Интересное сообщение о фосфоре. Белый фосфор: свойства, история открытия и применение. Хронология этих открытий

С незапамятных времен человечество ввело в свой рацион колбасные изделия как универсальный продукт, который обладал свойствами поддерживать в тонусе организм человека всеми необходимыми питательными веществами. Колбаса постепенно стала постоянным атрибутом обеденного стола. Это был тот продукт, который был доступен каждому, начиная от высшего общества, заканчивая простым сапожником провинциального городка.

Колбаса «Докторская» для «больных, имеющих подорванное здоровье в результате Гражданской войны и царского деспотизма»


В 1936 году Всероссийский научно-исследовательский институт мясной промышленности получает задание на разработку нового сорта колбасы. По «слухам» приказ на разработку отдал лично И.В. Сталин. На первый взгляд, задание простое — разработать рецепт колбасы для всенародных масс с сильным сытным качеством. Первоначально продукт был предназначен для «больных, имеющих подорванное здоровье в результате Гражданской войны и царского деспотизма». Странное задание, если вспомнить, какие события нес в себе 1936 год. Но, несмотря на все, 29 апреля 1936 года, за прямым указанием народного комиссара мясной промышленности А.И. Микояна, новый сорт колбасы встал на линию производства. Так начинается история всенародно любимой колбасы «Докторская».

Интересно было бы посмотреть на рецепт новой колбасы. Итак, колбаса «Докторская» состоит исключительно из натуральных ингредиентов: 70% полужирной свинины, 25% говядины высшего сорта, 3% куриных яиц, 2% коровьего молока, обязательно наличие мускатного ореха или кардамона.

Встает вопрос, а для чего создан такой мощный питательный продукт или для кого? Если для высших эшелонов власти, то почему этот сорт колбасы попал на прилавки практически всех магазинов страны? Теоретически, если «для лиц пострадавших от деспотии царизма», то следовало этот продукт производить в ограниченных партиях и поставлять исключительно в заведения элиты.

В случае с «докторской», получилось все наоборот. Колбаса быстро завоевала признание широких масс, своими вкусовыми качествами. Новый сорт колбасы завоевал сердца простого потребителя. Так где искать ключ к разгадке задания И.С. Сталина? Вряд ли это была продукция для тех, кто имел несчастье пострадать от царизма. При царе тоже воевали, но заказ на новый сорт колбасы или другой продукции заводы не получали. Ведь тяжело представить, колбаса для «лиц пострадавших от негативного влияния шведской стороны».

Изначально колбаса «Докторская» состояла исключительно из натуральных ингредиентов

Скорее всего разгадка таится не в тех таинственных лицах, пострадавших от влияния царизма, при этом еще и имеющих подорванное здоровье. Если посмотреть с другой стороны, под эту статью подводилось практически все население страны. 1936 год. Не прошло и 20 лет, как свергнут царь. Половина населения страны жила при царе, знала, царский устрой и, оказывается, была подвержена «губительному влиянию».

Так где же ключ к тайне? Кого изначально собирались лечить «докторской колбасой»? Ответ, скорее всего, следует искать в простом обывателе, простом жителе огромной страны. Если основная масса населения страны получила возможность питаться этой колбасой, значит, изначально так и планировалось. Согласимся, ведь красную икру и американский виски потребителю не подавали в свободном доступе? Такое лакомство имели лишь избранные.

В 1936 году огромная страна, огромный маховик заработали с удвоенной силой. Нужен был труд. Хороший труд мог дать только работник, который хорошо отдохнул, в том числе сытно поел. Нужно было много работников. Много труда, много энергии. Колбаса «Докторская» имела уникальные диетические свойства. Это был продукт, который имел в себе все жиры и калории, необходимые для организма здорового работника. Вот где кроется суть изречения «больным, имеющим подорванное здоровье по причине Гражданской войны и царской деспотии».

Население пережило голод, человек истощен. Что может сделать отощавший работник? Правильно, практически ничего. Если всех направить на лечение, мест не хватит, и кто будет работать? Поднимать страну из руины? Потому и был создан новый сорт колбасы — « Докторская». Разгадка в названии. «Докторская», а значит лечебная, — то, что прописал доктор.

С уважением,



Фосфор в роли азота

Химики-органики получили огромное количество соединений, в состав которых входят водород и элементы второго периода Периодической системы - углерод, азот, кислород. Не отстают от них и специалисты в области химии элементоорганических соединений, которые, как правило, вводят в состав классического органического соединения заместители, содержащие элементы старших периодов, например кремний или фосфор. Элементоорганические заместители, бесспорно, придают соединениям широкий спектр практически полезных свойств, однако сегодня известно мало примеров, когда гетероатомы выступают в роли более тяжелых аналогов классических C, N, O в гетероциклических ароматических системах. Исследователи из Швейцарской высшей технической школы Цюриха пополнили этот список, синтезировав фосфорсодержащий аналог циануровой кислоты («Angewandte Chemie Int. Ed.», 2017, 56, 5, 1356-1360, doi: 10.1002/anie.201610156).

Шестичленный гетероцикл, циануровую кислоту - C 3 N 3 (OH) 3 и ее производные часто применяют в качестве агентов для сшивки полимеров, а также для получения гербицидов, красителей и других полезных химикатов. Исследователи из группы Хансйорга Грютцмахера уверены, что фосфорсодержащий аналог циануровой кислоты C 3 P 3 (OH) 3 (он же трифосфабензол или 2,4,6-три(гидрокси)-1,3,5-трифосфинин) сможет найти применение в тех же областях, став основой для синтеза фосфорсодержащих полимеров, а возможно, и лигандом для комплексов переходных металлов.

Циануровая кислота - одно из первых органических соединений, синтезированных в лаборатории. В 1829 году ее получил тримеризацией изоциановой кислоты HNCO Фридрих Вёлер. Это произошло всего лишь год спустя после того, как тот же Вёлер синтезировал мочевину из неорганических веществ. Сегодня промышленный способ получения циануровой кислоты основан на пиролизе мочевины, и он так прост, а ее роль настолько велика, что химиков давно интересовал ее более тяжелый аналог, в котором все атомы азота были бы замещены атомами фосфора. Однако до Грютцмахера с соавторами это никому не удавалось.

Исследователи из Швейцарии (возможно, как и многие до них) сперва полагали, что фосфорсодержащий аналог циануровой кислоты удастся получить, тримеризуя исходное соединение HPCO, но все попытки кончались неудачей. Тогда они изменили тактику и методом проб и ошибок выяснили, что взаимодействие натриевой соли Na(OCP) и борорганического соединения приводит к борзамещенному фосфаалкину, тримеризация которого дает мультиграммовые количества соединения с циклом C 3 P 3 . Дальнейшая обработка борсодержащего интермедиата трет-бутанолом позволила получить целевое соединение C 3 P 3 (OH) 3 .

Хосе Гойкоэчеа из Оксфордского университета, в группе которого в 2013 году впервые получили фосфорсодержащий аналог мочевины, H 2 PC(O)NH 2 («Journal of the American Chemical Society», 2013, 135, 51, 19131-19134, doi: 10.1021/ja4115693), заявляет, что его коллеги из Цюриха совершили прорыв и наверняка у них будут многочисленные последователи.

У Грютцмахера с коллегами пока нет планов коммерциализации фосфорсодержащего аналога циануровой кислоты. Исследователи в первую очередь хотят изучить возможность применения ароматического C 3 P 3 (OH) 3 , его бор- и кремнийсодержащих производных в качестве π-акцепторных лигандов и попробовать получить комплексы переходных металлов.

Один из самых распространенных элементов земной коры, в свободном состоянии не встречается из-за высокой химической активности. Он образует около 190 минералов.

Фосфор содержится во всех частях зеленых растений, еще больше его в плодах и семенах. Также содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ), является элементом жизни . В элементарном виде в обычных условиях представляет собой несколько устойчивых аллотропических модификаций (белый, красный, черный, металлический). Они различаются по цвету, плотности и другим физическим характеристикам. В организме фосфор сосредоточен главным образом в скелете, мышцах и нервной ткани.

Зачем нужно?

Является важнейшим биогенным элементом и, в то же время, находит широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Так же используется в производстве взрывчатых веществ, зажигательных составов, топлив, противозадирных смазочных материалов. В сельском хозяйстве этот элемент востребован для создания удобрений.

Фосфор представлен в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита, а в состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D . Большинство фосфорорганических соединений обладает биологической активностью, поэтому часть из них используется в качестве лекарств, другая — как средства борьбы с сельскохозяйственными вредителями.

Фосфор — важнейший элемент, входящий в состав белков, нуклеиновых кислот, костной ткани . Соединения фосфора принимают участие в обмене энергии (аденозинтрифосфорная кислота и креатинфосфат являются аккумуляторами энергии), с их превращениями связаны мышечная и умственная деятельность, жизнеобеспечение организма. Фосфор влияет на деятельность сердца и почек.

Из продуктов питания особенно богат фосфором желток куриных яиц. Относительно много фосфора находится в рыбе, хлебе, мясе, молоке и сыре. Еще больше фосфора находится в фасоли, горохе, овсяной, перловой и ячневой крупах, а также в ягодных культурах, орехах, петрушке, капусте, моркови, чесноке, шпинате.

Впервые фосфор открыл алхимик Хенниг Бранд из Гамбурга в 1669 году. Получив светящееся в темноте вещество, ученый назвал его сначала «холодным огнем». Вторичное название «фосфор» происходит от греческих слов «фос» — свет и «феро» — несу.

В теле человека содержится в среднем около 1,5 кг элемента: 1,4 кг приходится на кости, около 130 г — на мышцы и 12 г — на нервы и мозг. В составе костей фосфор главным образом представлен в виде фосфата кальция, а в зубная эмаль по составу и кристаллическому строению соответствует апатиту.

Суточная потребность человека в фосфоре 800—1500 мг. При его дифиците в организме развиваются различные заболевания костей. Для правильного питания важно соотношение фосфора с кальцием (2:3). При избытке первого может происходить выведение кальция из костей, при избытке второго — развиваться мочекаменая болезнь.

Необходимо быть внимательным при работе с фосфором. Белый фосфор весьма ядовит: вызывает поражение костей, костного мозга, некроз челюстей. Он растворим в липидах. Летальная доза этого вещества для взрослого мужчины составляет 0,05—0,1 г. Попадая на кожу, дает тяжелые ожоги. Ядовитость красного фосфора в тысячи раз меньше, чем у белого . Он почти нетоксичен. Но его пыль, попадая в легкие, вызывает пневмонию при хроническом действии. При остром отравлении этим веществом появляются жжение во рту и желудке, головная боль, слабость, рвота. А через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем. В качестве первой помощи при остром отравлении необходимы промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах пораженные участки кожи необходимо обработать пораженные участки растворами медного купороса или соды.

Наверное, никто не станет возражать, что мифология современного человека подчиняется тем же законам, что и любая другая мифология. Разница, пожалуй, только в том, что различные предметы и субстанции, обладающие магическими и сверхъестественными свойствами, в сознании современного человека заменяются на научные и технологические достижения. Очень интересно рассмотреть в этом качестве белый фосфор – один из самых распространенных артефактов в легендах о Великой отечественной и Второй мировой войне. Ему нередко приписывают чуть ли не сверхъестественные свойства. Например, невероятно широко распространены легенды о якобы фосфорной начинке реактивных снарядов, которыми стреляли знаменитые «Катюши». К сожалению, большинство историков, в том числе военных – гуманитарии, и даже ученые степени не защищают их от естественной тяги к мифическим толкованиям реальности.

Прежде всего, по этому поводу надо сказать, что определенная загадка тут действительно есть. Танкисты, находящиеся внутри среднего танка T-IV, скорее всего отделаются легким испугом, если в метре-двух от него разорвется мощная фугасная бомба. Самое худшее – если осколок повредит ствол орудия, но, скорее всего, после окончания авианалета им придется менять пару траков у гусеницы или каток. Ударная волна фугасного заряда имеет температуру несколько сотен градусов, что маловато даже для легкого танка, а осколки противоснарядную броню просто не пробивают. У РС-а осколки имеют еще меньшую силу, они вообще не в счет, зато ударная волна принципиально другая. Ее температура в радиусе нескольких метров достигает двух тысяч градусов, что намного выше разных пределов устойчивости любых типов стали. Если на снимке тех лет виден, например, изогнутый ствол орудия или оплавленные края металлических деталей – можно не сомневаться, это результат воздействия РСов. В Брестской крепости показывали немецкий автомат, наполовину расплавленный и вдавленный в кирпичную стену такой волной. (При освобождении Бреста в 1944 году по крепости били «Катюши»). Обычные бризантные боеприпасы такую температуру создать не могут.


А тех, кто пытался выяснить причину этого необычного свойства советского чудо- , наверняка поражал и такой факт: хотя масса взрывчатки у РСов была в два раза меньше, чем у их аналогов, которыми стрелял «Небельверфер», урон они наносили несравнимо больший.

Впрочем, как и почему родилась легенда о фосфорной начинке РСов – загадка не менее удивительная. Ведь сам фосфор (ни белый, ни красный, ни черный) не является взрывчатым веществом, температуру горения он не увеличивает (для этого используют порошок алюминия или других металлов). Но эту загадку пусть разгадывают специалисты по мифологии, а мы сразу перейдем к техническим данным.

Так вот, как раз в составе самой начинки не было ничего необычного. Боевая часть РСа заполнялась тетранитропентаэритритом или тринитротолуолом – эти вещества были давно известны и немцам, и во всем мире. Они были начинкой большинства типов артиллерийских снарядов и авиабомб того времени. Ракетное топливо – пироксилиновый порох, специально разработанный талантливыми советскими химиками Филипповым и Сериковым, был уникален по рецептуре, но принципиально не отличался от большинства других бездымных порохов того времени.

Более того, в разгар Зимней войны, в конце 1939 года, финны передали немцам трофейный РС-82 и те его детально исследовали. На изготовление первого аналога ушло меньше года, а знаменитые шестиствольные реактивные минометы появились даже раньше «Катюш». Кстати, порох в немецких реактивных снарядах был даже технологичнее – при его производстве было меньше брака – и, по данным испытаний, проводившихся уже после войны, траектория полета немецких реактивных снарядов была более устойчивой, чем у их русских прототипов.

Так в чем же секрет? В боевой части советских реактивных снарядов был успешно реализован интерференционный эффект сложения двух детонационных волн: на противоположных сторонах отсека одновременно срабатывали два запала, дающих два центра детонации. В результате получалась высокотемпературная ударная волна высокой мощности. Одновременный разрыв нескольких таких снарядов усиливал температурный эффект, что еще больше способствовало увеличению поражающего воздействия.

Тем не менее во Второй мировой войне белый фосфор довольно часто использовался в качестве компонента огнесмесей и – намного реже – как самостоятельный поражающий фактор зажигательного оружия.

Сначала приведем отрывок из воспоминаний летчика Олега Васильевича Лазарева (О. Лазарев «Летающий танк. 100 боевых вылетов на Ил-2»):
«…Осматривая самолет, обратил внимание, что вместо бомб к нему подвозят ящики, сколоченные из неплотно сбитых досок, в которых просматриваются большие банки из светлой белой жести. «Что это?» – спросил я у оружейника. «Фосфор. Будете выливать его на фашистов». Я знал, что с «Ила» его можно выливать, но не знал, как это делается. Пришел инженер полка, следом за ним привезли ВАПы (выливной авиационный прибор). Тут же последовал инструктаж по их использованию.

Во второй половине дня наша эскадрилья пошла на задание. Вел ее Сеничкин. В составе группы летел и я. Полет с ВАПами в полку выполнялся впервые, поэтому Хромова беспокоил взлет, особенно после случая со мной. Машины будут взлетать в перегрузочном варианте. Выливной прибор громоздкий, поэтому он ухудшает аэродинамику самолета. Увеличивается лобовое сопротивление и уменьшается скорость полета, но главное, увеличивается длина разбега, что небезопасно при ограниченной длине нашей полосы.

Чтобы как-то облегчить машину, командир решил высадить воздушных стрелков и полет выполнять одним летчиком. На случай встречи с истребителями противника он попросил увеличить количество истребителей прикрытия. Перед вылетом на земле отработали боевой порядок группы на маршруте, при подходе к цели и в момент атаки. Удар предстояло нанести по колонне техники на дороге Брянск – Рославль и в месте ее скопления у переправы через Десну. Цель была узкой, поэтому выливание фосфора решили проводить парами. Рассчитали высоту, дистанцию между парами, начало выливания, обеспечивающее наибольшую эффективность поражения объекта. Полет выполнялся без каких-либо отклонений от разработанного плана. Выглядел он эффектно и зрелищно, как в кино. При подлете к цели с автомашин, танков и зенитных установок велся сильный огонь. Стреляли даже солдаты из винтовок.
Снопы искр от рикошетировавших о броню пуль летели, как с наждачного точила. Но стоило появиться длинным шлейфам огня, лившимся на землю из самолетов Сеничкина и Ершова в виде горящих шаров размером с хоккейный мяч, за которыми тянулись белые хвосты дыма, сразу же превращавшиеся в сплошное плотное облако, как огонь с земли сразу, точно по команде, прекратился. Летчики последующих пар, шедшие за ними на удалении 300–350 метров, хорошо видели бежавших от дороги фашистов. Но, остановленные огнем, они ложились головой вниз и терялись в дыму… …Там, где стояли танки, автомашины и, конечно же, фашисты, скопившиеся у разрушенной переправы возле Жуковки, образовалось большое белое облако. Поставленную задачу эскадрилья выполнила…»

Здесь стоит, прежде всего, обратить внимание на фразу: «Но стоило появиться длинным шлейфам огня… …как огонь с земли сразу, точно по команде, прекратился». Во время штурмовки «Илами» колонн с техникой паника у немцев была, в общем-то, делом обычным, но не с первого захода. Как правило, штурмовики сначала встречал плотный огонь из всех видов оружия, подавить который удавалось далеко не всегда. В данном же случае, немцы, увидев белый шлейф, медленно опускающийся вслед за первым штурмовиком, полностью потеряли способность к сопротивлению и бросились бежать. Видимо слава белого фосфора летела впереди «Илов», не смотря на то, что дело происходит осенью 41 года, когда еще этих штурмовиков на фронте было не так уж много. (Впрочем первыми белый фосфор на немцев еще в июле стали сбрасывать ночные бомбардировщики Пе-2, но вскоре отказались от его применения из-за слишком большой опасности для самих самолетов).

В самом деле, белый фосфор – действительно страшное оружие. При горении он размягчается, тянется и устойчиво прилипает ко всем поверхностям. Потушить его практически невозможно. Раны и ожоги от него чрезвычайно опасны – при попадании на кожу практически неминуемы ожоги третьей и четвертой степени, глубокий некроз тканей, поражения костей и костного мозга. При попадании белого фосфора на бронетехнику возникает не только опасность воспламенения паров бензина – почти наверняка это означает гибель экипажа, так как продукты горения по токсичности не уступают боевым отравляющим веществам, а радиус их действия даже в безветренную погоду достигает десятков метров. Пары фосфорного ангидрида при низкой влажности могут быть устойчивы несколько часов, стелются по земле, сгущаются на поверхностях, особенно на металлических, и снова испаряются.

Отдельным поражающим эффектом является и психологический шок – по последствиям также не уступающий результатам применения отравляющих веществ. Раненые с ожогами от фосфора, особенно с ожогами легких, – настоящий кошмар военных госпиталей: их жуткие крики и стоны на фоне бессилия врачей навсегда закрепляются в памяти выздоравливающих, отправляющихся на передовую с новыми порциями слухов-страшилок…

Понятно, что эти факты и вызываемый ими страх делают фосфор во-первых идеальным артефактом любой мифологии, а во-вторых очень убедительным аргументом против более сильного и самоуверенного противника. Не случайно использование в военных целях белого фосфора начинается в девятнадцатом веке во время различных восстаний и бунтов. Так в Ирландии повстанцы применяли его против британских военных и полицейских – и получалось довольно убедительно. В Первой Мировой войне практически все воюющие стороны использовали зажигательные пули с белым фосфором, особенно, для стрельбы по воздушным целям. Известны также гранаты, снаряды и бомбы, начиненные фосфором.

Однако, несмотря на сильное впечатление, производимое на противника такими боеприпасами, уже во время Второй Мировой войны белый фосфор как самостоятельный поражающий компонент применялся очень редко, достоверных сведений о таких фактах очень мало. Область применения сузилась: широко он применялся только как инициирующий (самовоспламеняющийся) компонент различных огнесмесей в зажигательном оружии.

«…Насколько эффективным был наш вылет, мы не знали. Могли только предполагать. Но, видимо, урон врагу нанесли немалый. Иначе немецкое командование в ультимативной форме не потребовало бы прекратить применение фосфора. Они заявили, что в противном случае будут использовать химическое оружие. Не уверен в достоверности этих слухов, но вылетов с ВАПами полк больше не делал. После нашего вылета весь полк два дня простоял в полной боевой готовности со снаряженными ВАПами. На третий их сняли, фосфор от самолетов убрали, и до конца войны мы его больше не видели…»

Слухи, доходившие до передовой, были не беспочвенны: действительно, осенью 1941 года через Швейцарский Красный Крест в Москве велись переговоры о запрещении фосфорных боеприпасов. Однако применение фосфора советскими ночными бомбардировщиками и штурмовиками довольно часто упоминаются в воспоминаниях и других летчиков, воевавших на разных фронтах (в частности у Василия Емельяненко, который летал на «Иле» еще с лета 1941 года). В целом факты применения белого фосфора были хоть и не многочисленны, но довольно регулярны.

Договоренности между правительствами воюющих стран были, конечно, важным сдерживающим фактором, но не они, в конечном счете, помешали фосфорным боеприпасам стать массовым оружием Второй мировой. Одну из истинных причин невольно указал автор приведенного выше отрывка: «…выливной прибор громоздкий, поэтому он ухудшает аэродинамику самолета…». Он еще не упомянул, что применять ВАП-ы нужно было на бреющем полете, с минимальной высоты, желательно 25 метров, что очень опасно для самих штурмовиков. Кроме того, при попадании даже небольших количеств фосфора на обшивку самолет в самом лучшем случае ожидал капитальный ремонт. Доставка компонентов фосфорного оружия в прифронтовых условиях тоже требовала специальных мер, обеспечение которых обходилось слишком дорого.

Несмотря на этот довольно ограниченные масштабы применения фосфора советскими штурмовиками в начальный период войны, эти факты породили множество ярких легенд и фантастических историй в народной и сетевой мифологии. Большая часть из них основана на элементарной терминологической путанице. Например, почти повсеместно такими авторами упоминаются, сбрасываемые «Илами» жестяные ампулы АЖ-2 с якобы «фосфорной» самовоспламеняющейся смесью КС.

Это очень типичный пример устойчивого заблуждения, бороться с которым, в общем-то, бесполезно, но попробуем еще раз.

Болванка современного американского подкалиберного бронебойного снаряда выполнена обычно из уранового сплава, но ведь из этого не следует, что американцы применяли ядерное оружие в Ираке или в Югославии.

Точно также и фосфор, растворенный в углеводородах, или находящийся в запальной ампуле зажигательного боеприпаса, является инициирующим элементом, а не поражающим. Он действительно широко использовался в различном зажигательном оружии и в составе огнесмесей, но добавлялся исключительно для самовозгорания при контакте с воздухом. Его количества было недостаточно для создания особого поражающего эффекта. Более того, присутствие фосфора даже в небольшом количестве в составе огнесмеси, конечно, делает ее продукты горения более ядовитыми и опасными, но физические качества самой смеси ухудшаются. В качестве самовоспламеняющегося на воздухе компонента огнесмесей более эффективным и удобным (особенно в зимнее время) оказался сероуглерод. Тоже, кстати, очень ядовитое и опасное соединение – и именно его чаще всего использовали в рецептах многих КС и «коктейлей Молотова».
Поэтому, встречая в источниках название «фосфор» или «фосфорная смесь», нужно относиться к ним очень осторожно – в 90 % случаев его можно заменить на «фосфорсодержащая смесь».

Еще в большей мере это касается немцев. У них большинство зажигательных смесей (включая применявшиеся в ранцевых огнеметах) были фосфорсодержащими. Отсюда многочисленные свидетельства того, как они буквально «заливали фосфором» советские окопы, укрепления и бронетехнику.

Гранулированный белый фосфор немцы, впрочем, тоже пробовали применять (правда, позднее – в середине 42 года), но видимо, неуспешно, так как свидетельства единичны и недостоверны. Скорее всего, для эскадрилий немецких пикировщиков применение фосфорных зажигательных бомб было просто слишком неудобно. «Штуки» на Восточном фронте постоянно работали в режиме «пожарной команды», делая в хорошую погоду по нескольку вылетов в день. Они гораздо чаще, чем советские штурмовики, меняли аэродромы. Снабжение боеприпасами и технические службы работали практически круглосуточно в экстремальном режиме. А бомбу-контейнер с белым фосфором нужно везти отдельным транспортом, ее установка требует долгой и квалифицированной работы специальной команды техников. Те задачи, которые «Юнкерсы» решали на поле боя, просто не могли ждать, и для них вполне достаточно было обычных боеприпасов.

Для бомбардировки же укреплений, гражданских зданий и промышленных объектов немцами эффективно применялись термитные бомбы (жители советских городов называли их «зажигалки»).

В то же время в немецких мемуарах и исторических исследованиях очень часто встречаются свидетельства об использовании фосфора авиацией союзников, главным образом, против гражданского населения.

Так что в целом можно сказать, что для применения белого фосфора не были разработаны и подготовлены в достаточной мере специальные боеприпасы, техника, средства хранения и транспортировки. А еще сказывался дефицит специально обученных людей, особенно техников-оружейников. Во многом аналогичная картина была и во время Первой Мировой – несмотря на то, что тогда еще не было и в помине никаких международных договоренностей и конвенций, фосфор все же применялся довольно ограниченно. К счастью, к началу Второй Мировой войны ни одна из сторон тоже не была готова технически и организационно к его массовому использованию. Большая часть специальных зажигательных средств и боеприпасов либо создавалась в экстренном порядке перед самой войной, либо уже после ее начала. В большинстве своем они носили экспериментальный характер, были несовершенны и слишком опасны в использовании. По мере совершенствования зажигательного оружия (в том числе, ампул для смесей «КС») и появления более удобных и надежных в использовании компонентов (как сероуглерод) белый фосфор довольно быстро терял свою актуальность.

ФОСФОР ПЭ

«Без фосфора нет мысли»

Содержится в мозговой ткани и костях человека.

Входит в состав минерального удобрения суперфосфат.

Красный фосфор используется в производстве спичек.

История открытия фосфора.

Древние фолианты сохранили для нас отдельные эпизоды из жизни отставного солдата и гамбургского купца. Звали его Хенниг Бранд (ок. 1630-?). Его купеческие дела шли не блестяще, и именно по этой причине он сремился выбраться из нищеты. Она его ужасно угнетала. И Бранд решил попытать счастья в алхимии. Тем более что в XVII в. в отличие от нашего XX в. считалось вполне возможным найти «философский камень», который способен превращать неблагородные металлы в золото.

Хенниг Бранд

Бранд провел уже множество опытов с различными веществами, но ничего дельного у него не получалось. Однажды он решил провести химический эксперимент с мочой. Выпарил ее почти досуха и оставшийся светло-желтый осадок смешал с углем и песком, нагревая в реторте без доступа воздуха. В результате Бранд получил новое вещество, которое обладало удивительным свойством-светиться в темноте.

Так в 1669 г. был открыт фосфор, играющий исключительно важную роль в живой природе: в растительном мире, в организме животных и человека.

Счастливый ученый не замедлил воспользоваться необычным свойством нового вещества и стал демонстрировать светящийся фосфор знатным особам за довольно высокое вознаграждение. Все, что соприкасалось с фосфором, приобретало способность светиться. Достаточно было помазать фосфором пальцы, волосы или предметы, и они вспыхивали таинственным голубовато-белым светом. Религиозно и мистически настроенные богатые люди того времени диву давались, смотря на различные манипуляции Бранда с этим «божественным» веществом. Он ловко использовал огромный интерес ученых и широкой публики к фосфору и стал продавать его по цене, превосходившей даже стоимость золота. X. Бранд производил фосфор в больших количествах и держал способ его получения в строжайшей тайне. Никто из других алхимиков не мог проникнуть в его лабораторию, и поэтому многие из них стали лихорадочно ставить различные опыты, стремясь раскрыть секрет изготовления фосфора.

«Блуждающие огни»

При разложении богатых фосфором соединений органического происхождения нередко образуются газообразные и жидкие вещества. Иногда можно наблюдать выделение газа с запахом гнилой рыбы-фосфористого водорода, или фосфина, РН3. Одновременно с фосфином идет образование другого продукта - дифосфина, Р2 Н4, представляющего собой жидкость. Пары дифосфина самовоспламеняются и поджигают газообразный фосфин. Этим объясняется появление так называемых «блуждающих огней» в таких местах, как кладбища, болота. «Блуждающие огни» и другие случаи свечения фосфора и его соединений вызывали суеверный страх у многих людей, не знакомых с сущностью этих явлений. Вот что о работе с газообразным фосфором вспоминает академик С.И. Вольфкович: «Фосфор получался в электрической печи, установленной в Московском университете на Моховой улице. Так как эти опыты проводились тогда в нашей стране впервые, я не предпринял тех предосторожностей, которые необходимы при работе с газообразным фосфором - ядовитым самовоспламеняющимся и светящимся голубоватым цветом элементом. В течение многих часов работы у электропечи часть выделяющегося газообразного фосфора настолько пропитала мою одежду и даже ботинки, что, когда ночью я шел из университета по темным, не освещенным тогда улицам Москвы, моя одежда излучала голубоватое сияние, а из-под ботинок (при трении их о тротуар) высекались искры. За мной каждый раз собиралась толпа, среди которой, несмотря на мои объяснения, немало было лиц, видевших во мне, «новоявленного» представителя потустороннего мира. Вскоре среди жителей района Моховой улицы и по всей Москве из уст в уста стали передаваться фантастические рассказы о светящемся монахе...» (http://www.alhimikov.net/phosfor/otkrytie.html)

Загадки о фосфоре.

1) Белый воздуха боится, покраснел чтоб сохраниться.

  1. Познакомьтесь все со мной!

Я свечусь во тьме ночной.

Разным быть могу на вид:

Если Белый – ядовит,

Если я по цвету красный,

То тогда я безопасный!

  1. Я светоносный элемент.

Я спичку вам зажгу в момент.

Сожгут меня - и под водой

Оксид мой станет кислотой.

Из истории спичек

Изобретателем первых фосфорных спичек оказался девятнадцатилетний француз Шарль Сориа. В 1831 г. юный экспериментатор к смеси бертолетовой соли с серой для ослабления ее взрывчатых свойств добавил белый фосфор. Эта идея оказалась на редкость удачной, поскольку смазанные полученным составом лучинки легко загорались при трении. Температура воспламенения таких спичек сравнительно небольшая - 30 °С. Молодой Ш. Сориа попытался получить патент на свое изобретение, но, к сожалению, это оказалось сделать гораздо сложнее, чем создать первые фосфорные спички. За патент нужно было внести слишком крупную сумму, а таких денег Ш. Сориа не имел. Спустя год фосфорные спички были созданы вновь немецким химиком Я. Каммерером.

Итак, завершился долгий путь утробного созревания первой спички и она родилась сразу в руках нескольких изобретателей. Однако судьбе было угодно вручить лавры первенства в этом открытии Якобу Фридриху Каммереру (1796-1857), а 1832 год сохранить для потомков как год рождения спичек, крупнейшего открытия XIX в., сыгравшего важную роль в истории развития человеческой культуры.

Лавры первооткрывателей спичек стремились получить многие, но история сохранила для нас из всех претендентов имя Я. Каммерера. В Россию первые фосфорные спички были привезены из Гамбурга в 1836 г. и продавались по очень дорогой цене - один рубль серебром за сотню. Имеются предположения, что наш великий поэт А. С. Пушкин в последний год своей жизни пользовался такими фосфорными спичками, работая при свечах долгими зимними вечерами.

Молодежь Петербурга не замедлила, конечно, щегольнуть фосфорными спичками на балах и в модных салонах, стремясь ни в чем не уступать Западной Европе. Жаль только, что ни одной поэтической строчки не успел А. С. Пушкин посвятить спичкам - прекрасному и очень важному изобретению, настолько полезному и привычному теперь, что мы даже не задумываемся о сложной судьбе появления спичек... Нам кажется, что спички всегда были рядом с нами. А на самом деле первая отечественная фабрика по производству спичек построена в Петербурге только в 1837 г.

Прошло немногим более 150 лет с тех пор, как жители государства Российского получили первые отечественные спички и, поняв важность этого изобретения, весьма быстро развернули спичечное производство.

В 1842 г. в одной Петербургской губернии существовало 9 спичечных фабрик, ежедневно производивших 10 млн. штук спичек. Цена на спички резко снизилась и не превышала 3-5 коп. медью за 100 штук. Способ изготовления спичек оказался настолько прост, что в России к середине XIX в. он стал носить характер кустарного промысла. Так, в 1843-1844 гг. было обнаружено, что спички в значительном количестве изготавливаются в домашних условиях.

Их производили в самых отдаленных уголках России предприим¬чивые крестьяне, укрываясь таким образом от налогов. Однако легкая воспламеняемость фосфора привела к большим пожарам. Многие села и деревни выгорали буквально дотла.

Виновником этих бедствий оказался белый фосфор, способный легко воспламеняться. При перевозке спички нередко загорались от трения. На пути спичечных обозов полыхали грандиозные пожары, и обезумевшие лошади с горящими повозками приносили немало бед.

В 1848 г. последовал высочайший императорский указ, подписанный Николаем I, допускавший изготовление зажигательных спичек только в столицах, причем спички должны были упаковываться в жестяные банки по 1000 штук. Далее в указе говорилось: «Обратить особое внимание на чрезвычайное распространение употребления зажигательных спичек, усмотреть изволили, что при случившихся в текущем году пожарах, потребивших в одних городах более на 12000000 рублей. серебром обывательских имуществ, поджигатели весьма часто совершали свое преступление посредством спичек».

Кроме того, белый фосфор- одно из самых ядовитых веществ.

Поэтому работа на спичечных фабриках сопровождалась серьезным заболеванием, получившим название фосфорного некроза, поражающего челюсти, т.е. омертвения клеток, а также сильного воспаления и кровоточения десен.

Но выход был найден, сравнительно быстро оказалось возможным заменить белый фосфор на красный, открытый в 1848 г. В отличие от белого эта разновидность фосфора совершенно безвредна. Красный фосфор ввели в состав спичечной массы. Но ожидания не оправдались. Спички загорались очень плохо. Они не находили сбыта. Фабриканты, которые начали было изготовление, разорились.

К середине XIX столетия было сделано множество выдающихся изобретений, а изготовление обыкновенной спички никак не могло найти удовлетворительного решения.

Проблема была решена в 1855 г. в Швеции. Безопасные спички в этом же году были представлены на Международной выставке в Париже и получили золотую медаль. С этого момента так называемые шведские спички начали свое триумфальное шествие по всему миру. Их главная особенность состояла в том, что они не воспламенялись при трении о любую твердую поверхность. Шведская спичка зажигалась только в том случае, если ее потереть о боковую поверхность коробки, покрытую специальной массой.

Таким -образом, «безопасный огонь» в шведских спичках рождался великолепным союзом силы трения и химической реакции.

Расскажем теперь, как устроена современная спичка . Масса спичечной головки на 60% состоит из бертолетовой соли, а также из горючих веществ-серы или каких-нибудь сульфидов металлов, например сульфида сурьмы. Чтобы воспламенение головки происходило медленно и равномерно, без взрыва, к массе добавляют так называемые наполнители - стеклянный порошок, оксид железа (III) и т.д. Связующим материалом служит клей. Бертолетову соль можно заменять веществами, в большом количестве содержащими кислород, например бихроматом калия. А из чего состоит намазка шкурки? Здесь основной компонент- красный фосфор. К нему добавляют оксид марганца (IV), толченое стекло и клей. (http://www.alhimikov.net/phosfor/otkrytie.html)

Применение фосфора