли они притягиваться.

3. Два рода зарядов. Взаимодействие заряженных тел.

Все электризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению тел нельзя отличить электрический заряд стеклянной палочки, потертой о шелк, от заряда, полученного на эбонитовой палочке, потертая о них. Ведь обе наэлектризованные палочки притягивают листочки бумаги.

Означает ли это, что заряды, полученные на телах, сделанных из различных веществ, ничем не отличаются друг от друга?

Обратимся к опытам. Наэлектризуем эбонитовую палочку, подвешенную на нити. Приблизим к ней другую такую же палочку, наэлектризованную трением о тот же кусочек меха. Палочки оттолкнуться Так как палочки одинаковые и наэлектризовали их трением об одно и тоже тело, можно сказать, что на них были заряды одного рода. Значит, тела, имеющие заряды одного рода, взаимно отталкиваются.

Теперь поднесем к наэлектризованной эбонитовой палочке стеклянную палочку, потертую о шелк. Мы увидим, что стеклянная и эбонитовая палочки взаимно притягиваются (рис.№2). Следовательно, заряд, полученный на стекле, потертом о шелк, другого рода, чем на эбоните, потертом о мех. Значит, существует другой род электрических зарядов.

Будим приближать к подвешенной наэлектризованной эбонитовой палочке наэлектризованные тела из различных веществ: резины, плексигласа, пластмассы, капрона. Мы увидим, что в одних случаях эбонитовая палочка отталкивается от тел, поднесенных к ней, а в других - притягивается. Если эбонитовая палочка оттолкнулась, значит, на теле, поднесенном к ней, заряд такого же рода, что и на ней. А заряд тех тел, к которым эбонитовая палочка притянулась, сходен с зарядом, полученном на стекле, потертом о шелк. Поэтому можно считать, что существует только два рода электрических зарядов.

Заряд, полученный на стекле потертом о шелк (и на всех телах, где получается заряд такого же рода), назвали положительным, а заряд, полученный на янтаре (а также эбоните, сере, резине), потертом о шерсть назвали отрицательным, т. е. зарядам приписали знаки “+” и “-”.

И так, опыты показали, что существует два рода электрических зарядов - положительные и отрицательные заряды и что наэлектризованные тела по-разному взаимодействуют друг с другом.

Тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.

4. Электроскоп. Проводники и не проводники электричества.

Если тела наэлектризованы, то они притягиваются друг к другу или взаимно отталкиваются. По притяжению или отталкиванию можно судить, сообщен ли телу электрический заряд. Поэтому и устройство прибора, при помощи которого выясняют, наэлектризовано ли тело, основано на взаимодействии заряженных тел. Этот прибор называется электроскопом (от греч. слов электрон и скопео - наблюдать, обнаруживать).

В электроскопе через пластмассовую пробку (рис.№3), вставленную в металлическую оправу, пропущен металлический стержень, на конце которого укреплены два листочка из тонкой бумаги. Оправа с обеих сторон закрыта стеклами.

Чем больше заряд электроскопа, тем больше сила отталкивания листочков и тем на больший угол они разойдутся. Значит, по изменению угла расхождение листочков электроскопа можно судить, увеличился или уменьшился его заряд.

Если прикоснуться к заряженному телу (например, к электроскопу) рукой, оно разрядиться. Электрические заряды перейдут на наше тело и через него могут уйти в землю. Разредиться заряженное тело и в том случае если соединить его с землей металлическим предметом, например железной или медной проволокой. Но если заряженное тело соединить с землей стеклянной или эбонитовой палочкой, то электрические заряды по ним не уйдут в землю. В этом случае заряженное тело не разрядится.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Все металлы, почва, растворы солей и кислот в воде - хорошие проводники электричества.

К непроводникам электричества, или диэлектрикам, относятся фарфор, эбонит, стекло, янтарь, резина, шелк, капрон, пластмассы, керосин, воздух (газы).

Тела, изготовленные из диэлектриков, называются изоляторами (от греч. слова изоляро - уединять).

5. Делимость электрического заряда. Электрон.

Зарядим металлический шар, прикрепленный к стержню электроскопа (рис. №4а). Соединим этот шар с металлическим проводником А, держа его за ручку В, изготовленную из диэлектрика, с другим точно таким же, но незаряженным шаром, находящемся на втором электроскопе. Половина заряда перейдет с первого шара на второй (рис. №4б). Значит, первоначальный заряд разрядился на две равные части.

Теперь разъединим шары и коснемся второго шара рукой. От этого он потеряет заряд - разрядиться. Присоединим его снова к первому шару, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделиться на две равные части, и на первом шаре останется четвертая часть первоначального заряда.

Таким же образом можно получить одну восьмую, одну шестнадцатую часть заряда и т. д.

Таким образом, опыт показывает, что электрический заряд может иметь разное значение. Электрический заряд - физическая величина.

За единицу электрического заряда принят один кулон (обозначается 1 Кл). Единица названа так в честь французского физика Ш. Кулона.

В опыте изображенным на рисунке №4, показано, что электрический заряд можно разделить на части.

А существует ли придел деления заряда?

Чтобы ответить на этот вопрос, понадобилось выполнять более сложные и точные опыты, чем описанные выше, т. к. очень скоро оставшийся на шаре электроскопа заряд становиться таким малым, что обнаружить его при помощи электроскопа не удается.

Для деления заряда на очень маленькие порции нужно передавать его не шарам, а маленьким крупинкам металла или капелькам жидкости. Измеряя заряд, полученный на таких маленьких телах, установили, что можно получить порции заряда, в миллиарды миллиардов раз меньше, чем в описанном опыте. Однако во всех опытах разделить заряд дальше определенного значения не удавалось.

Это позволило предположить, что электрический заряд имеет придел делимости или, точнее, что существуют заряженные частица, которая имеет самый малый заряд, далее уже не делимый.

Чтобы доказать, что существует придел деления электрического заряда, и установить, каков этот придел, ученые проводили специальные опыты. Например, советский ученый А. Ф. Иоффе поставил опыт, в котором электризовали мелкие пылинки цинка, видимые только под микроскопом. Заряд пылинок несколько раз меняли, и каждый раз измеряли, на сколько изменился заряд. Опыты показали, что все изменения заряда пылинки были в целое число раз (т. е. в 2, 3, 4, 5 и т. д.)больше некоторого определенного наименьшего заряда, т. е. заряд пылинки изменялся хотя и очень малыми, но целыми порциями. Так как заряд с пылинки уходит вместе с частицей вещества, то Иоффе сделал вывод, что в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый.

Эту частицу назвали электрон.

Значение заряда электрона впервые определил американский ученый Р. Милликен. В своих опытах, сходных с опытами А. Ф. Иоффе, он пользовался мелкими капельками масла.

Заряд электрона - отрицательный, равен он - 1,610 Кл (0,000 000 000 000 000 000 16 Кл). Электрический заряд - одно из основных свойств электрона. Этот заряд нельзя “снять” с электрона.

Масса электрона равна 9,110 кг, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Крылышко мухи имеет массу, примерно в 510 большую, чем масса электрона.

6. Ядерная модель строения атома

Изучение строения атома практически началось в 1897-1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Факт выделения электронов самыми разнообразными веществами приводил к выводу, что электроны входят в состав всех атомов. Но атом в целом электрически нейтрален, следовательно, он должен содержать в себе еще другую составную часть, заряженную положительно, причем ее заряд должен уравновешивать сумму отрицательных зарядов электронов.

Эта положительно заряженная часть атома была открыта в 1911 г. Эрнестом Резерфордом (1871-1937). Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Суммарный отрицательный заряд электронов численно равен положительному заряду ядра, так что атом в целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал даже по сравнению с размером самих атомов: диаметр атома - величина порядка 10 см, а диаметр ядра - порядка 10 - 10 см. Отсюда ясно, что на долю ядра и электронов, число которых, как увидим дальше, сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой (рис. №5)

Тела, способные подобно янтарю после натирания притягивать мелкие предметы, называют наэлектризованными. Это означает, что на телах в таком состоянии имеются электрические заряды , а сами тела называются заряженными. Заметим, что трение в процессе электризации не играет принципиальной роли. Электрические заряды возникают при тесном соприкосновении различных веществ. В случае твердых тел трение позволяет увеличить площадь взаимного контакта и таким образом увеличивает возможность их электризации. Два наэлектризованных тела могут либо отталкиваться, либо притягиваться друг к другу. Способность к такому взаимодействию связана с наличием на них электрических зарядов двух видов. Ответить на вопрос: «Что такое электрический заряд?» – нельзя, но можно утверждать точно, что наличие на теле электрического заряда приводит к способности электромагнитного взаимодействия его с другими телами, которые также владеют таким свойством.

Если зарядить два легких тела, подвешенных на шелковых нитях, прикасаясь к ним стеклянной палочкой, потертой о шелк, то они отталкиваются. То же самое наблюдается, если их зарядить от эбонитовой палочки, потертой о мех. Но если одно из тел зарядить от стеклянной палочки, а другое от эбонитовой, то они будут притягиваться. Когда наэлектризованные тела отталкиваются друг от друга, то говорят, что заряды на них одного рода, когда притягиваются, то заряды разного рода. Заряды разных родов принято называть положительными и отрицательными. Положительным принято считать заряд, который приобретает стекло при натирании его о шелк. Шелк при этом приобретает отрицательный заряд.

Важным явлением, которое позволяет понять процесс электризации тел, является следующее, если два тела, заряженные разноименными зарядами, привести в соприкосновение, то после этого сила взаимодействия между ними или исчезнет совсем, или уменьшится и изменит направление на противоположное. Заряды различных знаков компенсируют друг друга. Явление исчезновения с тела электрического заряда называют нейтрализацией. Этот факт говорит о том, что любое нейтральное тело содержит в одинаковом количестве положительные и отрицательные заряды. Они не возникают при натирании двух тел, а перераспределяются между телами таким образом, что на первом теле (стекле)образуется излишек положительных зарядов, а на втором теле (шелк) – излишек отрицательных. Электрический заряд заряженного тела можно передать на незаряженное тело, при этом предыдущий заряд тела будет изменяться.

Каким может быть наименьший заряд? Эксперименты показывают, что ни у одной из заряженных частиц не встречается заряд меньше заряда протона или электрона. Этот элементарный заряд равен –1,60 10 –19 Кл у электрона и +1,60 10 –19 Кл у протона. Заряд электрона обозначается символом е , а протона – р . Масса протона, однако в 1836 раз больше массы электрона. Известно также, что электроны и протоны входят в состав каждого атома. Поскольку протоны находятся в ядрах атомов, основную роль при электризации тел играют электроны. Так называемые валентные электроны, наиболее слабо связанные с ядром, а часть вообще может находиться за пределами атома. При близком контакте двух нейтральных тел часть электронов может переходить с одного тела на другое. Если на теле образовывается излишек электронов, то оно владеет отрицательным зарядом. Из приведенных рассуждений следует вывод: заряды не создаются и не пропадают, они могут быть переданы от одного тела другому или перемещены внутри одного тела. Это положение носит название закона сохранения электрического заряда и является основным в учении об электричестве. Оно никак не доказывается, а лишь подтверждается многочисленными фактами и экспериментами. Иногда его формулируют по-иному: в изолированной (замкнутой) системе алгебраическая сумма зарядов остается постоянной.

Поскольку всякий заряд q образуется совокупностью элементарных зарядов, он является целым кратным е :

q =|n × e |

где n – количество лишних элементарных зарядов. Равенство показывает, что электрический заряд – величина дискретная, однако элементарный заряд настолько мал, что возможную величину макроскопических зарядов можно считать изменяющейся непрерывно.

Обычно под словом «заряд» понимают частицу или тело, которые обладают способностью к электромагнитному взаимодействию.

Заряженное тело, размеры которого в данной конкретной задаче можно не учитывать, называют точечным. На практике в большинстве случаев заряженными бывают макроскопические тела.

Для измерения величины заряда на теле существует измерительный приборэлектрометр . При его соприкосновении с металлическим стержнем электрометра часть заряда переходит на посаженную на ось, проводящую стрелку и она отклоняется. По углу отклонения определяется величина заряда.

В ходе данного урока мы продолжим знакомиться с «китами», на которых стоит электродинамика, - электрическими зарядами. Мы изучим процесс электризации, рассмотрим, на каком принципе основан этот процесс. Поговорим о двух типах зарядов и сформулируем закон сохранения этих зарядов.

На прошлом уроке мы уже упоминали о ранних экспериментах в электростатике. Все они были основаны на натирании одного вещества о другое и дальнейшем взаимодействии этих тел с малыми объектами (пылинками, клочками бумаги…). Все эти опыты основаны на процессе электризации.

Определение. Электризация – разделение электрических зарядов. Это значит, что электроны от одного тела переходят к другому (рис. 1).

Рис. 1. Разделение электрических зарядов

До момента открытия теории о двух принципиально разных зарядах и элементарного заряда электрона считалось, что заряд – некая невидимая сверхлегкая жидкость, и, если она есть на теле, значит, тело обладает зарядом и наоборот.

Первые серьезные опыты по электризации различных тел, как уже было сказано на предыдущем уроке, проводил английский ученый и врач Уильям Гильберт (1544-1603), однако ему не удавалось наэлектризовать металлические тела, и он посчитал, что электризация металлов невозможна. Однако это оказалось неправдой, что впоследствии доказал русский ученый Петров. Однако следующий более важный шаг в исследовании электродинамики (а именно открытие разнородных зарядов) сделал французский ученый Шарль Дюфе (1698-1739). В результате своих опытов он установил наличие, как он их назвал, стеклянных (трение стекла о шелк) и смоляных (янтаря о мех) зарядов.

Еще через некоторое время были сформулированы следующие законы (рис. 2):

1) одноименные заряды взаимно отталкиваются;

2) разноименные заряды взаимно притягиваются.

Рис. 2. Взаимодействие зарядов

Обозначения положительных (+) и отрицательных (–) зарядов было введено американским ученым Бенджамином Франклином (1706-1790).

По договоренности принято называть положительным заряд, который образуется на стеклянной палочке, если натирать ее бумагой или шелком (рис. 3), а отрицательный – на эбонитовой или янтарной палочке, если натирать ее мехом (рис. 4).

Рис. 3. Положительный заряд

Рис. 4. Отрицательный заряд

Открытие Томсоном электрона наконец дало ученым понять, что при электризации никакая электрическая жидкость не сообщается телу и никакой заряд не наносится извне. Происходит перераспределение электронов, как мельчайших носителей отрицательного заряда. В области, куда они приходят, их количество становится большим, чем количество положительных протонов. Таким образом, появляется нескомпенсированный отрицательный заряд. И наоборот, в области, откуда они уходят, появляется нехватка отрицательных зарядов, необходимых для компенсации положительных. Таким образом, область заряжается положительно.

Было установлено не только наличие двух разных видов зарядов, но и два различных принципа их взаимодействия: взаимное отталкивание двух тел, заряженных одноименными зарядами (одного знака) и соответственно притяжение разноименно заряженных тел.

Электризация может производиться несколькими способами:

  • трением;
  • прикосновением;
  • ударом;
  • наведением (через влияние);
  • облучением;
  • химическим взаимодействием.

Электризация трением и электризация соприкосновением

Когда стеклянную палочку натирают о бумагу, палочка получает положительный заряд. Соприкасаясь с металлической стойкой, палочка передает положительный заряд бумажному султану, и его лепестки отталкиваются друг от друга (рис. 5). Этот опыт говорит о том, что одноименные заряды отталкиваются друг от друга.

Рис. 5. Электризация прикосновением

В результате трения о мех эбонит приобретает отрицательный заряд. Поднося эту палочку к бумажному султану, видим, как лепестки притягиваются к ней (см. рис. 6).

Рис. 6. Притяжение разноименных зарядов

Электризация через влияние (наведение)

Поставим на подставку с султаном линейку. Наэлектризовав стеклянную палочку, приблизим ее к линейке. Трение между линейкой и подставкой будет небольшим, поэтому можно наблюдать взаимодействие заряженного тела (палочки) и тела, у которого заряда нет (линейка).

При проведении каждого эксперимента совершалось разделение зарядов, никаких новых зарядов не возникало (рис. 7).

Рис. 7. Перераспределение зарядов

Итак, если мы сообщили любым из вышеуказанных способов электрический заряд телу, нам, конечно же, необходимо каким-либо способом оценить величину этого заряда. Для этого используется прибор электрометр, который был придуман русским ученым М.В. Ломоносовым (рис. 8).

Рис. 8. М.В. Ломоносов (1711-1765)

Электрометр (рис. 9) состоит из круглой банки, металлического стержня и легкого стержня, который может вращаться вокруг горизонтально расположенной оси.

Рис. 9. Электрометр

Сообщая заряд электрометру, мы в любом случае (и для положительного, и для отрицательного заряда) заряжаем и стержень, и стрелку одноименными зарядами, в результате чего стрелка отклоняется. По углу отклонения и оценивается заряд (рис. 10).

Рис. 10. Электрометр. Угол отклонения

Если взять наэлектризованную стеклянную палочку, прикоснуться ею к электрометру, то стрелка отклонится. Это говорит о том, что электрометру был сообщен электрический заряд. В ходе этого же эксперимента с эбонитовой палочкой этот заряд компенсируется (рис. 11).

Рис. 11. Компенсация заряда электрометра

Так как уже было указано, что никакого создания заряда не происходит, а происходит лишь перераспределение, то имеет смысл сформулировать закон сохранения заряда:

В замкнутой системе алгебраическая сумма электрических зарядов остается постоянной (рис. 12). Замкнутой системой называется система тел, из которой заряды не уходят и в которую заряженные тела или заряженные частицы не поступают.

Рис. 13. Закон сохранения заряда

Данный закон напоминает о законе сохранения массы, так как заряды существуют только вместе с частицами. Очень часто заряды по аналогии называют количеством электричества .

До конца закон сохранения зарядов не объяснен, так как заряды появляются и исчезают только попарно. Другими словами, если заряды рождаются, то только сразу положительный и отрицательный, причем равные по модулю.

На следующем уроке мы подробнее остановимся на количественных оценках электродинамики.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «abcport.ru» ()
  3. Интернет-портал «planeta.edu.tomsk.ru» ()

Домашнее задание

  1. Стр. 356: № 1-5. Касьянов В.А. Физика 10 класс. - М.: Дрофа. 2010.
  2. Почему отклоняется стрелка электроскопа, если к нему прикоснуться заряженным телом?
  3. Один шар заряжен положительно, второй - отрицательно. Как изменится масса шаров при их соприкосновении?
  4. *К шару заряженного электроскопа поднесите, не дотрагиваясь, заряженный металлический стержень. Как изменится отклонение стрелки?