Схема нейрона и его строение. Open Library - открытая библиотека учебной информации. Передача информации нервными клетками

Нерациональное природопользование

Нерациональное природопользование - это система производства, при которой широкомасштабно осваиваются легкодоступные природные ресурсы, при этом происходит их быстрое истощение ввиду не полной переработки. Таким образом, распространяется большое количество отходов и происходит загрязнение окружающей среды.

Такое природопользование характерно для быстрого развития хозяйства при отсутствии достаточно развитого научно-технического потенциала, и, хотя поначалу такая деятельность может давать неплохие результаты, впоследствии она всё же приводит к пагубным последствиям по отношении к экологической среде.

Примером нерационального природопользования может служить кампания по освоению целины в СССР в 1955-1965 годы. Причинами провала этой компании послужил ряд факторов: освоение целины началось без подготовки при отсутствии инфраструктуры - не было ни дорог, ни зернохранилищ, ни квалифицированных кадров. Природные условия степей также не принимались во внимание: не учитывались песчаные бури и суховей, не были способы обработки почв и адаптированные к этому типу климата сорта зерновых.

Стоит отметить, что распашка земель производилась форсированными темпами и при огромных затратах. Благодаря такому колоссальному сосредоточению средств и людей, а также природным факторам новые земли в первые годы давали сверхвысокие урожаи, а с середины 1950-х годов - от половины до трети всего производимого в СССР хлеба. Однако стабильности добиться так и не удалось: в неурожайные годы на целине едва ли могли собрать посевной фонд. Помимо этого из-за нарушения экологического равновесия и эрозии почв в 1962-1963 гг. появились пыльные бури. Так или иначе, освоение целины вступило в стадию кризиса, а эффективность возделывания снизилась на 65 %.

Все эти данные говорят лишь о том, что освоение почв происходило экстенсивным путём, но к эффективному результату, тем не менее, этот путь так и не привёл. Напротив, структура почв начала разрушаться, уровень урожая заметно уменьшился, а средства так и не оправдали своего вложения. Всё это, безусловно, свидетельствует о неэффективном использовании ресурсов в попытке быстро и сразу решить все сельскохозяйственные проблемы, не имея в качестве твёрдой опоры ни науки, ни высококачественных технологий, ни соответствующего уровня инфраструктуры, благодаря чему исход мог бы быть совсем иной.

Различия между рациональным и нерациональным природопользованием

Сравнив предварительно два понятия рациональное и нерациональное природопользование и проиллюстрировав их на примерах, мы можем соотнести их значения, сравнить и выявить фундаментальные различия между ними. Эти различия можно существенно обозначить в качестве двух путей развития: интенсивного и экстенсивного.

Первый путь полностью соответствует рациональному природопользованию. Он указывает на эффективное расходование ресурсов, которое вносит ощутимый вклад как в производство в целом, так и в высококлассные безотходные технологии, делая тем самым производство экологически безопасным и не несущим вреда природе. Кроме того интенсивный путь зачастую в полном объёме удовлетворяет культурные и материальные потребности общества.

Второй же путь, напротив, применим к нерациональному природопользованию. Его основными признаками являются непропорциональное соотношение между затраченными ресурсами и результатом, ориентирование на пространственное (количественное), а не на высокотехнологичное (качественное) значение, а также чаще всего несостоятельность в удовлетворении общественных потребностей. И, наконец, экстенсивный путь наносит колоссальный ущерб по природе посредством действий, не опирающихся на какие-либо научные разработки или технологии, выбросов химически вредных и опасных веществ, прочих отходов производства в окружающую среду. В том числе иногда этот урон может достигать экологической катастрофы и быть причинами отрицательных глобальных процессов и явлений, протекающих по всему миру.

рациональное нерациональное природопользование

Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.

Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.

В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.

В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

Форма

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.

Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Размеры

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.

Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Классификация по функциям

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Благодаря «двигательным» клеткам приказы отправляются к мышцам и железам. Они отправляют импульсы от центра к периферии. А вот по чувствительным клеткам сигнал отправляется от периферии непосредственно к центру.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Таким образом, нейроглия выполняет ряд функций.

В этой статье мы поговорим про нейроны мозга. Нейронами коры головного мозга является структурно-функциональная единица всей общей нервной системы.

Такая клетка обладает весьма сложным строением, высокой специализацией, а если говорить о ее структуре, то состоит клетка из ядра, тела и отростков. В организме человека в общей сложности существует приблизительно 100 миллиардов таких клеток.

Функции

Любые клетки, которые расположены в человеческом организме обязательно отвечают за те или иные его функции. Не исключением являются и нейроны.

Они, как и другие клетки головного мозга обязаны обеспечивать поддержание своей собственной структуры и некоторых функций, а также приспосабливаться к возможным изменениям условий, а соответственно осуществлять регулирующие процессы на клетки, которые находятся в непосредственной близости.

Главной функцией нейронов считается переработка важной информации, а именно ее получение, проведение, а потом и передача другим клеткам. Информация поступает благодаря синапсам, обладающих рецепторами сенсорных органов или какими-то иными нейронами.

Также в некоторых ситуациях передача информации может происходить и, непосредственно, из внешней среды при помощи, так называемых, специализированных дендритов. Проводится информация сквозь аксоны, а ее передача осуществляется синапсами.

Строение

Тело клетки . Эта часть нейрона считается самой главной и состоит из цитоплазмы и ядра, которые создают протоплазму, снаружи она ограничивается своеобразной мембраной, состоящей из двойного слоя липидов.

В свою очередь такой слой липидов, который еще принято называть биолипидным слоем, состоит из хвостов гидрофобной формы и таких же головок. Нужно отметить, что такие липиды находятся друг к другу хвостами, и таким образом создают некий своеобразный гидрофобный слой, который способен пропускать через себя исключительно вещества, растворяющиеся в жирах.

На поверхности мембраны расположены белки, которые имеют форму глобул. На таких мембранах расположены наросты полисахаридов, с помощью которых у клетки появляется хорошая возможность воспринимать раздражения внешних факторов. Также здесь присутствуют и интегральные белки, которые фактически насквозь пронизывают всю поверхность мембраны, а в них, в свою очередь, располагаются ионные каналы.

Нейроновые клетки коры головного мозга состоят из тел, диаметр колеблется в пределах от 5 до 100 мкм, которые содержат в себе ядро (имеющее множество ядерных пор), а также некие органеллы, в том числе и достаточно сильно развивающийся ЭПР шероховатой формы, обладающий активными рибосомами.

Также в состав каждой отдельной клетки нейрона входят и отростки. Существует два главных типа отростков – аксон и дендриты. Особенностью нейрона является и то, что он имеет развитый цитоскелет, который собственно способен проникать в его отростки.

Благодаря цитоскелету постоянно поддерживается необходимая и стандартная форма клетки, а его нити выполняют роль своеобразных «рельсов», с помощью которых транспортируются органеллы и вещества, которые упакованы в пузырьки мембран.

Дендриты и аксон . Аксон имеет вид достаточно длинного отростка, который отлично приспособлен к процессам, направленных на возбуждение нейрона от человеческого тела.

Дендриты выглядят совсем по-другому, уже хотя бы потому, что их длина гораздо меньшая, а также у них наблюдаются слишком развитые отростки, которые исполняют роль главного участка, где начинают появляться тормозные синапсы, способные таким образом влиять на нейрон, что в течение короткого периода времени нейроны человека возбуждаются.

Как правило, нейрон состоит из большего количество дендритов, в то время. Как присутствует всего один аксон. Один нейрон обладает связями с множеством других нейронов, иногда подобных связей существует около 20 000.

Делятся дендриты дихотомическим способом, в свою очередь аксоны способны давать коллатерали. В узлах ветвления практически в каждом нейроне находятся несколько митохондрий.

Стоит отметить также и тот факт, что у дендритов нет никакой миелиновой оболочки в то время, как аксоны могут таким органом располагать.

Синапсом называют место, где осуществляется контакт между двумя нейронами или же между эффекторной клеткой, которая получает сигнал и непосредственно нейроном.

Главной функцией такого составляющего нейрона является передача нервных импульсов между разными клетками, при этом частота сигнала может меняться в зависимости от темпов и типов передачи данного сигнала.

Нужно отметить, что некоторые синапсы способны вызывать деполяризацию нейрона, в тот момент как другие наоборот гиперполяризацию. Первый тип нейронов называют возбуждающими, а второй – тормозящими.

Как правило, для того, чтобы начался процесс возбуждения нейрона, в качестве раздражителей должны выступить сразу несколько возбуждающих синапсов.

Классификация

Согласно количеству и локализации дендритов, а также месторасположению аксона, нейроны головного мозга делятся на униполярные, биполярные, безаксонные, мультиполярные и псевдоуниполярные нейроны. Теперь хотелось бы рассмотреть каждый из таких нейронов более детально.

Униполярные нейроны обладают одним небольшим отростком, и чаще всего находятся в сенсорном ядре так называемого тройничного нерва, расположенного в средней части мозга.

Безаксонные нейроны имеют маленькие размеры и локализованы в непосредственной близости от спинного мозга, а именно в межпозвоночных галлиях и не имеют совершенно никаких делений отростков на аксоны и дендриты; все отростки имеют практически одинаковый вид и каких-то серьезных отличий между ними не существует.

Биполярные нейроны состоят из одного дендрита, который находятся в специальных сенсорных органах, в частности в сетке глаза и луковице, а также только одного аксона;

Мультиполярные нейроны имеют в собственной структуре несколько дендритов и один аксон, и находятся в центральной нервной системе;

Псевдоуниполярные нейроны считаются своеобразными в своем роде, так как сначала отходит от главного тела всего один отросток, который постоянно делится на несколько других, а встречаются подобные отростки исключительно в спинальных ганглиях.

Существует также классификация нейронов согласно функциональному принципу. Так, по таким данным различают эфферентные нейроны, афферентные, двигательные, а также интернейроны.

Эфферентные нейроны имеют в своем составе неультиматные и ультиматные подвиды. Кроме того, к ним относятся и первичные клетки чувствительных органов человека.

Афферентные нейроны . К нейронам данной категории относятся как первичные клетки чувствительных человеческих органов, так и псевдоуниполярные клетки, которые обладают дендритами со свободными окончаниями.

Ассоциативные нейроны . Главной функцией этой группы нейронов является осуществление связи между афферентными эфферентными видами нейронов. Такие нейроны делят на проекционные и комиссуральные.

Развитие и рост

Нейроны начинают развиваться из небольшой клетки, которая считается его предшественницей и перестает делиться еще до того момента, как образуются первые собственные отростки.

Нужно отметить, что в нынешнее время ученые еще не до конца изучили вопрос, касающейся развития и роста нейронов, но постоянно работают в данном направлении.

В большинстве случаев сначала начинают развиваться аксоны, а после этого дендриты. На самом конце отростка, который начинает уверенно развиваться образовывается утолщение специфической и несвойственной для такой клетки формы, и таким образом прокладывается путь сквозь ткань, окружающую нейроны.

Такое утолщение принято называть конусом роста нервных клеток. Данный конус состоит из некоторой уплощенной части отростка нервной клетки, которая в свою очередь создана из большого количества довольно тонких шипов.

Микрошипики обладают толщиной от 0,1 до 0,2 микромикрон, а в длину могут достигать отметки и 50 мкм. Если говорить непосредственно о плоской и широкой области конуса, то надо отметить, что ей свойственно менять собственные параметры.

Между микрошипами конуса присутствуют некоторые промежутки, которые полностью покрыты складчатой мембраной. Микрошипики двигаются на постоянной основе, благодаря чему, в случае поражения, нейроны восстанавливаются и приобретают необходимую форму.

Хотелось бы отметить, что каждая отдельная клетка движется по-своему, так если одна из них будет удлиняться или расширяться, то вторая может отклоняться в разные стороны или даже прилипать к субстрату.

Конус роста полностью заполнен мембранными пузырьками, которые характеризируются слишком мелкими размерами и неправильной формой, а также соединениями друг с другом.

Кроме того, в конусе роста находятся нейрофиламенты, митохондрии, а также микротрубочки. Такие элементы имеют способность двигаться с огромной скоростью.

Если сравнивать скорости передвижения элементов конуса и непосредственно самого конуса, то необходимо подчеркнуть, что они приблизительно одинаковы, а поэтому можно сделать вывод, что в период роста не наблюдается ни сборки, ни каких-то нарушений микротрубочек.

Наверное, новый мембранный материал начинает добавляться уже в самом конце процесса. Конус роста – это участок довольно быстрого эндоцитоза и экзоцитоза, что подтверждают большое количество пузырьков, которые здесь расположены.

Как правило, росту дендритов и аксонов предшествует момент миграции нейронных клеток, то есть тогда, когда незрелые нейроны фактически расселяются и начинают существовать на одном и том же постоянном месте.

Функции нейрона

Свойства нейрона

Основные закономерности проведения возбуждения по нервным волокнам

Проводниковая функция нейрона.

Морфофункциональные свойства нейрона.

Строение и физиологические функции мембраны нейрона

Классификация нейронов

Строение нейрона и его функциональные части.

Свойства и функции нейрона

· высокая химическая и электрическая возбудимость

· способность к самовозбуждению

· высокая лабильность

· высокий уровень энергообмена. Нейрон не прибывает в состоянии покоя.

· низкая способность к регенерации (рост нейритов всего лишь 1 мм в сутки)

· способность к синтезу и секреции химических веществ

· высокая чувствительность к гипоксии, ядам, фармакологическим препаратам.

· воспринимающая

· передающая

· интегрирующая

· проводниковая

· мнестическая

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон. Количество нейронов в нервной системе составляет примерно10 11 . На одном нейроне может быть до 10000 синапсов. Если только синапсы считать ячейками хранения информации, то можно заключить, что нервная система человека может хранить 10 19 ед. информации, т. е. способна вместить все знания, накопленные человечеством. Поэтому предположение о том, что мозг человека запоминает все происходящее в течение жизни в организме и при взаимодействии со средой биологически является вполне обоснованным.

Морфологически выделяют следующие составные части нейрона: тело (сома) и выросты цитоплазмы – многочисленные и, как правило, короткие ветвящиеся отростки, дендриты, и один наиболее длинный отросток – аксон. Выделяют также аксонный холмик – место выхода аксона из тела нейрона. Функционально принято выделять три части нейрона: воспринимающую – дендриты и мембрана сомы нейрона, интегративную – сома с аксонным холмиком и передающую – аксонный холмик и аксон.

Тело клетки содержит ядро и аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет при­близительно сферическую или пирамидальную форму.

Дендриты – основное воспринимающее поле нейрона. Мембрана нейрона и синаптической части тела клетки способна реагировать на медиаторы, выделяемые в синапсах, изменением электрического потенциала. Нейрон как информационная структура должен иметь большое количество входов. Обычно нейрон имеет несколько ветвящихся дендритов. Информация от других нейронов поступает к нему через специализированные контакты на мембране – шипики. Чем сложнее функция данной нервной структуры, чем больше сенсорных систем посылают к ней информацию, тем больше шипиков на дендритах нейронов. Максимальное их количество содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Шипики занимают до 43% поверхности мембраны сомы и дендритов. За счет шипиков воспринимающая поверхность нейрона значительно возрастает и может достигать, например, у клеток Пуркинье, 250 000 мкм 2 (сравним с размером нейрона – от 6 до 120 мкм). Важно подчеркнуть, что шипики являются не только структурным, но и функциональным образованием: их количество определяется информацией, поступающей к нейрону; если данный шипик или группа шипиков длительное время не получают информации, они исчезают.



Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной через аксонный холмик. На конце аксона находится аксонный холмик - генератор нервных импульсов. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиовую оболочку, образованную из глии. На конце аксон имеет разветвления, в которых находятся митохондрии и секреторные образования – везикулы.

Тело и дендриты нейронов являются структурами, которые осуществляют интеграцию поступающих к нейрону многочисленных сигналов. За счет огромного количества синапсов на нервных клетках происходит взаимодействие многих ВПСП (возбуждающих постсинаптических потенциалов) и ТПСП (тормозных постсинаптических потенциалов), (об этом будет более подробно сказано во второй части); результатом такого взаимодействия является появление на мембране аксонного холмика потенциалов действия. Длительность ритмического разряда, число импульсов в одном ритмическом разряде и продолжительность интервала между разрядами являются основным способом кодирования информации, которую передает нейрон. Наиболее высокая частота импульсов в одном разряде наблюдается у вставочных нейронов, поскольку у них следовая гиперполяризация значительно короче, чем у двигательных нейронов. Восприятие поступающих к нейрону сигналов, взаимодействие возникающих под их влиянием ВПСП и ТПСП, оценка их приоритета, изменение метаболизма нервных клеток и формирование в итоге различной временной последовательности потенциалов действия составляет уникальную характеристику нервных клеток – интегративную деятельность нейронов.

Рис. Мотонейрон спинного мозга позвоночных. Указаны функции разных его частей.Области возникновения градуальных и импульсных электрических сигналов в нейронной цепи: Градуальные потенциалы, возникающие в чувствительных окончаниях афферентных (чувствительных, сенсорных) нервных клеток в ответ на раздражитель, приблизительно соответствуют его величине и длительности, хотя они и не бывают строго пропорциональным амплитуде раздражителя и не повторяют его конфигурацию. Эти потенциалы распространяются по телу чувствительного нейрона и вызывают в его аксоне импульсные распространяющиеся потенциалы действия. Когда потенциал действия достигает окончания нейрона, происходит выброс медиатора, приводящий к появлению градуального потенциала в следующем нейроне. Если в свою очередь этот потенциал достигает порогового уровня, в этом постсинаптическом нейроне появляется потенциал действия или серия таких потенциалов. Таким образом в нервной цепи наблюдается чередование градуальных и импульсных потенциалов.

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы. Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др. Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза. Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными. Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы. Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов. Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

По функциональному назначению нейроны подразделяются на афферентные, интернейроны, или вставочные и эфферентные.

Афферентные нейроны выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Афферентные нейроны имеют большую разветвленную сеть.

Вставочные нейроны обрабатывают информацию, полученную от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны могут быть возбуждающими или тормозными.

Эфферентные нейроны – это нейроны, передающие информацию от нервного центра к другим центрам нервной системы или к исполнительным органам. Например, эфферентные нейроны двигательной зоны коры большого мозга – пирамидные клетки посылают импульсы к мотонейронам передних рогов спинного мозга, то есть они являются эфферентными для коры, но афферентными для спинного мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для передних рогов и посылают импульсы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обеспечивающего большую скорость проведения возбуждения. Все нисходящие пути спинного мозга (пирамидный, ретикулоспинальный, руброспинальный и др.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы. Нейроны автономной нервной системы, например, ядер блуждающего нерва, боковых рогов спинного мозга также относятся к эфферентным.

Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Обзор

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Строение

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и . Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в . В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой. Служит для передачи между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсывызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в .

Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны - нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину нейрона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в ;
  • псевдоуниполярные клетки, сгруппированные вблизи в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.